Symbolic Heap Abstraction with Demand-Driven
Axiomatization of Memory Invariants

Isil Dillig Thomas Dillig Alex Aiken

Stanford University

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Relational vs. Non-Relational Heap analysis

@ Goal of heap analysis: Statically describe all possible points-to
relations in the heap for any execution of the program.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Relational vs. Non-Relational Heap analysis

@ Goal of heap analysis: Statically describe all possible points-to
relations in the heap for any execution of the program.

@ Heap analyses can be characterized as relational or
non-relational:

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Relational vs. Non-Relational Heap analysis

@ Goal of heap analysis: Statically describe all possible points-to
relations in the heap for any execution of the program.

@ Heap analyses can be characterized as relational or
non-relational:

e A relational analysis tracks correlations between points-to
targets of two memory locations

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Relational vs. Non-Relational Heap analysis

@ Goal of heap analysis: Statically describe all possible points-to
relations in the heap for any execution of the program.

@ Heap analyses can be characterized as relational or
non-relational:

e A relational analysis tracks correlations between points-to
targets of two memory locations
e A non-relational heap analysis does not.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Relational vs. Non-Relational Heap analysis

@ Goal of heap analysis: Statically describe all possible points-to
relations in the heap for any execution of the program.

@ Heap analyses can be characterized as relational or
non-relational:
e A relational analysis tracks correlations between points-to
targets of two memory locations
e A non-relational heap analysis does not.

@ Relational heap analyses are more precise, but also more
expensive,

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

An Example

@ Consider the code snippet:

if (%)
*X = a;
else

*xX = b;

y = x5
assert (xx == xy);

Isil Dillig Thomas Dillig Alex Aiken

Symbolic Heap Abstraction with Demand-Driven Axiomatization

An Example

@ Consider the code snippet: .
B N
GFE

else

*xX = b;

y = x5
assert (xx == xy);

Isil Dillig Thomas Dillig Alex Aiken

Symbolic Heap Abstraction with Dem

iven Axiomatization

An Example

Non-relational:

@ Consider the code snippet: .
B N
GFE

else
*xX = b;
@ Does not encode x and y
v = x; must point to same location
assert (xx == *y);

Isil Dillig Thomas Dillig Alex Aiken

Symbolic Heap Abstraction with Demand-Driven Axiomatization

An Example

Non-relational:

@ Consider the code snippet: .
B N
GFE

else
*xX = b;
@ Does not encode x and y
v = x; must point to same location
assert (xx == *y);

@ Cannot prove the assertion

Isil Dillig Thomas Dillig Alex Aiken

Symbolic Heap Abstraction with Demand-Driven Axiomatization

An Example

Relational:

Heap 1 Heap 2

@ Consider the code snippet: ° °
o @ ®
else
*x = b; @ Perform case split on possible
v = x; heaps.
assert (xx == xy);

Isil Dillig Thomas Dillig Alex Aiken

Symbolic Heap Abstraction with Demand-Driven Axiomatization

An Example

Relational:

Heap 1 Heap 2

@ Consider the code snippet: ° °
if (%) e Q

¥ ¥

else

*x = b; @ Perform case split on possible
heaps.

—_— p

assert (xx == *y); @ Can prove assertion because

in both heaps x and y point
to same location.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Relational Analysis via Heap Splitting

o Advantages:

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Relational Analysis via Heap Splitting

o Advantages: Heas
. Heap 1 ea
e Each abstract location cap P

points to exactly one target ° °
location per heap e Q

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Relational Analysis via Heap Splitting

o Advantages:
. H 1 Heap 2
e Each abstract location cap P

points to exactly one target ° °

location per heap e Q
e = precise relational

reasoning 0

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Relational Analysis via Heap Splitting

o Advantages:
e Each abstract location

points to exactly one target ° °

location per heap e Q
e = precise relational

reasoning 0

@ Disadvantages:

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Relational Analysis via Heap Splitting

o Advantages:
. H 1 Heap 2
e Each abstract location cap P

points to exactly one target ° °

location per heap e Q
e = precise relational

reasoning 0

@ Disadvantages:

o Generates exponential
number of heaps

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Relational Analysis via Heap Splitting

o Advantages:

. Heap 1 Heap 2
e Each abstract location P

points to exactly one target
location per heap

e = precise relational
reasoning

@ Disadvantages:

o Generates exponential
number of heaps

e Duplicates shared portion
of the heaps

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Relational Analysis via Heap Splitting

o Advantages:

e Each abstract location
points to exactly one target
location per heap

e = precise relational
reasoning

Heap 1 Heap 2

@ Disadvantages:
o Generates exponential
number of heaps
e Duplicates shared portion
of the heaps
e = Very expensive and
unscalable

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Relational Analysis via Heap Splitting

o Advantages:

o Each abstract location This talk:
points to exactly one target Scalable and precise relational
location per heap heap analysis without per-
° = precise relational forming explicit case splits on
reasoning A

@ Disadvantages:
o Generates exponential
number of heaps
e Duplicates shared portion
of the heaps
e = Very expensive and
unscalable

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Memory Invariants

Insi

We can achieve relational reasoning by
enforcing two important memory
invariants that real computer memories
satisfy:

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Memory Invariants

Insi

We can achieve relational reasoning by
enforcing two important memory
invariants that real computer memories
satisfy:

o Existence: Every memory
location has at least one value

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Memory Invariants

Insi

We can achieve relational reasoning by
enforcing two important memory
invariants that real computer memories
satisfy:

o Existence: Every memory
location has at least one value

@ Uniqueness: Every memory
location has at most one value

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Memory Invariants

Insi

We can achieve relational reasoning by
enforcing two important memory
invariants that real computer memories
satisfy:

o Existence: Every memory
location has at least one value

@ Uniqueness: Every memory
location has at most one value

= Heap splitting is one way of
enforcing these invariants.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Enforcing Memory Invariants

Enforce memory invariants symbolically using constraints on a single
heap abstraction.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Enforcing Memory Invariants

Enforce memory invariants symbolically using constraints on a single
heap abstraction.

@ No explicit case splits on the heap, but solver may internally
need to perform case analysis

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Enforcing Memory Invariants

Enforce memory invariants symbolically using constraints on a single
heap abstraction.

@ No explicit case splits on the heap, but solver may internally
need to perform case analysis

@ Still advantageous because:

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Enforcing Memory Invariants

Enforce memory invariants symbolically using constraints on a single
heap abstraction.

@ No explicit case splits on the heap, but solver may internally
need to perform case analysis

@ Still advantageous because:

e Solver can often prove a constraint SAT or UNSAT without
considering all cases: eager vs. lazy

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Enforcing Memory Invariants

Enforce memory invariants symbolically using constraints on a single
heap abstraction.

@ No explicit case splits on the heap, but solver may internally
need to perform case analysis

@ Still advantageous because:

e Solver can often prove a constraint SAT or UNSAT without
considering all cases: eager vs. lazy

e Don't duplicate shared portions of the heap

Isil Dillig Thomas Dillig Alex Aiken

Symbolic Heap Abstraction with Demand-Driven Axiomatization

Enforcing Memory Invariants

Enforce memory invariants symbolically using constraints on a single
heap abstraction.

@ No explicit case splits on the heap, but solver may internally
need to perform case analysis

@ Still advantageous because:
e Solver can often prove a constraint SAT or UNSAT without
considering all cases: eager vs. lazy

e Don't duplicate shared portions of the heap
e No heuristics for merging “similar” heaps

Isil Dillig Thomas Dillig Alex Aiken

Symbolic Heap Abstraction with Demand-Driven Axiomatization

Enforcing Memory Invariants

if ()
S @
else
*x = b;
(b)
y = x5
assert (xx == xy);

@ To encode that x cannot point to a and b at the same time,
we can use two constraints ¢ and —¢

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Enforcing Memory Invariants

if (%)
O3
else
*x = b; 2
h

®
assert (xx == xy);

@ To encode that x cannot point to a and b at the same time,
we can use two constraints ¢ and —¢

