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Abstract

Many relational static analysis techniques for precise rea-
soning about heap contents perform an explicit case analy-
sis of all possible heaps that can arise. We argue that such
precise relational reasoning can be obtained in a more scal-
able and economical way by enforcing the memory invari-
ant that every concrete memory location stores one unique
value directly on the heap abstraction. Our technique com-
bines the strengths of analyses for precise reasoning about
heap contents with approaches that prioritize axiomatization
of memory invariants, such as the theory of arrays. Further-
more, by avoiding an explicit case analysis, our technique
is scalable and powerful enough to analyze real-world pro-
grams with intricate use of arrays and pointers; in particular,
we verify the absence of buffer overruns, incorrect casts, and
null pointer dereferences in OpenSSH (over 26,000 lines of
code) after fixing 4 previously undiscovered bugs found by
our system. Our experiments also show that the combina-
tion of reasoning about heap contents and enforcing exis-
tence and uniqueness invariants is crucial for this level of
precision.
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1. Introduction

In the past decade, there has been considerable progress
in reasoning statically about the heap and contents of un-
bounded data structures. In particular, for reasoning about
array contents, techniques such as [1-5], have focused on in-
ferring and expressing interesting invariants that are shared
between different elements of arrays. For example, consider
the following code:

for(i = 0; i < n; i++) {

if (%)

alil = bl[i]
else

a[i] = NULL;

}

Here we assume that the condition (*) is sufficiently com-
plicated that whatever static analysis we are using cannot un-
derstand it. Even in the presence of such uncertainty, tech-
niques for reasoning about the contents of arrays can still
represent that for all i in the domain of arrays a and b, ei-
ther a[i] is equal to b[i] or a[i] is NULL.

While having an accurate understanding of the contents
of arrays is often necessary for proving non-trivial proper-
ties about real programs, this information alone is also often
not sufficient. In the specific case of reasoning about arrays,
one coarse but accurate intuition is that while these tech-
niques are good at characterizing array writes, they can still
lose information about array reads. Consider again the code
fragment above. On exit from the loop, we know that a[i]
is equal to either NULL or b[i]. While we do not which of
the two values each a[i] holds, the information about the
array contents is quite precise. In fact, it is the most pre-
cise information possible about what is written into array a
given that we know nothing about the conditional’s predi-
cate. Now, consider the following code snippet, which im-
mediately follows the loop above:



x = alk];

y = alk];

if(x !'= NULL)
assert (y==b[k]);

What is needed to prove the assertion in this example? We
need to know that (i) x is either NULL or b[k], (i) y is also
either NULL or b[k], (iii) the two successive reads from a[k]
yield the same value regardless of a’s contents. Precise heap
analysis techniques such as [1, 3, 6-8] can naturally reason
about (i) and (ii), but something more is needed to reason
about (iii). The difficulty is the uncertainty involving the
actual value of alk]. If we proceed naively, the first read
of a[k] can be NULL or b[k], and so x can be either value.
Similarly, the second read of afk] can be NULL or b[k], and
so y can also be either value. Then, in reasoning about the
assertion, it appears that x != NULL can hold (since one
possibility is that x is b[k]) at the same time that y == NULL
also holds (since one possibility is that y is NULL), and the
assertion cannot be discharged. We have lost the relationship
between x and y, namely that in all executions x ==y.

Establishing property (iii) is very important because it
allows relational reasoning in the presence of uncertainty by
establishing correlations between values stored in different
heap locations (e.g., the relationship between x and y above).
A standard way to deal with this difficulty is to perform an
explicit case split: Construct one heap abstraction H where
a[k]’s value is NULL and another heap abstraction H’ where
a[k]’s value is b[k|. Since x and y both have the value NULL
in heap H and both have the value b[k] in H’, the equality
of x and y can be established and the assertion is discharged
[1, 6, 9]. Put another way, a case split on the possible values
of afk] allows us to know that both reads of alk] in the
example return the same value.

This paper is about avoiding case splits on the heap ab-
straction, which we consider problematic for both practical
and philosophical reasons:

e Case splits on the heap are generally eager operations: as
illustrated above, first the heap is split into the various
possibilities and only then is the subsequent code ana-
lyzed. Thus, we pay the full price of the case analysis
up front, without knowing whether the split is eventually
needed to prove some property of interest.

e Case splits can (and do) result in an exponential blow-up:
Every time an abstract location may point to n distinct
memory locations, then n distinct copies of the heap must
be created and separately analyzed, quickly resulting in
an infeasible number of heap configurations. Even if the
preceding point can be addressed and the case analysis
is somehow performed lazily, the state space explosion
problem from duplicating the abstract heaps still persists.

e The case splits are really just a form of disjunction (i.e.,
the disjunction of n possible worlds). Given that disjunc-
tion is already required to represent multiple possible

contents of individual locations (e.g., alk] may be either
NULL or b[k]), it would be conceptually simpler and pre-
sumably easier to implement a system with only a single
way of performing disjunctions.

In this paper, we address the problem of establishing rela-
tional reasoning without creating explicit copies of abstract
heaps. We argue that the need for constructing duplicates
of the heap arises from the lack of one very important and
primitive invariant that real computer memories satisfy but
that is not enforced directly by standard heap abstractions:
first, every memory location has at least one value (exis-
tence) and second, every memory location has at most one
value (uniqueness).

Consider the original heap abstraction described above,
where a[k] may be either blk] or NULL. As the informal
reasoning we carried out suggests, this abstraction does not
prevent alk] from simultaneously being equal to both b[k]
and NULL, and so even adjacent reads from alk] cannot be
proven to yield the same value. The case analysis, in essence,
enforces the existence and uniqueness invariant by creating
multiple disjoint heaps where the abstract memory location
of interest has exactly one value.

The key insight underlying our technique is to create
a single heap abstraction that enforces the existence and
uniqueness invariants without requiring an explicit case
analysis of heap values. To be concrete, consider a heap
abstraction in which the possible points-to targets of a loca-
tion a are z and y. Our technique qualifies points-to edges
from a to x with a formula ¢, and the edge to y with a
formula ¢, such that by construction, ¢, and ¢, are con-
tradictory (guaranteeing that @ cannot simultaneously point
to both = and y, enforcing uniqueness) and their disjunction
is valid (guaranteeing that a points to at least one of x or
y in every possible world, enforcing existence). These for-
mulas add no new mechanism, using the same language of
formulas already needed just to describe the contents of the
heap. The method is also inherently lazy; the formulas are
small and all the work is deferred until constraint solving is
performed. The main advantage of this symbolic approach
is that, while a case analysis may eventually be needed in
solving the constraints, constraint solvers often avoid the
full case analysis because satisfiability or validity can often
be easily established without examining the entire formula
in detail, and furthermore several disjoint heaps do not need
to be separately analyzed.

Enforcing existence and uniqueness of memory contents
directly leads to precise relational reasoning. For instance, in
the code example, suppose that the heap abstraction encodes
a[k] is NULL under some constraint ¢; and b[k] under some
constraint ¢o such that ¢, and ¢, are contradictory. Then, it
is easy to see that x and y are equal to NULL under constraint
¢1 and equal to b[k| under constraint ¢». Since ¢; and ¢
are contradictory, the heap abstraction directly encodes x



Figure 1. An exact symbolic heap

and y must have the same value, allowing the assertion to
be discharged.

To summarize, in this paper, we propose a technique that
unifies reasoning about heap contents with enforcing the
fundamental memory invariant that every concrete memory
location has a unique value until its next write. Specifically,
we extend the symbolic heap abstraction described in [4]
for reasoning about heap contents to enforce existence and
uniqueness of values stored in memory locations. Our ap-
proach combines the strengths of techniques for reasoning
about heap contents, such as [1, 6, 9] with techniques that
focus on the axiomatization of memory invariants, such as
decision procedures like the theory of arrays [10].

1.1 A Quick Overview

In this subsection we give a high-level overview of the tech-
nical sections that follow. A symbolic heap abstraction [4]
represents points-to relations in the heap as directed edges
in a graph where nodes correspond to abstract memory loca-
tions. In general, abstract locations represent a non-empty
set of concrete locations; for example, an array is repre-
sented by a single abstract location that represents all of
the concrete elements of the array. Each points-to edge in
the symbolic heap is labeled with a bracketing constraint,
(Dmay, Gmust)» 1dentifying which concrete elements within a
given abstract location may and must point to which con-
crete elements in the target location. Therefore, the symbolic
heap abstraction simultaneously encodes both an over- and
an underapproximation of the concrete heap. The simultane-
ous use of over- and underapproximations is useful in multi-
ple ways, which are relevant to but not the topic of this paper.
For example, bracketing constraints are needed in sound and
precise path-sensitive analysis (and, in particular, in comput-
ing complements of path conditions) [11] and in defining a
precise location update mechanism, called a fluid update [4].
The key soundness invariant of this symbolic heap abstrac-
tion is that the disjunction of all may conditions on edges
outgoing from an abstract location A is valid, while the pair-
wise conjunction of any two must constraints on outgoing
edges from A is unsatisfiable.

We say that a heap abstraction is exact if the over- and
underapproximations are identical. An exact abstract heap
describes precisely one concrete heap. Therefore, when the
over- and underapproximations encoded by the symbolic
heap are identical, the symbolic heap already encodes exis-
tence and uniqueness of values stored in memory locations.
For example, the symbolic heap shown in Figure 1 is exact

Figure 2. An inexact symbolic heap

since the may and must conditions on points-to edges are
identical. In particular, this abstract heap encodes a concrete
heap where the fifth element of an array a points to X and all
other elements point to Y. Observe that this symbolic heap
encodes that no concrete element in array a can simultane-
ously point to both X and Y because the may conditions on
the edges to X and Y are disjoint, thereby encoding unique-
ness of the value stored in any concrete element in a. Simi-
larly, this symbolic heap also encodes that every element in
a has some value (i.e., existence) since the disjunction of the
must conditions is true.

In practice, except for the simplest heaps, symbolic heaps
are rarely exact. Consider the imprecise symbolic heap in
Figure 2. This abstraction encodes that any element of array
a in the range [0, 4] may point to X, but no element must
point to X. On the other hand, any element in the array
may point to Y, but elements whose indices are not in the
range [0, 4] are guaranteed to point to Y. Such a symbolic
heap no longer encodes existence and uniqueness of concrete
elements; for example, elements in the range [0, 4] may point
to X or Y or neither. More technically, we can see that
the conjunction of the may constraints is now satisfiable
(allowing a memory location to point to two different places
simultaneously), and the disjunction of the must constraints
is not valid (allowing a memory location to possibly have no
value at all).

Hence, as illustrated by these examples, while an exact
symbolic heap, such as the one from Figure 1, encodes ex-
istence and uniqueness, the normal situation of an imprecise
symbolic heap such as the one from Figure 2 does not. Ob-
serve that the use of bracketing constraints is not the source
of this difficulty; any heap abstraction that encodes only an
over- or an underapproximation is imprecise and will suffer
from the same problem. In fact, bracketing constraints only
improve the situation by making it explicit whether the ab-
straction enforces existence and uniqueness of memory con-
tents.

To be able to reason about existence and uniqueness in-
variants in the presence of uncertainty without performing
case splits, our approach augments the symbolic heap ab-
straction with a technique we call demand-driven axiomati-
zation of memory invariants. Specifically, whenever a brack-
eting constraint on a points-to edge becomes imprecise (e.g.,
due to imprecise loop invariants or branches on values that
are not statically known), our technique replaces this impre-



Figure 3. A symbolic heap abstraction

cise bracketing constraint with a special formula of the form
A=A; NA;

such that, by construction, the introduction of these A con-
straints enforces the existence and uniqueness of the value
stored in each memory location. The demand-driven aspect
of our method is again that we only introduce these extra
constraints for edges in the points-to graph where the brack-
eting constraint is not exact.

Of course, we do not want to discard the information en-
coded by the original bracketing constraints because they
might still provide useful information despite being impre-
cise. Hence, to combine reasoning about memory invariants
and heap contents, our technique introduces a quantified ax-
iom of the form

Vila v Z.m- ¢must = A«S = ¢may

which preserves the partial information present in the impre-
cise heap. The introduction of these axioms enforces that any
fact that can be proven under the original, but imprecise heap
abstraction can still be proven to hold under the modified
heap abstraction that enforces the existence and uniqueness
of memory contents. Furthermore, this axiomatization strat-
egy guarantees that the number of valid assertions that can
be proven correct is monotonic with respect to the precision
of the heap abstraction, a property that does not hold without
enforcing existence and uniqueness of memory contents.

1.2 Organization and Contributions

The rest of this paper is organized as follows: Section 2
reviews the basic symbolic heap abstraction described in
[4], and Section 3 describes how to evaluate assertions on
this heap abstraction. Section 4 shows how to combine this
heap abstraction with enforcing existence and uniqueness in-
variants. Section 5 describes our implementation; Section 6
presents experimental results. Finally, Section 7 surveys re-
lated work, and Section 8 concludes.

To summarize, this paper makes the following contribu-
tions:

e We argue that enforcing existence and uniqueness of
memory contents allows for precise relational reasoning
without performing an explicit case split on the possible
concrete heaps that can arise.

® We propose demand-driven axiomatization of memory
invariants as a way to combine the strength of symbolic

Figure 4. A precise heap abstraction

heap abstraction with the ability to reason precisely in the
presence of partial information.

e We define what it means for a heap abstraction to be
more precise than another heap abstraction, and we show
that the set of valid assertions that can be proven correct
by our analysis is monotonic with the respect to the
precision of the heap abstraction, a property that does
not hold without enforcing existence and uniqueness of
memory contents.

e We demonstrate that the combination of symbolic heap
abstraction and demand-driven axiomatization is power-
ful and scalable enough to verify the absence of buffer
overruns, incorrect casts, and null pointer dereferences
in OpenSSH (over 26,000 lines) after fixing 4 unknown
bugs discovered by our technique.

® We show experimentally that enforcing memory invari-
ants is as important as reasoning about heap contents and
that a substantial number of assertions requires combined
reasoning about both heap contents and memory invari-
ants.