Isil Dillig Thomas Dillig Alex Aiken

Symbolic Heap Abstraction with Demand-Driven Axiomatization

Enforcing Memory Invariants

if ()
D@
else
*x = b; ¢
‘— - ®
y = x5
assert (xx == xy);

@ To encode that x cannot point to a and b at the same time,
we can use two constraints ¢ and —¢ = Uniqueness

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Enforcing Memory Invariants

if ()
O3
else
*x = b; ng
h

®
assert (xx == xy);

@ To encode that x cannot point to a and b at the same time,
we can use two constraints ¢ and —¢ = Uniqueness

@ Also encodes that x must point to either a or b

Isil Dillig Thomas Dillig Alex Aiken

Symbolic Heap Abstraction with Demand-Driven Axiomatization

Enforcing Memory Invariants

if ()
@
else
*x = b;
N E®
y = x5
assert (xx == xy);

@ To encode that x cannot point to a and b at the same time,
we can use two constraints ¢ and —¢ = Uniqueness

@ Also encodes that x must point to either a or b = Existence

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Enforcing Memory Invariants
if (%)
D@
else W
*x = b;
¥ ®

assert (*x == xy);

Isil Dillig Thomas Dillig Alex Aiken

Symbolic Heap Abstraction with Demand-Driven Axiomatization

Enforcing Memory Invariants

if (%)

D@
else W
*x = b;

¥ (b)

assert (*x == xy);

Correlation between x and y preserved

@ x and y point to different locations under ¢ A —¢
= Can prove the assertion!

Isil Dillig Thomas Dillig Alex Aiken

Symbolic Heap Abstraction with Demand-Driven Axiomatization

Memory Invariants on Unbounded Locations

@ Easy to enforce these invariants when each abstract location
corresponds to one concrete location.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Memory Invariants on Unbounded Locations

@ Easy to enforce these invariants when each abstract location
corresponds to one concrete location.

@ But what about abstract locations that represent multiple
concrete locations?

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Memory Invariants on Summary Locations

for(int i=0; i<size; i++)
{
if (%) x[i] = a;
else x[i] = b;
}
—
y = x;
// 0 <=k < size
assert(x[k] == y[kl);

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Memory Invariants on Summary Locations
for(int i=0; i<size; i++)
\@

{
if (%) x[i] = a;
else x[i] = b;

}

=

y =%

// 0 <= k < size

assert(x[k] == y[kl);

@ Most techniques represent the array with a summary node.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Memory Invariants on Summary Locations
for(int i=0; i<size; i++)
\@

{
if (%) x[i] = a;
else x[i] = b;

}

=

y =%

// 0 <= k < size

assert(x[k] == y[kl);

@ Most techniques represent the array with a summary node.

@ Graph encodes that any element in x may point to either a
or b.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Memory Invariants on Summary Locations
for(int i=0; i<size; i++)
\@

{
if (%) x[i] = a;
else x[i] = b;

}

=

y =%

// 0 <= k < size

assert(x[k] == y[kl);

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Memory Invariants on Summary Locations

for(int i=0; i<size; i++)
{
if (%) x[i] = a;
else x[i] = b;
}
—
y = x;
// 0 <=k < size
assert(x[k] == y[kl);

@ Encodes that an element of x cannot point to both a and b

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Memory Invariants on Summary Locations

for(int i=0; i<size; i++)
{
if (%) x[i] = a;
else x[i] = b;
}
—
y = x;
// 0 <=k < size
assert(x[k] == y[kl);

@ Encodes that an element of x cannot point to both a and b

@ ...but erroneously encodes x[1] and x[2] must have same
value!