2. Symbolic Heap Abstraction

In this section, we review the basic symbolic heap abstrac-
tion introduced in [4].

2.1 An Informal Overview

In a symbolic heap abstraction, each array is represented by a
single abstract location qualified by an index variable rang-
ing over the possible indices of the array. Invariants on ar-
ray elements are expressed symbolically through constraints
qualifying these index variables. A key feature of this tech-
nique is that it does not require constructing explicit parti-
tions of the heap to perform strong updates and does not fix
the “shape” of the invariants that are expressible by a given
partitioning scheme a priori.

As an example, consider the symbolic heap abstraction in
Figure 3, which represents an array a whose elements a[i]
in the range [0, size) may be equal to either b[i] or NULL. In
this graph, nodes represent abstract memory locations, and
directed edges represent points-to relations where the source
of the edge points to the target of the edge. The abstract
location (a);, represents all elements of some array a, and
its corresponding index variable i; ranges over the possible
indices of this array. The abstract location *(b);, represents
the points-to targets of the elements of another array b, and
*NULL represents the abstract location pointed to by NULL.



Constraint pairs (Pmay, Pmust) called bracketing constraints
on the edges qualify the source and the target locations’
index variables, selecting which concrete elements of the
source may and must point to which concrete elements of
the target. By convention, the target location’s index vari-
ables are always primed in the constraints. If ¢4, and @,
are the same, we write a single constraint instead of a pair.
The constraint

(0 <iy < size Niy = i1, false)

on the edge from (a);, to x(b);, indicates that all elements of
array a in the range [0, size) may point to the same locations
as the corresponding elements of array b (indicated by i, =
i1), but since ¢, is false, no element must point to the
corresponding element in b[i]. Similarly, the constraint

(0 <y < size, false)

on the edge between (a);, and *NULL indicates that any
element in the range [0, size) may be, but does not have to
be, NULL.

A main motivation for using bracketing constraints in the
points-to graph is to allow a more precise and general update
mechanism, called fluid update, than techniques that iden-
tify all updates as either strong or weak. A strong update to
an abstract location [ removes all existing points-to edges
from [, whereas a weak update preserves all existing edges.
However, since an abstract location may correspond to many
concrete locations, some points-to edges from [/ are removed
by an update whereas others are not. To express the range
of possibilities between these two extremes without case-
splitting on an abstract location, a fluid update computes a
constraint ¥ describing which elements of [ are affected by
the update, and adds a new edge under constraint ¥ while
preserving existing outgoing edges of [ under —¥. However,
since it is, in general, impossible to obtain an exact descrip-
tion of the set of elements updated in loops, ¥ is often an
overapproximation; thus, -\ is an underapproximation of
the elements not affected by the update. For this reason, fluid
updates require that constraints used in the heap abstraction
are bracketing constraints. Now, if (¢qy, Omust) TEPrESents
the concrete elements that may and must be updated,

ﬁ<(bmay7 ¢musl> = <ﬁ¢mush ﬁ¢may>

soundly identifies the elements that may and must be un-
changed after the update.

In addition to allowing a precise and general update
mechanism, bracketing constraints also make it explicit
when the heap abstraction is exact. For example, in Figure 4,
since Pmqy and ¢y, are the same (indicated by a single con-
straint instead of a pair), this heap encodes that every even
element (indicated by 41 %2 = 0) in the range [0, size) must
be equal to b[i] whereas every odd element must be NULL.
This heap might be a refinement of the symbolic heap from
Figure 3, obtained, for example, using a more precise loop
invariant.

2.2 Formal Definition of Symbolic Heaps

In a symbolic heap, access paths [12] name abstract loca-
tions and are defined by:

Access Path m:= 1| (m); | 7| s

Here, | names an abstract location corresponding to a vari-
able or fresh allocation. Any array location is represented
by an access path (m);, where 7 represents the array and
1 1s an index variable ranging over 7’s indices. The access
path %7 represents the dereference of 7. Finally, s denotes
a scalar value, such as NULL. Access paths may contain
multiple index variables, such as when modeling nested ar-
rays. For example, if x is an array of pointer arrays, then
(x(x);, )i, names the abstract location associated with each
of the nested arrays.

Access paths may be converted to terms in the constraint
language when they are used in constraints. Base locations
l are represented by variables of the same name; the access
path (7); is represented by the function term arr(m, i) where
arr is an uninterpreted function. The access path *7 is rep-
resented as the uninterpreted function term deref{), and fi-
nally s is represented by a constant of the same value. When
access paths appear in constraints, we assume they are im-
plicitly converted to terms.

DEFINITION 1. (Bracketing Constraints) A bracketing
constraint (@may, Gmus:) 18 @ pair of constraints with the prop-

erty ¢must = ¢may-

In general, ¢,,4, and ¢,,,x may be over any theory; in this
paper, we only consider formulas in the combined theory
of uninterpreted functions and linear integer arithmetic ex-
tended with divisibility (mod) predicates. In the remainder
of this paper, any constraint is implicitly understood to be a
bracketing constraint.

DEFINITION 2. (Boolean operations)

ﬁ(d’maw ¢must> = <ﬁ¢’must7 ﬁ(f’may)
<¢may17 ¢n1u>tl> N <¢may27 ¢mu512> = <¢mayl A ¢may2, Qbmustl N ¢mu512>
<¢may1> ¢musll> V <¢may27 ¢mule> = <¢mayl \ ¢may2a ¢musll V (bmule)
Satisfiability and validity of bracketing constraints is de-
fined as follows:

DEFINITION 3. (Satisfiability and Validity)

SAT( <¢may» ¢must> ) = SAT(¢may)
VALID ( <¢may 5 ¢must> ) = VALID ((bmust)

DEFINITION 4. (Symbolic Heap Abstraction) A symbolic
heap abstraction is a directed graph where nodes labeled
with access paths denote abstract memory locations, and
an edge from abstract location 7 to 7’ indicates that some
concrete location in m may point to another concrete lo-
cation in 7’. Edges are labeled with bracketing constraints
(Dmay, Pmust)> Where @pqy and @y respectively constrain
which concrete elements of the abstract source location may
and must point to which concrete elements of the target lo-
cation.



3. Proving Assertions on the Symbolic Heap

In this section, we show how to prove assertions using the
information encoded by the symbolic heap abstraction. To
be able to prove assertions, we first need a way to retrieve
the possible values stored in a location.

3.1 Determining Points-to Targets

First, as mentioned earlier and illustrated in the examples,
the formulas on edges allow us to talk about properties of
subsets of abstract memory locations. For example, in the
formula in Figure 4, we can see that odd elements of the
array point to NULL. Second, as is standard, we can use
substitution to interpret which concrete source location may
(or must) point to which concrete target. So, in the constraint
on the edge from {(a);, to *(b);,, if we substitute 2 for index
variable 71, we obtain:

2%2=0Ai, =2A0<2< size

Hence, assuming size is at least 3, this is equivalent to i, =
2, which tells us that a[2] is equal to b[2].

However, substitution is not powerful enough. In general,
we may be reading from different indices of the array under
different program conditions or we may be unsure about the
value of the program variable that is used as an index into the
array. For this reason, the index that is read from the array
is described by an arbitrary constraint rather than a simple
equality. For example, the constraint (i = 2 A flag) V (i =
5 A —flag) describes reading the second element of an array
under program condition flag, but the fifth element under
—flag. Similarly, for the array read a[v], we might know
that v has some value less than 4, but we might not know
its exact value; hence, the array indices that are read are
described by the imprecise constraint (i < 4, false).

The right tool, then, for deducing possible values stored
in a memory location is existential quantifier elimination,
which generalizes substitution to arbitary constraints. For
example, if we want to determine the result of reading an
index whose exact value we do not know but that is definitely
greater than 2, we can conjoin the constraint (iy > 2, false)
with the appropriate edge constraint and then eliminate the
existentially quantified variable ;. For example, for the edge
from (a);, to x(b);, in Figure 4, this would yield:

Fiv.((i1 > 2, false) A (i1%2 = 0Ny = i1 A0 < iy < size))
After eliminating 71, we obtain:
(i5%2 = 0 A 2 < iy < size, false)

which tells us that the result of the read could be any even-
indexed element of array b.

To be precise, we define a read operation on the heap
abstraction, read(m, ), which given an abstract location 7
and a constraint y on the index variables of 7, yields a set
of (access path, bracketing constraint) pairs representing the
possible results of the read.

DEFINITION 5. (read(m,~)) Let 7 be an abstract memory
location, and let v = (@may, Pmus) be a constraint such that
®may selects at least one concrete element and ¢y, selects
at most one concrete element of 7. Let e be an edge from 7
to m; qualified by constraint ¢; in the symbolic heap, and let
I be the vector of index variables in 7. Then, let

¢ = Eliminate(3I.~y A ¢;)

where Eliminate performs existential quantifier elimina-
tion!. Finally, let ¢/ be obtained by renaming primed (i.e.,
target’s) index variables in ¢, to their unprimed counterparts.
Then:

(mi, &) € read(m, )

EXAMPLE 1. Consider the heap from Figure 3. Here, we
have:

read((a)s,, i1 =2) = {(x(b)sy, (2 = 2 A 2 < size, false)),
(*NULL, (2 < size, false)))}

3.2 Proving Assertions

Now, using this read operation, we describe how to evaluate
simple assertions on a given symbolic heap configuration.
We define an assertion primitive assert(S = S’) where S =
read(m,~y) and S’ = read(n’,~") for some arbitrary abstract
locations 7, 7’ and some index constraints 7, '. Intuitively,
such an assertion is valid if the heap abstraction encodes that
the values stored in the concrete locations identified by , v
and 7', must be equal.

DEFINITION 6. (Validity of Assertion) Consider the asser-
tion:

assert(read(r,~) = read(n’,~"))
Let (mi, ¢;) € read(m,~) and (7}, ¢}) € read(r’,~'). Let
I; and I ]’ be the index variables used in each 7; and 7r},
let F;, F]’ denote fresh vectors of index variables, and let
F =\, Fi, F" =J; F}. The assertion is valid if:

mi[Fi /L) = W;[FJ//IJ/]

VALID iy S o o i
I\ A G TN E T

IEFL
Intuitively, this definition first computes the constraint under
which the two sets obtained from read(, ) and read(n’,~")
are equal. As expected, this is a disjunction of all pairwise
equalities of the elements in the two sets, i.e., a case analysis
of their possible values. Now, for the assertion to be valid,
this constraint must be valid. Observe that the constraints in
this definition are all bracketing constraints, and the validity
of bracketing constraints from Definition 2 uses the under-

approximations ¢;,,,, ¢, such that

Gipy = (m =m;) and ¢y = (7' =)

JImust

! Existential quantifier elimination in the combined theory of uninterpreted functions
and linear integer arithmetic may not always be exact; however, since our technique
uses bracketing constraints, we compute quantifier-free over- and underapproxima-
tions [13].



Hence, the validity of the above formula guarantees that the
values of 7 and 7’ must be equal. Also, note that the renam-
ing of index variables to fresh variables ﬁ, F' is necessary
to avoid naming collisions when 7; and 7r;- share index vari-
ables. This can arise, for example, when 7; and 7r; refer to
distinct concrete elements in the same abstract location.

We conclude this section with an example illustrating that
the symbolic heap does not allow discharging a simple asser-
tion because it does not enforce existence and uniqueness of
memory contents in the presence of imprecision:

EXAMPLE 2. Consider evaluating the following assertion
on the heap from Figure 3:

x=a[2]; y=al2]; assert(x==y)

The possible values V (x) and V (y) of x and y are obtained
fromV (z) = V(y) = read({a);,,i1 = 2). Hence, assuming
size > 2, we have:

Ve =iy ={ (el -2 e, |

(*NULL, (true, false)))

Now, to evaluate the assertion, we query:

(x(0) 51 = #(b) o) A
fo=2 false))v

( (f1 = 2, false) A
(

((x(b) 7, = *ULL) A
(t

(

(fs = 2, false) A\
VALID | 3f1, f2, fs- rue, false))V
(*NULL = *NULL) A

(true, false))

(true, false) A

The result is false because the sufficient conditions (i.e.,
Omust) of all the bracketing constraints are false. As this ex-
ample illustrates, we cannot prove the validity of this sim-
ple assertion using the information encoded by the heap ab-
straction because the heap abstraction described so far does
not enforce the memory invariant that every concrete loca-
tion must have exactly one value.

4. Demand-Driven Axiomatization of
Memory Invariants

The overapproximation encoded in the symbolic heap en-
forces that every abstract location must have at least one tar-
get for any possible index, while the underapproximation en-
forces that a specific concrete location cannot point to mul-
tiple concrete elements. Thus, if the heap abstraction is ex-
act (i.e., the over- and underapproximations are the same, as
in Figure 4), it follows immediately that the symbolic heap
enforces the existence and uniqueness of memory contents.
More formally, a key soundness requirement for the sym-
bolic heap abstraction can be stated as follows:

DEFINITION 7. (Soundness Requirement) Let 7 be a source
location in the heap abstraction, and let

{<¢may1 ) ¢must1>a cee <¢mayk P ¢mustk>}

be the constraints qualifying outgoing edges from . Let I;
denote the primed index variables used in each constraint
o;. Then,
VALID(37.\/ ¢may,)
K3

and .
UNSAT(3I. ¢pmust; N ¢mus1j) fori #£ j

However, observe that the soundness of the symbolic
heap does not require the following invariants:

UNSAT3I. $pnay, A $imay,)

VALID(af \/ ¢mmti)

Thus, if the heap abstraction is not exact, as is often the case
in any heap analysis, the overapproximation does not enforce
that each concrete source has at most one concrete target,
and the underapproximation does not enforce that each con-
crete source has at least one concrete target. Unfortunately,
as we saw in Example 2, the lack of these invariants often
prevents proving even simple assertions in the presence of
imprecision.

In this section, we describe how to combine symbolic
heap abstraction with enforcing existence and uniqueness of
memory contents. The key idea underlying demand-driven
axiomatization is to replace any imprecise bracketing con-
straint (i.e., Gmay ¥ Pmus) With a constraint A serving two
purposes: (i) it enforces that for each concrete source loca-
tion, there is exactly one target location it can point to, and
(i) it allows us to retain all the information encoded in the
original over- and underapproximations. We first develop (i),
then (ii).