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Memory Invariants on Summary Locations

for(int i=0; i<size; i++)
{
if (%) x[i] = a;
else x[i] = b;
}
—
y = x;
// 0 <=k < size
assert(x[k] == y[kl);

@ To enforce memory invariants symbolically, we need a way to
refer to individual elements in summary locations.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Symbolic Heap Abstraction

@ Use the symbolic heap from our previous work that allows
distinguishing individual elements in a summary location.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Symbolic Heap Abstraction

@ Use the symbolic heap from our previous work that allows
distinguishing individual elements in a summary location.

e This basic symbolic heap does not enforce memory invariants

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Symbolic Heap Abstraction

@ Use the symbolic heap from our previous work that allows
distinguishing individual elements in a summary location.

e This basic symbolic heap does not enforce memory invariants

@ Describe new technique to enforce memory invariants on the
symbolic heap without explicit case splits

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Symbolic Heap

@ Abstract locations that represent more than one concrete
location are qualified by index variables.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Symbolic Heap

for(int i=0; i<size; i++)
{
if (%) x[i] = a;
else x[i] = b;
}
—
y =%
// 0 <=k < size
assert(x[k] == y[k]);

da

@ Abstract locations that represent more than one concrete
location are qualified by index variables.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Symbolic Heap

for(int i=0; i<size; i++)
{
if (%) x[i] = a;
else x[i] = b;
}
—
y =%
// 0 <=k < size
assert(x[k] == y[k]);

da

@ Abstract locations that represent more than one concrete
location are qualified by index variables.
o Index variables allow us to refer to individual elements inside
the abstract location

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Symbolic Heap
for(int i=0; i<size; i++)
‘@

{
if (%) x[i] = a;
else x[i] = b;

}
=)

vy =x;
// 0 <= k < size
assert(x[k] == y[k]);

@ Bracketing constraints on points-to edges qualify which
elements in the source location may and must point to which
elements in the target location.

Isil Dillig Thomas Dillig Alex Aiken

Symbolic Heap Abstraction with Demand-Driven Axiomatization

Symbolic Heap
for(int i=0; i<size; i++)
‘@

{
if (%) x[i] = a;
else x[i] = b;

}
=)

vy =x;
// 0 <= k < size
assert(x[k] == y[k]);

@ Bracketing constraints on points-to edges qualify which
elements in the source location may and must point to which
elements in the target location.

Isil Dillig Thomas Dillig Alex Aiken

Symbolic Heap Abstraction with Demand-Driven Axiomatization

Symbolic Heap
for(int i=0; i<size; i++)
‘@

{
if (%) x[i] = a;
else x[i] = b;

}
=)

vy =x;
// 0 <= k < size
assert(x[k] == y[k]);

@ Bracketing constraints on points-to edges qualify which
elements in the source location may and must point to which
elements in the target location.

Isil Dillig Thomas Dillig Alex Aiken

Symbolic Heap Abstraction with Demand-Driven Axiomatization

Symbolic Heap

for(int i=0; i<size; i++)
{
if (%) x[i] = a;
else x[i] = b;
}
—
y =%
// 0 <=k < size
assert(x[k] == y[k]);

da

This heap does not enforce memory invariants

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Symbolic Heap

for(int i=0; i<size; i++)
{
if (%) x[i] = a;
else x[i] = b;
}
—
y = x5
// 0 <=k < size
assert(x[k] == y[k]);

> d

This heap does not enforce memory invariants

@ Uniqueness violated because conjunction of may conditions is
not unsatisfiable.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Symbolic Heap

for(int i=0; i<size; i++)
{
if (%) x[i] = a;
else x[i] = b;
}
—
y =%
// 0 <=k < size
assert(x[k] == y[k]);

da

This heap does not enforce memory invariants

@ Uniqueness violated because conjunction of may conditions is
not unsatisfiable.

@ Existence violated because disjunction of must conditions is
not valid.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Making the Symbolic Heap Relational

Modify the basic symbolic heap such that:

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Making the Symbolic Heap Relational

Modify the basic symbolic heap such that:

@ Enforces the existence and uniqueness of memory contents
e Symbolically using constraints

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Making the Symbolic Heap Relational

Modify the basic symbolic heap such that:

@ Enforces the existence and uniqueness of memory contents
e Symbolically using constraints
e Replace original constraints with new constraints A enforcing
these invariants.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Making the Symbolic Heap Relational

Modify the basic symbolic heap such that:

@ Enforces the existence and uniqueness of memory contents
e Symbolically using constraints
e Replace original constraints with new constraints A enforcing
these invariants.