4.1 Enforcing Existence and Uniqueness

To enforce that concrete locations have exactly one target lo-
cation (i.e., (i)), these A constraints must have the following
properties:

1. They should enforce that the constraints on any pair of
edges outgoing from the same abstract source are dis-
joint (required for uniqueness) and that there is at least
one feasible abstract target location under any satisfiable
index constraint (required for existence).

2. If there is an edge from 7, to 7, the A’s should enforce
that any concrete element in 74 can point to at most one
concrete target in 74 (also required for uniqueness).

3. The introduction of A’s should not prevent different con-
crete elements in the same abstract location from pointing
to the same target.

Of these, (1) and (2) are necessary to enforce the desired
existence and uniqueness invariant, while (3) is necessary
for soundness. By construction, these A’s are of the form:

A=As NA,



where Aj enforces (1) and A, enforces (2), both while
respecting (3). We first describe the construction of As and
then A.

Given a source location 7, with index variables I_;, let
Ttos - - - Tt DE the set of targets of all outgoing edges from
7s. For the j’th edge from 74 to m;;, we construct Af; as
follows:

. b(llv"'v )SO fji=0
A} = S(zl,..., m) =] fo<j<k
belie o im) 2k =k W
where i1, ..., im GI‘

By construction, each set of Ay’s for a location 74 en-
forces that the outgoing edge constraints are pairwise con-
tradictory and their disjunction is valid. Here, §,, is an un-
interpreted function symbol unique to location 7s. For an
abstract location containing m index variables, it is neces-
sary to introduce an m-ary uninterpreted function symbol
in order to enforce the soundness requlrement (3). Observe
that, for concrete assignments v/, v’ to index Varlables I, of
Ts, Or, (U) must be equal to d, ( ') only if 7 = v’. Hence,
while the A constraints prevent the same concrete source
from having different targets, they do not force two distinct
concrete locations in the same abstract source to have the
same target.

We now consider how to construct A,. Recall that A,
must enforce that a given concrete source location cannot
have multiple concrete targets in the same abstract target
location (i.e., (2)), a property that is not enforced by the
Ajs constraints. Hence, to satisfy (2), we construct A, as
follows. Let 4’ i, be the index variables used in the

J12 7 Yn

7 th target Tt - Then,

A= N i =m(in,. i) 2)

1<k<n

Here, 71 is an uninterpreted function symbol unique to the
k’th index variable of the target. AJ stipulates that each
index variable used in the target is a function of the source’s
index variables, thereby enforcing that each concrete source
can have at most one concrete target in the same abstract
target location. Finally, to enforce both requirements (1) and
(2), we modify the constraint on the j’th outgoing edge from
7, to be:

AV = AL ANAL

LEMMA 1. Let ey, ... e be the set of outgoing edges from
an abstract location . Let A',... A" be the new set
of constraints constructed as above qualifying eq,...,e.
Then, the symbolic heap abstraction enforces that each con-
crete source location must point to exactly one concrete tar-
get location, or alternatively, that each concrete location has
exactly one value.

* NULL

Figure 5. The modified version of the heap from Figure 3
enforcing existence and uniqueness invariants

First, we argue that the same concrete source cannot point
to two different concrete targets. Let 7435/ Z] denote a con-
crete source, obtained by a variable assignment s to the in-
dex variables i of 7. Let 7, [£1 /ir, ] and 7, [{3 /ir,] be two
concrete targets, obtained by variable assignments ¢1, t5 to
index variables 2;172;2 of abstract locations 7, and m,. If
4, [t1/ir, ] and 7y, [t2/is,] are different, then either (i) e,
and ., are different abstract locations, or (ii) t #+ t5. For
(i), observe that this is not possible since UNSAT( AJ [5/7) A
AE[F/i) A j # k) for two edges e; and ey. For (i), observe
that:

. . 71(8) , o m1(5)
Tn (8) Tn (8)

contradicting t_{ #* tg. Now, we argue why each concrete
location 7,[5/] must have at least one concrete target.
Let i/ denote the primed index variables used in the con-
straints on outgoing edges from 7. Observe that the formula
3. Vo<j<k A;[5/ i) is valid; thus each concrete source must
have at least one concrete target. The following example
shows that, using the modified symbolic heap, we can now
prove assertions that could not be discharged using the basic
symbolic heap.

EXAMPLE 3. Consider the heap from Figure 3. For the edge
Sfrom {a);, to x(b);,, we construct

A1 = ((5(11) < 0/\1’2 = T(il))
and for the edge from {a);, to *NULL, we construct
Ay =0(i1) > 1

This modified heap is shown in Figure 5. Now, consider eval-
uating the assertion:

x = a2]; y=a[2]; assert(x ==y);

on this modified heap as described in Section 3. As be-
fore, the values V (x) and V (y) of x and y are given by
read({a);,, i1 = 2):

{(x(0)i,,0(2)

0Nia =7(2)),
Viw)=V(y) = (*NULL, 6(2) > 1

)}

<
>



Now, to evaluate the assertion, we query:

(+(b) 51 = #(b)y,) A 6(2) <0
AL =T1(2)AS8(2) SOA fo=71(2)V
VALID | 3f1, fa, f5. S\(fjbifi(_)*NmEL;g 1()23 ="
((*NULL = *NULL) A 6(2) >

N6(2) = 1)

In the first disjunct, fi = fa, hence (x(b)y, = *(b)s,) =
true. Simplifying this formula, we obtain:

3f1, f2. ((6(2) SOANfi=T(2)Afa=7(2)) V...V §(2) > 1)

This formula is indeed valid, and we can now prove the
assertion.

4.2 Preserving Existing Partial Information

We now consider the second part of demand-driven axioma-
tization: Recall that while replacing the imprecise edge con-
straints with the new A constraints ensures that every con-
crete source location points to exactly one concrete target,
we would still like to retain the partial information present
in the original, but imprecise heap abstraction. As an exam-
ple, consider the following assertion:

if(a[2] != NULL) assert(al2] == b[2]);

Clearly, the heap abstraction from Figure 3 encodes enough
information to prove this assertion, however, the modified
heap from Figure 5 no longer retains sufficient information
to reason that a[2] must be either b[2] or NULL. In particular,
the constraint on the edge to x(b);, does not stipulate that
iy, = iy; hence, we do not know which element in *(b);,
a[2] points to; we only know that it points to some unique
element if §(2) < 0 is satisfied.

Hence, to preserve the information encoded by the orig-
inal imprecise bracketing constraints, we introduce axioms
for each A} that encode the additional partial information
present in the original symbolic heap. Let (¢7,,,, B ust) b
an imprecise bracketing constraint (i.e., qSﬁmv & qbﬁ,,m) on
the j’th outgoing edge from source location 74, and let Ag
be a constraint obtained as described above. As before, I_;
denotes the index variables in 7. Let o, be a substitution
replacing each target index variable with its corresponding
Tk (41, .- ,4m) from Equation 2. Then, to preserve the in-
formation present in the original heap abstraction, our tech-
nique introduces the axioms:

VIy. 07 (Ghus) = AL and VI,. AL = o, (]

mav)

First, observe that Af;, qb,mm, and qua} all qualify the source
location’s index variables. Since the heap abstraction states
properties about any concrete location that satisfies the in-
dex constraint on edges, the source’s index variables are
all universally quantified in these axioms. Additionally, ob-
serve that gbma) and ¢}, may also constrain the relation-
ship between the source and the target’s index variables, e.g.,

i, = 41. Since AJ stipulates that each index variable used
in the target is a function 7% (i1, . .., ,,) of the source’s in-
dex variables, we apply the substltutlon o, to both gbma} and
quus,. These axioms therefore restrict which set of concrete
elements may and must be selected by each A} as stipulated
by ¢my and ¢f,,,m as well as restricting the relationship be-
tween the source and the target’s index variables.

As the following example shows, symbolic heap abstrac-
tion with demand-driven axiomatization allows combined
reasoning about memory contents and invariants.

EXAMPLE 4. Consider again the heap from Figure 3 and
the modified heap from Figure 5. Our technique now intro-
duces the following axioms:

Viq. (5(21) <0 = (0 <1 <size Nip = T(Zl))
Viy. false = §(i1) <0

Vii. 6(i1) > 1 = 0 <14y < size

Viy. false = 0(i1) > 1

Now, consider the assertion:
if(a[2]! = NULL) assert(a[2] == b[2])

As before:

read((a)i,, i1 = 2) = {(x(b)i,,0(2)

<
(+NULL, 5(2) > 1))}

and

read((b)i,, iz = 2) = {(+(b)ir, 12 = 2)}}
Since the conditional requires that a[2] is non-null, the as-
sertion is guarded by the predicate:

—(6(2) 2 1)
Now, we need to show the validity of the formula

*<b>f1 = *<b>f2 /\5(2) < O/\fl = 7(2) /\f2 =2

3flaf?- \/(*NULL:*<b>f2/\6(2)ZlAf2:2)

under the assumption —(0(2) > 1). Simplifying the formula
with respect to the assumption —(§(2) > 1), we obtain:

Hfl,fg. >|<<b>f1 :*<b>f2/\f1:7'(2)/\f2:2

Hence, it remains to show that under our axioms, 7(2) must
be equal to 2. Since one of the axioms is

Viq. 6(21) <0 = (O <1y <size Nip = T(il))
it follows that:
0(2)<0 = (0<2<size A2 =1(2))

Since 6(2) < 0 is implied by the assertion guard, we have
7(2) = 2; hence fi1 = fo, establishing the validity of the
asssertion.



While deciding quantified formulas in the combined the-
ory of uninterpreted functions and linear integer arithmetic
is, in general, undecidable, the axioms introduced by our
technique belong to a decidable fragment, sometimes re-
ferred to as the macro fragment [14]. In particular, a syn-
tactic instantiation of the axioms for each occurrence of the
function term ¢(£) is sufficient for completeness.

4.3 Monotonicity of Provable Assertions

If a heap abstraction does not enforce existence and unique-
ness of memory contents, it turns out that it is possible to
learn more about the contents of the heap while being able
to prove strictly fewer assertions about the program! In other
words, for such a heap abstraction, the number of provable
assertions is not monotonic with respect to the precision
of the heap abstraction. For instance, in Example 2, if we
use a less precise heap abstraction that maps each element
of a to an unknown location, we can prove the assertion
assert(x == y), which we cannot prove using the more
precise heap from Figure 3.

We now describe what it means for a symbolic heap to
be more precise than another heap abstraction of the same
program, and we show that our technique never proves fewer
assertions about the program using a more precise heap
abstraction. For a heap H and a concrete location [, we
use the notation avy (1) to denote the abstract location that
includes [ in H. We write () to denote the set of concrete
locations that are represented by some abstract location 7.

DEFINITION 8. We say a symbolic heap H' splits an ab-
stract location 7 in H into locations m1,..., 7 (where
v(m) = vy(m1) U...U~(mk)) under constraints ¢1, . . ., o
if for every edge from 7, to w under constraint ¢ in H:

1. If my = m, then H' contains an edge from w to 7j under
constraint ¢ N\ ¢;.

2. If g = m, then H' contains an edge from 7; to my under
constraint ¢.

3. Ifms # AN my # 7, then H' also contains an edge from
s to Ty under .

Intuitively, if H’ is obtained from H by splitting location
7 to more precise abstract locations 7y, ..., 7 under con-
straints ¢q, . .., @k, then any edge to 7 in H is replaced by a
set of edges to any abstract location 7; under its respective
constraint ¢;.

DEFINITION 9. We say a heap H is at least as precise as
another heap H' if either of the following two conditions
are satisfied:

1. For all concrete locations 1. that can arise during the
execution of a program, ag (1) = ap (1), and for every
edge from m to m; qualified by constraint <¢may7 Dmust)
in H, there is an edge in H' from 7, to m; qualified by
< ;nay7 ¢1/nust> such that:

¢may = ¢;nay A Q%nust = ¢must

Figure 6. Heap H' and H from the proof.

2. Otherwise, there must exist a concrete location [, with
ap/(l.) =" and ag (l.) = o such that ~y(mg) C ('),
and there exists a set of abstract locations T, ... Ty
in H such that v(n') = ~(m) U y(m1) ... U y(mg).
Furthermore, H must be at least as precise as Hgy,
where Hgy splits w' in H' into {mo,m1,... 7} under
constraints {1, . . ., or } such that for every edge e to 7'

under constraint ¢' in H', there is an edge to 7j in H

under constraint ¢; \ ¢'.

According to the first criterion in this definition, a heap H
is at least as precise as H' if the abstract locations in the two
heaps are the same and the over- and underapproximations
encoded by the constraints in H are at least as “tight” as
those in H'. The second condition in the definition states that
if H and H' differ in at least one abstract location 7, then
H refines H' by replacing 7 with a set of abstract locations
m1,..., T, each of which represent a portion of the concrete
locations represented by 7.

LEMMA 2. Let H and H' be two sound symbolic heaps
obtained from the same program such that H is at least as
precise as H'. If H and H' enforce existence and uniqueness
invariants, then any assertion provable under H' is also
provable under H.

(Sketch) If H is at least as precise as H', and for all [,
ap(le) = ap/(l.), this lemma is easy to show. We consider
the case where there exists some [, such that y(ag(l.)) C
(g (1.)). For simplicity, we assume that there is exactly
one abstract location 7 in H' that is now represented by two
abstract locations 71 and 79 in H (if this is not the case, we
can easily construct a sequence of more precise heaps from
H'’ to H that have this property at each step). Consider an
assertion of the form assert(read(ns,~y) = read(n’,,~')) that
is provable in H'. Let read(ms,¢s) = {..., (7, di),...}
and read(w,, ¢%) = {..., (7}, #}), ...} inheap H. Clearly, if
there does not exist some 7;, 7} such that 7 = m; or m = =,
then the assertion is also trivially provable in H. There are
two cases to consider: (i) Only one of the read value sets
contains 7 in H’ or (ii) both of them contain 7 in H’. The
first case is uninteresting since if 7 is in only one of the read



sets, m does not play a role in the validity of the assertion.
Hence, we consider (ii).

In this case, heaps H and H' must differ in the way shown
in Figure 6. In this figure, R and R’ represent some set of
abstract locations, and ¢ and ¢, represent the disjunction
of the constraints on the edges from 7 (resp. 7.) to each
location in R (resp. R’). (The constraints from 75 to R are
the same in H and H’ because all existing information is
preserved, i.e., these constraints must be equivalent under
the axioms from Section 4.2.)

To keep the proof understandable, we only consider the
case where 7 does not contain index variables. Since both
H and H’ enforce existence and uniqueness of memory
contents, we know:

or N ¢ = false ¢p N @' = false
OrV ¢ = true @RV @ = true
dr NP NP1 =false ¢ NP’ NP1 = false
Gdr NP NP =false ¢u NP N P = false
O NP1 NDN ¢ = false
&N o1 NP A o = false
PRV (PN P1) V(@ A ¢2) = true
V(& NP1) V(¢ N pa) = true

These constraints imply ¢ < ((¢ A ¢1) V (¢ A ¢2)) and
&< (¢ Nd1) V(¢ A d2)). Observe that this implies

d1V Py = true (1)

Let I denote the index variables used in the source lo-
cations 75 and . For the assertion to be valid in H’, we
have:

.y AYA
(r=mApAP)V
(m=R ANdAPR)V
(mr=RA® NPr)V
(R=R'NorAdR)

Since we know that 7 is not in R or R/, this formula is
only valid if the following formula is also valid:

VALID

ALy AY'A

VALID( (@A) V(R=R Npr AP ANy AY) ) "

Now, the validity of the assertion in H is checked using
the formula:

(mi=mAPAPL AP ANd1)V
(r2 =m2 AP A P2 A A pa)V
( T AGAPL AP A p2)V
(o =T APAda AP A1)V
(m1 =R NN 1A Ph)
(
(
(
(

)
=N
I

VALID

v
T2 =R AP A P2 A Pr)V
R=m Apr AP A1)V
R=maApr AP Ap2)V
R =R Aér A ¢R)

Again, since 71, o are not in R or R’ and 7; and 75 are
distinct, this is equivalent to checking:

L.y AYA
(pAPL AP )V
(@ A2 A )V (%)
(R=R Noér A ¢R)

Now, observe that (¢ A ¢1 A @) V (¢ A o A @) &
PAY' AN(D1Vh2) < PP, where the last equivalence follows
from (1). Hence, the validity of (x) implies the validity of

VALID

5. Implementation

We have implemented the ideas presented in this paper in
our Compass verification framework for analyzing C pro-
grams. Compass supports most features of the C language,
including structs, unions, multi-dimensional arrays, dynamic
memory allocation, and pointer arithmetic. Compass does
not assume type safety and handles casts soundly using a
technique based on physical subtyping [15]. To check for
buffer overruns, Compass tracks buffer and allocation sizes.
Compass can be used for checking both user-provided as-
sertions as well as many memory safety properties, such as
null dereferences, buffer overruns and underruns, uninitial-
ized reads, leaked stack allocations, and invalid casts. How-
ever, Compass currently does not check for integer over-
flows; hence, the safety of buffer accesses is predicated on
the absence of integer overflows.

Compass performs flow-, path-, and context-sensitive
program analysis. To achieve path-sensitivity, the constraints
qualifying the edges in the symbolic heap abstraction not
only qualify the source and the target’s index variables, but
can also mention constraints arising from path conditions.
For interprocedural analysis, Compass performs a summary-
based, context-sensitive analysis. For solving constraints,
Compass utilizes a custom SMT solver called Mistral [16],
which also provides support for on-line simplification of
constraints [17].

6. Experimental Evaluation

To evaluate the precision and scalability of symbolic heap
abstraction combined with axiomatization of memory invari-
ants, we use Compass to check for memory safety properties
(specifically, null dereferences, buffer overruns and under-
runs, and safety of casts) in OpenSSH 5.3p1 [18], totaling
26,615 lines of code. We believe OpenSSH to be a challeng-
ing and interesting target because it contains many complex
array and pointer usage patterns, is heavily optimized for
performance, is believed to be well-tested, and it is widely
deployed.

The results of this experiment are presented in Figure 7.
To quantify the relative importance of reasoning about heap
contents and reasoning about memory invariants, we run our
analysis in four different configurations: The first configura-



Combined Content Only Mem-Inv Only Smash
Time (s) 261 788 103 115
Max memory used (MB) 208 763 144 105
# reported buffer errors 2 77 117 371
# reported null errors 3 53 71 180
# reported cast errors 0 28 11 421
Total # of errors 5 158 199 972
Total # of false positives 1 154 195 968

Figure 7. Experimental results obtained on a single core of a 2.66 GHz Xeon CPU

Lines Combined Content Only Mem-Inv Only Smash
Buffer | Null | Cast | Time | Buffer | Null | Cast | Time | Buffer | Null | Cast | Time | Buffer | Null | Cast | Time
hostname 304 0 0 0 0.14s 1 0 0 0.35s 3 1 0 0.35s 4 2 0 0.31s
chroot 371 0 0 0 0.15s 1 0 1 0.61s 2 1 0 0.60s 4 1 1 0.70s
rmdir 483 0 0 0 0.98s 2 0 0 1.39s 3 0 0 0.66s 3 1 0 0.51s
su 1047 0 0 0 1.63s 3 1 1 1.99s 2 1 1 1.62s 11 3 2 1.07s
mv 1151 0 0 0 0.79s 2 3 3 1.48s 1 1 2 1.01s 6 4 3 1.31s

Figure 8. False Positives by Category when selectively disabling memory invariants or reasoning about array contents,
reported on five Unix Coreutils with running times. Experimental results obtained on a single core of a 2.66 GHz Xeon CPU

tion, called “Combined”’, employs the technique described
in this paper, combining symbolic heap abstraction with
demand-driven axiomatization of memory invariants. The
second configuration, called “Content Only”, tracks contents
of memory locations, but it does not enforce existence and
uniqueness of memory contents. The third configuration is
“Mem-Inv Only”, which enforces existence and uniqueness
of concrete memory locations (i.e., introduces the A con-
straints from Section 4), but does not introduce the axioms
described in Section 4. The fourth configuration is “Smash”,
which effectively smashes array contents by neither intro-
ducing memory invariants nor tracking the relationship be-
tween indices and contents. As described in Section 5, all
configurations of the analysis are flow-, path- and context-
sensitive.

As shown in the first column of Figure 7, using the tech-
nique proposed in this paper, Compass analyzes OpenSSH
in ~ 4.4 minutes using no more than 208 MB of memory,
finding one buffer overrun, one buffer underrun (unrelated to
the first one), and three null dereference errors, one of which
is a false positive. The only false positive reported by the
analysis is due to an imprecise loop invariant, where the in-
variant generation aspect of our analysis cannot determine
that an array element must be updated exactly once, rather
than in multiple iterations, of a loop. In these experiments,
we only annotated the relationship between argv and argc
in main and provided suitable stubs for functions we did
not analyze (e.g., system calls, OpenSSL functions called
by OpenSSH). In addition, we had to annotate an invariant
that relates two fields of a global data structure. We belive
the statistics shown in the first (Combined) column of Fig-
ure 7 demonstrate that symbolic heap abstraction combined
with demand-driven axiomatization is precise and scalable
enough to verify memory safety properties in a real applica-
tion with sufficiently useful precision.

In contrast, the analysis configuration (Content Only) that
reasons about contents of arrays but that does not enforce
memory invariants reports 154 false positives. It is inter-
esting to observe that in addition to reporting significantly
more false positives, the analysis also takes about three times
as long as the first analysis configuration (Combined). This
longer running time is explained by the fact that many con-
straints can be proven unsatisfiable by only taking mem-
ory invariants into account without needing extra informa-
tion about the contents of memory locations. We believe the
striking difference in precision between the first and second
analysis configurations corroborates the hypothesis that rea-
soning about memory invariants is as important as reasoning
about contents of memory locations.

We next consider the analysis configuration from Figure 7
that only enforces memory invariants but that does not track
the relationship between indices and values. This configu-
ration reports 195 false positives, confirming that precise
reasoning about array contents is vital for successful veri-
fication of real-world applications. From the 154 and 195
false positives reported by the “Content Only” and ‘“Mem-
Inv Only” configurations, 56 error reports are shared. This
observation indicates that at least 56 errors require combined
reasoning about array contents as well as memory invariants
and cannot be discharged by two separate analyses. The fi-
nal configuration, which performs array smashing, reports
968 false positives, demonstrating that this level of precision
is unlikely to be useful for verification of real-world appli-
cations.

We believe the reason that our analysis can scale to a
program like OpenSSH with a few ten thousand lines of code
while performing a very precise analysis of array and heap
contents is that it avoids performing explicit case analyses in
two important ways: First, by employing the axiomatization
strategy described in this paper, our analysis can achieve



precise relational reasoning without explicitly considering
different heap configurations. Second, by using the fluid
update operation [4] for array updates, our technique avoids
creating explicit partitions of arrays.

To demonstrate that other C programs also require rea-
soning about memory invariants in addition to heap con-
tents, we also applied all four analysis configurations to five
Unix Coreutils programs, ranging from 304 to 1151 lines
of C code. While symbolic heap abstraction combined with
axiomatization of memory invariants is powerful enough to
prove the absence of buffer overruns, null dereferences, and
casting errors with zero false positives in these programs,
neither the “Content-Only” nor the “Mem-Inv Only” set-
ting is able to prove all accesses are safe. As shown in Fig-
ure 8, the relative impact of reasoning about heap contents
and memory invariants is roughly comparable, underscoring
that reasoning about existence and uniqueness invariants is
crucial for successful verification of real programs.

7. Related Work

There has been much interest in reasoning about the contents
of arrays in the past decade; many of these techniques fo-
cus on generating invariants about array elements. Gopan et
al. propose a 3-valued logic-based framework for reasoning
about the contents of arrays [1]. In this work, array elements
that share a common invariant are placed into a partition,
and operations such as focus and blur are required to iso-
late and coalesce array elements. Jhala and McMillan adopt
an approach similar to [1] using counterexample-guided ab-
straction refinement [2]. The approach presented in [5] also
uses abstraction refinement for reasoning about array con-
tents. Halbwachs and Peron propose an array content anal-
ysis based on abstract interpretation for a restricted class of
so-called simple programs [3]. In this paper, in addition to
precisely reasoning about array contents, we present a scal-
able technique that enforces existence and uniqueness invari-
ants and achieves precise relational reasoning without per-
forming explicit case splits.

Manevitch [19] proposes a heuristic to make TVLA-
based analyses more scalable. To mitigate the state-space
explosion that arises from analyzing the set of all possi-
ble heaps, he proposes partial isomorphic heap abstrac-
tion, which is a heuristic to merge two abstract heaps if
they are universe congruent. While this technique consider-
ably speeds up analysis on many benchmarks, it may lose
information and is not as precise as analyzing all abstract
heaps separately. Our technique reasons about only one ab-
stract heap per program point, and achieves the same level of
precision as creating multiple heaps by enforcing existence
and uniqueness through constraints on points-to edges. This
strategy effectively delays any disjunctive reasoning until
constraint solving, and since a constraint solver typically
does not need to analyze all cases to prove a constraint sat-
isfiable or unsatisfiable, our approach appears to be more

scalable without losing precision due to heuristic merging of
abstract heaps.

An alternative to the graph-based heap representations
considered in this paper is verification-condition generation
based approaches for reasoning about heap contents (e.g.,
[20]). These approaches use combinations of various logics,
such as the theory of arrays [10, 21-23] and pointer logic
[24], to generate one large verification condition encoding
all writes to and reads from the heap. Since these approaches
encode the entire history of heap writes and reads in one
formula (i.e., the verification condition), these techniques
are able to establish relations and correlations between vari-
ables without requiring any extra machinery. In contrast, ap-
proaches based on per program-point heap representations
such as [1, 4, 6], track the contents of the heap only at a
given point in the program, and as a result, do not record a
“history” of how this heap was established. For this reason,
the latter approaches need extra tools to achieve precise re-
lational reasoning but tend to be more scalable because they
only encode the current state of the heap. The technique pre-
sented in this paper combines aspects of both approaches by
allowing relational reasoning in a practical and scalable way
and without requiring the history of updates to the heap. Ef-
fectively, our approach separates the task of reasoning about
heap contents from answering queries about the heap, and
we believe this separation is key to scaling our approach to
a program as large as OpenSSH.

Work on array analysis from the parallel compiler work of
the *80’s and ’90’s also infers some aspects of the “memory
invariant” in the form of may-dependences and dependence
distances [25]. These techniques are targeted at a very dif-
ferent class of applications and are not as expressive as our
approach.

We do not address the problem of reasoning about recur-
sive pointer data structures. Techniques for reasoning about
contents of recursive pointer data structures, such as lists
and trees, include (but are not limited to) techniques based
on canonical abstraction [6] and separation logic [8, 26].
We believe the techniques described in this paper can be
extended to some recursive pointer data structures, such as
lists; we leave this as future work.

8. Conclusion

We have presented a new and conceptually simple technique
for enforcing correlations between abstract read operations
on aggregate data structures: rather than splitting the abstract
heap into multiple heaps so that the memory location of in-
terest has a unique value in each individual heap, we enforce
via constraints the existence and uniqueness of the value of
every memory location. As a result, we are able to delay the
cost of analyzing the possible values in the heap from the
time when the heap representation corresponding to some
program statement is first constructed to when we need to
answer satisfiability and validity queries about a property of



the program. By delaying the cost we often avoid having
to pay it at all, as in many cases queries can be answered
by a solver without a full enumeration of all possibilities.
We have also shown that this improved trade-off in theory
actually pays off in practice: our implementation is able to
analyze medium-sized program such as OpenSSH precisely
enough to fully verify memory safety, even in the presence
of intricate array and pointer operations.
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