@ Preserves all the partial information encoded in the original
symbolic heap

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Making the Symbolic Heap Relational

Modify the basic symbolic heap such that:

@ Enforces the existence and uniqueness of memory contents
e Symbolically using constraints
e Replace original constraints with new constraints A enforcing
these invariants.

@ Preserves all the partial information encoded in the original
symbolic heap
o Restore existing information by adding quantified axioms
relating A to the original constraints

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Enforcing Existence and Uniqueness on the Symbolic Heap

o Consider any location A for which invariants are violated.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Enforcing Existence and Uniqueness on the Symbolic Heap

o Consider any location A for which invariants are violated.

@ Replace constraint on i'th edge from A with constraint A;
enforcing memory invariants on each concrete element in A.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Enforcing Existence and Uniqueness on the Symbolic Heap

o Consider any location A for which invariants are violated.

@ Replace constraint on i'th edge from A with constraint A;
enforcing memory invariants on each concrete element in A.

@ These A;'s are of the form I'; A O,

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Enforcing Existence and Uniqueness on the Symbolic Heap

o Consider any location A for which invariants are violated.

@ Replace constraint on i'th edge from A with constraint A;
enforcing memory invariants on each concrete element in A.

@ These A;'s are of the form I'; A O,

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Enforcing Existence and Uniqueness on the Symbolic Heap

o Consider any location A for which invariants are violated.

@ Replace constraint on i'th edge from A with constraint A;
enforcing memory invariants on each concrete element in A.

@ These A;'s are of the form I'; A O,

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Enforcing Existence and Uniqueness on the Symbolic Heap

o Consider any location A for which invariants are violated.

@ Replace constraint on i'th edge from A with constraint A;
enforcing memory invariants on each concrete element in A.

@ These A;'s are of the form I'; A O,

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Enforcing Existence and Uniqueness on the Symbolic Heap

o Consider any location A for which invariants are violated.

@ Replace constraint on i'th edge from A with constraint A;
enforcing memory invariants on each concrete element in A.

@ These A;'s are of the form I'; A O,

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Enforcing Existence and Uniqueness on the Symbolic Heap

o Consider any location A for which invariants are violated.

@ Replace constraint on i'th edge from A with constraint A;
enforcing memory invariants on each concrete element in A.

@ These A;'s are of the form I'; A O,

@ [': Each concrete element —
@ © one abstract target

Y

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Enforcing Existence and Uniqueness on the Symbolic Heap

o Consider any location A for which invariants are violated.

@ Replace constraint on i'th edge from A with constraint A;
enforcing memory invariants on each concrete element in A.

@ These A;'s are of the form I'; A O,

@ [': Each concrete element —
@ @ one abstract target

Y

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Enforcing Existence and Uniqueness on the Symbolic Heap

o Consider any location A for which invariants are violated.

@ Replace constraint on i'th edge from A with constraint A;
enforcing memory invariants on each concrete element in A.

@ These A;'s are of the form I'; A O,

@ [': Each concrete element —
one abstract target

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Enforcing Existence and Uniqueness on the Symbolic Heap

o Consider any location A for which invariants are violated.

@ Replace constraint on i'th edge from A with constraint A;
enforcing memory invariants on each concrete element in A.

@ These A;'s are of the form I'; A O,

@ [': Each concrete element —
M one abstract target
@ O: In this abstract target, select
one concrete element.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Constructing I''s

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatizatiol

Constructing I''s

@ Want to ensure i'th element of A points to exactly one B;.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Dem iven Axiomatization

Constructing I''s

@ Want to ensure i'th element of A points to exactly one B;.

@ Introduce an uninterpreted function ¢(7) that selects an edge
for the i'th element.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Constructing I''s

@ Want to ensure i'th element of A points to exactly one B;.

@ Introduce an uninterpreted function ¢(7) that selects an edge
for the i'th element.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Constructing I''s

@ Want to ensure i'th element of A points to exactly one B;.

@ Introduce an uninterpreted function ¢(7) that selects an edge
for the i'th element.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Constructing I''s

@ Want to ensure i'th element of A points to exactly one B;.

@ Introduce an uninterpreted function ¢(7) that selects an edge
for the i'th element.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Constructing I''s

@ Want to ensure i'th element of A points to exactly one B;.

@ Introduce an uninterpreted function ¢(7) that selects an edge
for the i'th element.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Constructing I''s

For any assignment v to i:
e I'j(v) ATl'y,(v) is UNSAT.
o \/;T';(v) is VALID.

@ Want to ensure i'th element of A points to exactly one B;.

@ Introduce an uninterpreted function §(7) that selects an edge
for the i'th element.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Constructing I''s

For any assignment v to i:
e I'j(v) ATl'y,(v) is UNSAT.
o \/;T';(v) is VALID.

@ Want to ensure i'th element of A points to exactly one B;.

@ Introduce an uninterpreted function §(7) that selects an edge
for the i'th element.

@ = Each concrete element in A has exactly one abstract target.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Constructing I''s

For any assignment v to i:
e I'j(v) ATl'y,(v) is UNSAT.
o \/;T';(v) is VALID.

@ Want to ensure i'th element of A points to exactly one B;.

@ Introduce an uninterpreted function §(7) that selects an edge
for the i'th element.

@ = Each concrete element in A has exactly one abstract target.

@ Correctly allows different indices to point to same target.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Example

for(int i=0; i<size; i++)
{
if (%) x[i] = a;
else x[i] = b;
}
—
y =%
// 0 <=k < size
assert(x[k] == y[k]);

a

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Example

for(int i=0; i<size; i++)

{
if (%) x[i] = a;
else x[i] = b;
}
=
v =%

// 0 <= k < size
assert(x[k] == y[k]);

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Example

for(int i=0; i<size; i++)
{

if (%) x[i] = a;

else x[i] = b;

}

vy =x;
»// 0 <= k < size
assert(x[k] == y[k]);

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Example

for(int i=0; i<size; i++)
{ \ 0(i) <0
if (%) x[i] = a;
else x[i] = b;

}

vy =x;
// 0 <= k < size
mP-assert (x[k] == y[k]);

@ We can now prove the assertion!

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

for(int i=0; i<size; i++)
{

if (%) x[i] = a;

else x[i] = b;

}

vy =x;
// 0 <= k < size
mP-assert (x[k] == y[k]);

@ We can now prove the assertion!

o Because x[k] and y[k] point to different locations under
0(k) <OAO(k) > 1= UNSAT

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Why do we need ©7

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatizatiol

Why do we need ©7

for(int i=0; i<size; i++)

{
if (x) x[i] = alil;
else x[i] = b[il;

}

)

y = x;

// 0 <=k < size

assert(x[k] == y[kl);

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Why do we need ©7

>
>

(0 <i<sizeNd =1, false) <
a)i/

for(int i=0; i<size; i++)

{
if (x) x[i] = alil;
else x[i] = b[il;

}

)

y = x;

// 0 <=k < size

assert(x[k] == y[kl);

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Why do we need ©7

for(int i=0; i<size; i++)

{
if () x[i] = alil;
else x[i] = b[i];
}
)
y = x;

// 0 <= k < size
assert(x[k] == y[kl);

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Why do we need ©7

for(int i=0; i<size; i++)

{
if (x) x[i] = alil;
else x[i] = b[il;

}

)

y = x;

// 0 <=k < size

assert(x[k] == y[kl);

@ Encodes x[i] cannot point to a and b at the same time. J

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Why do we need ©7

for(int i=0; i<size; i++)

{
if (x) x[i] = alil;
else x[i] = b[il;

}

)

y = x;

// 0 <=k < size

assert(x[k] == y[kl);

@ Encodes x[i] cannot point to a and b at the same time. J

@ But x[i] can still point to two different elements in a

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Constructing ©

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Constructing ©

@ Want the heap abstraction to encode that i'th element of A
must point to exactly one element in B.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Constructing ©

@ Want the heap abstraction to encode that i'th element of A
must point to exactly one element in B.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Constructing ©

@ Want the heap abstraction to encode that i'th element of A
must point to exactly one element in B.

@ Since 7 is a function, each element in A is mapped to exactly
one element in B.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Constructing ©

@ Want the heap abstraction to encode that i'th element of A
must point to exactly one element in B.

@ Since 7 is a function, each element in A is mapped to exactly
one element in B.

@ Since T is uninterpreted, each element in A is mapped to an
unknown element in B.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Example

>
>

(0 <i<sizeNi' =1, false)
(@)

for(int i=0; i<size; i++)

{
if (x) x[i] = alil;
else x[i] = b[i];

}

_—)

y =%

// 0 <= k < size

assert(x[k] == y[k]);

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Example

for(int i=0; i<size; i++)

{
if (x) x[i] = alil;
else x[i] = b[i];

}

>

y =%

// 0 <= k < size

assert(x[k] == y[k]);

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Example

for(int i=0; i<size; i++)
{
if (x) x[i] = alil;
else x[i] = b[i];
}
>
y =%
// 0 <= k < size
assert(x[k] == y[k]);

@ Now encodes that each element in x points to exactly one
concrete element in a or b.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Example

for(int i=0; i<size; i++)
{
if (x) x[i] = alil;
else x[i] = b[i];
}

y = x;
// 0 <= k < size
mP-assert (x[k] == y[k]);

@ Now encodes that each element in x points to exactly one
concrete element in a or b.

@ Can now prove assertion.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Preserving Existing Information

@ So far, we have enforced the memory invariants; but we did
not preserve all the information in the original symbolic heap.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Preserving Existing Information

@ So far, we have enforced the memory invariants; but we did
not preserve all the information in the original symbolic heap.

@ Using original heap, can prove
x[2] cannot point to a[4].

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Preserving Existing Information

@ So far, we have enforced the memory invariants; but we did
not preserve all the information in the original symbolic heap.

6(/)§()/\/ﬁ’:71(i) <a>
2

@ Using original heap, can prove
x[2] cannot point to a[4].

@ But using the modified heap,
we can no longer prove this.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Preserving Existing Information

If edge in original heap is qualified by (¢may, Pmust), then
introduce axioms of the form:

V3. r = Omay
Vi. ¢must = T

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Preserving Existing Information

If edge in original heap is qualified by (¢may, Pmust), then
introduce axioms of the form:

V3. r = Omay
Vi. ¢must = T

@ Can prove everthing provable under original symbolic heap

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Preserving Existing Information

If edge in original heap is qualified by (¢may, Pmust), then
introduce axioms of the form:

V3. r = Omay
Vi. ¢must = T

@ Can prove everthing provable under original symbolic heap
e And much more because we have relational reasoning

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Preserving Existing Information

If edge in original heap is qualified by (¢may, Pmust), then
introduce axioms of the form:

V3. r = Omay
Vi. ¢must = T

@ Can prove everthing provable under original symbolic heap
e And much more because we have relational reasoning

@ Set of provable assertions is now monotonic with respect to
the precision of the original heap abstraction

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Preserving Existing Information

If edge in original heap is qualified by (¢may, Pmust), then
introduce axioms of the form:

V3. r = Omay
Vi. ¢must = T

@ Can prove everthing provable under original symbolic heap
e And much more because we have relational reasoning

@ Set of provable assertions is now monotonic with respect to
the precision of the original heap abstraction

e This does not hold without enforcing memory invariants!

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Experiments

@ We implemented this technique as part of
our Compass program analysis system

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Experiments

@ We implemented this technique as part of
our Compass program analysis system

@ Verified memory safety properties (absence
of buffer overruns, null derefereces, and
casting errors) in a number of Unix
Coreutils applications and on OpenSSH.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Results on OpenSSH

Relational Non-relational
Time (s) 261 788
Max memory used (MB) 208 763
reported buffer errors 2 77
reported null errors 3 53
reported cast errors 0 28
Total # of errors 5 158
Total # of false positives 1 154

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Results on OpenSSH

Relational Non-relational
Time (s) 261 788
Max memory used (MB) 208 763
reported buffer errors 2 77
reported null errors 3 53
reported cast errors 0 28
Total # of errors 5 158
Total # of false positives 1 154

@ Compared relational symbolic heap with basic non-relational

symbolic heap for verifying memory safety in OpenSSH.

Isil Dillig Thomas Dillig Alex Aiken

Symbolic Heap Abstraction with Demand-Driven Axiomatization

Results on OpenSSH

Relational Non-relational
Time (s) 261 788
Max memory used (MB) 208 763
reported buffer errors 2 77
reported null errors 3 53
reported cast errors 0 28
Total # of errors 5 158
Total # of false positives 1 154

@ Compared relational symbolic heap with basic non-relational

symbolic heap for verifying memory safety in OpenSSH.

@ Relational analysis symbolically enforces memory invariants.

Isil Dillig Thomas Dillig Alex Aiken

Symbolic Heap Abstraction with Demand-Driven Axiomatization

Results on OpenSSH

Relational Non-relational
Time (s) 261 788
Max memory used (MB) 208 763
reported buffer errors 2 77
reported null errors 3 53
reported cast errors 0 28
Total # of errors 5 158
Total # of false positives 1 154

@ Relational technique is very precise.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

Results on OpenSSH

Relational Non-relational
Time (s) 261 788
Max memory used (MB) 208 763
reported buffer errors 2 77
reported null errors 3 53
reported cast errors 0 28
Total # of errors 5 158
Total # of false positives 1 154

@ Relational technique is very precise.

@ Technique without memory invariants reports many false positives.

Isil Dillig Thomas Dillig Alex Aiken

Symbolic Heap Abstraction with Demand-Driven Axiomatization

Results on OpenSSH

Relational Non-relational
Time (s) 261 788
Max memory used (MB) 208 763
reported buffer errors 2 77
reported null errors 3 53
reported cast errors 0 28
Total # of errors 5 158
Total # of false positives 1 154

@ Relational technique is very precise.

@ Technique without memory invariants reports many false positives.

Isil Dillig Thomas Dillig Alex Aiken

Symbolic Heap Abstraction with Demand-Driven Axiomatization

Results on OpenSSH

Relational Non-relational
Time (s) 261 788
Max memory used (MB) 208 763
reported buffer errors 2 77
reported null errors 3 53
reported cast errors 0 28
Total # of errors 5 158
Total # of false positives 1 154

@ Relational technique is very precise.

@ Technique without memory invariants reports many false positives.

@ Surprisingly, more precise is also more efficient.

Isil Dillig Thomas Dillig Alex Aiken

Symbolic Heap Abstraction with Demand-Driven Axiomatization

Results on OpenSSH

Relational Non-relational
Time (s) 261 788
Max memory used (MB) 208 763
reported buffer errors 2 77
reported null errors 3 53
reported cast errors 0 28
Total # of errors 5 158
Total # of false positives 1 154

@ Relational technique is very precise.

@ Technique without memory invariants reports many false positives.

@ Surprisingly, more precise is also more efficient.

e Memory invariant alone is sufficient to discharge many facts.

Isil Dillig Thomas Dillig Alex Aiken

Symbolic Heap Abstraction with Demand-Driven Axiomatization

Thank You!

[
[
[
B
[

Dillig, I., Dillig, T., Aiken, A.:
Fluid updates: Beyond strong vs. weak updates.
In: ESOP (2010) 246-266

Reps, T.W., Sagiv, S., Wilhelm, R.:
Static program analysis via 3-valued logic.
In: CAV (2004) 15-30

Gopan, D., Reps, T., Sagiv, M.:
A framework for numeric analysis of array operations.
In: POPL (2005) 338-350

Bogudlov, I., Lev-Ami, T., Reps, T., Sagiv, M.:
Revamping TVLA: Making parametric shape analysis competitive.
Lecture Notes in Computer Science 4590 (2007) 221

Manevich, R.:
Partially Disjunctive Shape Analysis.
PhD thesis, Tel Aviv University (2009)

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization

