
Static Error Detection Using Semantic Inconsistency Inference

Static Error Detection Using Semantic

Inconsistency Inference

Isil Dillig, Thomas Dillig, Alex Aiken
Computer Science Department, Stanford University

June 13, 2007

Static Error Detection Using Semantic Inconsistency Inference

Source-Sink Errors

Many state-of-the-art static analysis tools target a class of
errors we call source-sink errors.

Static Error Detection Using Semantic Inconsistency Inference

Source-Sink Errors

Many state-of-the-art static analysis tools target a class of
errors we call source-sink errors.

These errors arise when a distinguished “source” reaches a
distinguished “sink”.

Static Error Detection Using Semantic Inconsistency Inference

Source-Sink Errors

Many state-of-the-art static analysis tools target a class of
errors we call source-sink errors.

These errors arise when a distinguished “source” reaches a
distinguished “sink”.

Typical examples of source sink errors include:

-Does a null pointer reach a dereference?
-Does a tainted input reach a security-critical operation?
-Does a closed file reach a read operation?

Static Error Detection Using Semantic Inconsistency Inference

Source-Sink Errors

Many state-of-the-art static analysis tools target a class of
errors we call source-sink errors.

These errors arise when a distinguished “source” reaches a
distinguished “sink”.

Typical examples of source sink errors include:

-Does a null pointer reach a dereference?
-Does a tainted input reach a security-critical operation?
-Does a closed file reach a read operation?

Detection of these errors requires finding a “feasible” path
between the source and the sink.

Static Error Detection Using Semantic Inconsistency Inference

Inconsistency Errors

A complementary approach for finding errors is inconsistency
detection (“Bugs as Deviant Behavior”, Engler et al.).

Static Error Detection Using Semantic Inconsistency Inference

Inconsistency Errors

A complementary approach for finding errors is inconsistency
detection (“Bugs as Deviant Behavior”, Engler et al.).

A prototypical example:
if(x) a=*x;

...

b=*x;

Static Error Detection Using Semantic Inconsistency Inference

Inconsistency Errors

A complementary approach for finding errors is inconsistency
detection (“Bugs as Deviant Behavior”, Engler et al.).

A prototypical example:
if(x) a=*x;

...

b=*x;

Inconsistency detection can be seen as a variation of type
inference.

Static Error Detection Using Semantic Inconsistency Inference

Inconsistency Errors

A complementary approach for finding errors is inconsistency
detection (“Bugs as Deviant Behavior”, Engler et al.).

A prototypical example:
if(x) a=*x;

...

b=*x;

Inconsistency detection can be seen as a variation of type
inference.

The above program would not type check because x cannot
have both maybe-null and non-null types.

Static Error Detection Using Semantic Inconsistency Inference

Why is Inconsistency Detection Useful?

Static Error Detection Using Semantic Inconsistency Inference

Why is Inconsistency Detection Useful?

Source-sink analyzers assume closed programs. In open
programs, sources can come from “the outside”.

Static Error Detection Using Semantic Inconsistency Inference

Why is Inconsistency Detection Useful?

Source-sink analyzers assume closed programs. In open
programs, sources can come from “the outside”.

Inconsistency errors are more local and hence easier to inspect
and understand.

Static Error Detection Using Semantic Inconsistency Inference

Why is Inconsistency Detection Useful?

Source-sink analyzers assume closed programs. In open
programs, sources can come from “the outside”.

Inconsistency errors are more local and hence easier to inspect
and understand.

Source-sink errors lie on a single program path.
Inconsistencies can involve multiple program paths.

Static Error Detection Using Semantic Inconsistency Inference

Defining Inconsistency

Static Error Detection Using Semantic Inconsistency Inference

Defining Inconsistency

An inconsistency error arises if two equivalent expressions are
used in ways that indicate contradictory beliefs of the
programmer.

Static Error Detection Using Semantic Inconsistency Inference

Defining Inconsistency

An inconsistency error arises if two equivalent expressions are
used in ways that indicate contradictory beliefs of the
programmer.

Question #1: When are expressions equivalent?

Static Error Detection Using Semantic Inconsistency Inference

Defining Inconsistency

An inconsistency error arises if two equivalent expressions are
used in ways that indicate contradictory beliefs of the
programmer.

Question #1: When are expressions equivalent?

Question #2: How do we know if two uses indicate
contradictory beliefs of the programmer?

Static Error Detection Using Semantic Inconsistency Inference

Formalizing Inconsistencies

Function F ::= define f (x1, ..., xn) = s

Static Error Detection Using Semantic Inconsistency Inference

Formalizing Inconsistencies

Function F ::= define f (x1, ..., xn) = s

Statement S ::= x ←ρ Ci

Static Error Detection Using Semantic Inconsistency Inference

Formalizing Inconsistencies

Function F ::= define f (x1, ..., xn) = s

Statement S ::= x ←ρ Ci

|checkρ x = Ci

Static Error Detection Using Semantic Inconsistency Inference

Formalizing Inconsistencies

Function F ::= define f (x1, ..., xn) = s

Statement S ::= x ←ρ Ci

|checkρ x = Ci

|if ρ (x = Ci) s1 else s2

Static Error Detection Using Semantic Inconsistency Inference

Formalizing Inconsistencies

Function F ::= define f (x1, ..., xn) = s

Statement S ::= x ←ρ Ci

|checkρ x = Ci

|if ρ (x = Ci) s1 else s2
| x ←ρ y | f (x1, ..., xn)

ρ | s1;
ρ s2

Static Error Detection Using Semantic Inconsistency Inference

Formalizing Inconsistencies

Function F ::= define f (x1, ..., xn) = s

Statement S ::= x ←ρ Ci

|checkρ x = Ci

|if ρ (x = Ci) s1 else s2
| x ←ρ y | f (x1, ..., xn)

ρ | s1;
ρ s2

Constructors model type-state properties.
e.g. locked/unlocked, null/non-null, tainted/clean etc.

Static Error Detection Using Semantic Inconsistency Inference

Formalizing Inconsistencies

Function F ::= define f (x1, ..., xn) = s

Statement S ::= x ←ρ Ci

|checkρ x = Ci

|if ρ (x = Ci) s1 else s2
| x ←ρ y | f (x1, ..., xn)

ρ | s1;
ρ s2

Constructors model type-state properties.
e.g. locked/unlocked, null/non-null, tainted/clean etc.

The only sources are constructor assignments; and the only
sinks are check statements.

Static Error Detection Using Semantic Inconsistency Inference

Formalizing Inconsistencies

Function F ::= define f (x1, ..., xn) = s

Statement S ::= x ←ρ Ci

|checkρ x = Ci

|if ρ (x = Ci) s1 else s2
| x ←ρ y | f (x1, ..., xn)

ρ | s1;
ρ s2

Constructors model type-state properties.
e.g. locked/unlocked, null/non-null, tainted/clean etc.

The only sources are constructor assignments; and the only
sinks are check statements.

Program points ρ are unique identifiers for every statement in
the program.

Static Error Detection Using Semantic Inconsistency Inference

Null Pointer Example

We want to express that null pointer dereferences are illegal.

Static Error Detection Using Semantic Inconsistency Inference

Null Pointer Example

We want to express that null pointer dereferences are illegal.

Add constructors null and non-null.

Static Error Detection Using Semantic Inconsistency Inference

Null Pointer Example

We want to express that null pointer dereferences are illegal.

Add constructors null and non-null.

Instrument every pointer dereference with a check statement:

For every dereference

*x

add a check:

check(x=non-null)

Static Error Detection Using Semantic Inconsistency Inference

Guards

To define semantics of inconsistency, we need path
constraints.

Static Error Detection Using Semantic Inconsistency Inference

Guards

To define semantics of inconsistency, we need path
constraints.

We represent constraints as boolean formulas and call them
guards.

Static Error Detection Using Semantic Inconsistency Inference

Guards

To define semantics of inconsistency, we need path
constraints.

We represent constraints as boolean formulas and call them
guards.

Useful to differentiate between two kinds of guards:

Static Error Detection Using Semantic Inconsistency Inference

Guards

To define semantics of inconsistency, we need path
constraints.

We represent constraints as boolean formulas and call them
guards.

Useful to differentiate between two kinds of guards:

1 Statement guards γ
ρ that describe the conditions under which

a statement ρ is reached.

Static Error Detection Using Semantic Inconsistency Inference

Guards

To define semantics of inconsistency, we need path
constraints.

We represent constraints as boolean formulas and call them
guards.

Useful to differentiate between two kinds of guards:

1 Statement guards γ
ρ that describe the conditions under which

a statement ρ is reached.

2 Constructor guards Γρ(x)(j) which describe the conditions
under which a variable x evaluates to constructor Cj .

Static Error Detection Using Semantic Inconsistency Inference

Definition of Inconsistency

Consider two check statements checkρ0(x = Ci) and
checkρ1(y = Ci).

Static Error Detection Using Semantic Inconsistency Inference

Definition of Inconsistency

Consider two check statements checkρ0(x = Ci) and
checkρ1(y = Ci).

An inconsistency error arises if:

Static Error Detection Using Semantic Inconsistency Inference

Definition of Inconsistency

Consider two check statements checkρ0(x = Ci) and
checkρ1(y = Ci).

An inconsistency error arises if:

1. x ∼= y

Static Error Detection Using Semantic Inconsistency Inference

Definition of Inconsistency

Consider two check statements checkρ0(x = Ci) and
checkρ1(y = Ci).

An inconsistency error arises if:

1. x ∼= y

x and y are semantically equivalent.

Static Error Detection Using Semantic Inconsistency Inference

Definition of Inconsistency

Consider two check statements checkρ0(x = Ci) and
checkρ1(y = Ci).

An inconsistency error arises if:

1. x ∼= y

x and y are semantically equivalent.

2. ¬SAT (γρ0 ∧
∨

j 6=i Γ(x)(j))

Static Error Detection Using Semantic Inconsistency Inference

Definition of Inconsistency

Consider two check statements checkρ0(x = Ci) and
checkρ1(y = Ci).

An inconsistency error arises if:

1. x ∼= y

x and y are semantically equivalent.

2. ¬SAT (γρ0 ∧
∨

j 6=i Γ(x)(j))

x is guaranteed to be Ci at ρ0

Static Error Detection Using Semantic Inconsistency Inference

Definition of Inconsistency

Consider two check statements checkρ0(x = Ci) and
checkρ1(y = Ci).

An inconsistency error arises if:

1. x ∼= y

x and y are semantically equivalent.

2. ¬SAT (γρ0 ∧
∨

j 6=i Γ(x)(j))

x is guaranteed to be Ci at ρ0

3. SAT (γρ1 ∧
∨

j 6=i Γ(y)(j)))

Static Error Detection Using Semantic Inconsistency Inference

Definition of Inconsistency

Consider two check statements checkρ0(x = Ci) and
checkρ1(y = Ci).

An inconsistency error arises if:

1. x ∼= y

x and y are semantically equivalent.

2. ¬SAT (γρ0 ∧
∨

j 6=i Γ(x)(j))

x is guaranteed to be Ci at ρ0

3. SAT (γρ1 ∧
∨

j 6=i Γ(y)(j)))

At ρ1 it is possible for y to be Cj

Static Error Detection Using Semantic Inconsistency Inference

Congruence

The definition of congruence (or semantic equivalence)
depends on the language and types of expressions.

Static Error Detection Using Semantic Inconsistency Inference

Congruence

The definition of congruence (or semantic equivalence)
depends on the language and types of expressions.

An especially problematic case is pointers.

Static Error Detection Using Semantic Inconsistency Inference

Congruence

The definition of congruence (or semantic equivalence)
depends on the language and types of expressions.

An especially problematic case is pointers.

Given a points-to graph (V ,E) and two pointer variables
v1, v2 ∈ V , we define congruence as:

v1
∼= v2 ⇔ ∀v3 ∈ V .(((v1, v3) ∈ E

⇔ (v2, v3) ∈ E)

Static Error Detection Using Semantic Inconsistency Inference

Congruence

The definition of congruence (or semantic equivalence)
depends on the language and types of expressions.

An especially problematic case is pointers.

Given a guarded points-to graph (V ,E) and two pointer
variables v1, v2 ∈ V , we have:

v1
∼= v2 ⇔ ∀v3 ∈ V .(((v1, v3)

g1 ∈ E

⇔ (v2, v3)
g2 ∈ E) ∧ g1 ≡ g2

Static Error Detection Using Semantic Inconsistency Inference

Inconsistency Example

example.c

b = (p!=NULL)
q = p;
if(b)

*p = 8;
*q = 4;

The Analysis

Static Error Detection Using Semantic Inconsistency Inference

Inconsistency Example

example.c

b = (p!=NULL)
q = p;
if(b)

*p = 8;
*q = 4;

The Analysis

if(p=null)
b ← C0

else
b ← C1;

Static Error Detection Using Semantic Inconsistency Inference

Inconsistency Example

example.c

b = (p!=NULL)
q = p;
if(b)

*p = 8;
*q = 4;

The Analysis

if(p=null) γ=(p=null)

b ← C0

else
b ← C1;

Static Error Detection Using Semantic Inconsistency Inference

Inconsistency Example

example.c

b = (p!=NULL)
q = p;
if(b)

*p = 8;
*q = 4;

The Analysis

if(p=null)
b ← C0 Γ(b)(C0)=(p=null)

else
b ← C1;

Static Error Detection Using Semantic Inconsistency Inference

Inconsistency Example

example.c

b = (p!=NULL)
q = p;
if(b)

*p = 8;
*q = 4;

The Analysis

if(p=null)
b ← C0

else γ=(p=non-null)

b ← C1;

Static Error Detection Using Semantic Inconsistency Inference

Inconsistency Example

example.c

b = (p!=NULL)
q = p;
if(b)

*p = 8;
*q = 4;

The Analysis

if(p=null)
b ← C0

else
b ← C1; Γ(b)(C1) =(p=non-null)

Static Error Detection Using Semantic Inconsistency Inference

Inconsistency Example

example.c

b = (p!=NULL)
q = p;
if(b)

*p = 8;
*q = 4;

The Analysis

if(p=null)
b ← C0

else
b ← C1;

q ← p;

Static Error Detection Using Semantic Inconsistency Inference

Inconsistency Example

example.c

b = (p!=NULL)
q = p;
if(b)

*p = 8;
*q = 4;

The Analysis

if(p=null)
b ← C0

else
b ← C1;

q ← p; q ∼= p

Static Error Detection Using Semantic Inconsistency Inference

Inconsistency Example

example.c

b = (p!=NULL)
q = p;
if(b)

*p = 8;
*q = 4;

The Analysis

if(p=null)
b ← C0

else
b ← C1;

q ← p;
if(b=C1)

Static Error Detection Using Semantic Inconsistency Inference

Inconsistency Example

example.c

b = (p!=NULL)
q = p;
if(b)

*p = 8;
*q = 4;

The Analysis

if(p=null)
b ← C0

else
b ← C1;

q ← p;
if(b=C1) γ=Γ(b)(C1)=(p=non-null)

Static Error Detection Using Semantic Inconsistency Inference

Inconsistency Example

example.c

b = (p!=NULL)
q = p;
if(b)

*p = 8;
*q = 4;

The Analysis

if(p=null)
b ← C0

else
b ← C1;

q ← p;
if(b=C1)
check(p=non-null);

Static Error Detection Using Semantic Inconsistency Inference

Inconsistency Example

example.c

b = (p!=NULL)
q = p;
if(b)

*p = 8;
*q = 4;

The Analysis

if(p=null)
b ← C0

else
b ← C1;

q ← p;
if(b=C1)
check(p=non-null); ¬SAT (γ ∧ Γ(p)(null))

Static Error Detection Using Semantic Inconsistency Inference

Inconsistency Example

example.c

b = (p!=NULL)
q = p;
if(b)

*p = 8;
*q = 4;

The Analysis

if(p=null)
b ← C0

else
b ← C1;

q ← p;
if(b=C1)
check(p=non-null);

check(q=non-null);

Static Error Detection Using Semantic Inconsistency Inference

Inconsistency Example

example.c

b = (p!=NULL)
q = p;
if(b)

*p = 8;
*q = 4;

The Analysis

if(p=null)
b ← C0

else
b ← C1;

q ← p;
if(b=C1)
check(p=non-null);

check(q=non-null); SAT (γ ∧ Γ(q)(null))

Static Error Detection Using Semantic Inconsistency Inference

Inconsistency Example

example.c

b = (p!=NULL)
q = p;
if(b)

*p = 8;
*q = 4;

The Analysis

if(p=null)
b ← C0

else
b ← C1;

q ← p; q ∼= p

if(b=C1)
check(p=non-null); ¬SAT (γ ∧ Γ(p)(null))

check(q=non-null); SAT (γ ∧ Γ(q)(null))

Static Error Detection Using Semantic Inconsistency Inference

Interprocedural Inconsistencies

The definition of inconsistencies needs to be slightly modified
in the interprocedural case.

Static Error Detection Using Semantic Inconsistency Inference

Interprocedural Inconsistencies

The definition of inconsistencies needs to be slightly modified
in the interprocedural case.

Consider these slightly different function definitions:

void f(int* x) void f’(int* x)

{ {
if(x) *x=2;

*x = 2; g’(x);

g(x); }
}
void g(int* y) void g’(int* y)

{ {
*y=3; if(y)

} *y=3;

}

Static Error Detection Using Semantic Inconsistency Inference

Interprocedural Inconsistencies

The definition of inconsistencies needs to be slightly modified
in the interprocedural case.

Consider these slightly different function definitions:

void f(int* x) void f’(int* x)

{ {
if(x) *x=2;

*x = 2; g’(x);

g(x); }
}
void g(int* y) void g’(int* y)

{ {
*y=3; if(y)

} *y=3;

}

Static Error Detection Using Semantic Inconsistency Inference

Revised Definition for Interprocedural Inconsistencies

Consider two check statements checkρ0(x = Ci) and
checkρ1(y = Ci). An inconsistency error arises if:

1. x ∼= y

2. ¬SAT (γρ0 ∧
∨

j 6=i Γ(x)(j)) ∧ InCaller(ρ0)

3. SAT (γρ1 ∧
∨

j 6=i Γ(x)(j))) ∧ InCallee(ρ1)

Static Error Detection Using Semantic Inconsistency Inference

Implementation and Results

We implemented a null dereference analysis for C with both a
source-sink analyzer and an inconsistency detector using the
SATURN infrastructure.

Static Error Detection Using Semantic Inconsistency Inference

Implementation and Results

We implemented a null dereference analysis for C with both a
source-sink analyzer and an inconsistency detector using the
SATURN infrastructure.

We analyzed OpenSSH, OpenSSL, Samba, Sendmail, Pine,
MPlayer, and the entire Linux kernel to find source-sink and
inconsistency errors.

Static Error Detection Using Semantic Inconsistency Inference

Implementation and Results

We implemented a null dereference analysis for C with both a
source-sink analyzer and an inconsistency detector using the
SATURN infrastructure.

We analyzed OpenSSH, OpenSSL, Samba, Sendmail, Pine,
MPlayer, and the entire Linux kernel to find source-sink and
inconsistency errors.

We found 518 inconsistency errors and 77 source-sink errors
with a false positve rate of 19.5%.

Static Error Detection Using Semantic Inconsistency Inference

Implementation and Results

We implemented a null dereference analysis for C with both a
source-sink analyzer and an inconsistency detector using the
SATURN infrastructure.

We analyzed OpenSSH, OpenSSL, Samba, Sendmail, Pine,
MPlayer, and the entire Linux kernel to find source-sink and
inconsistency errors.

We found 518 inconsistency errors and 77 source-sink errors
with a false positve rate of 19.5%.

Developers of Samba and Linux claim the errors found by our
tool had not been detected by other static analysis tools, from
which they receive regular checking.

Static Error Detection Using Semantic Inconsistency Inference

Sample Linux Error Report

/* Linux, net/sctp/output.c, line 270 */

236 pmtu = ((packet->transport->asoc) ?

237 (packet->transport->asoc->pathmtu) :

238 (packet->transport->pathmtu));

...

269 if (sctp chunk is data(chunk)) {
270 retval = sctp packet append data(packet, chunk);

...

286 }

538 sctp xmit t sctp packet append data (struct sctp packet *packet,

539 struct sctp chunk *chunk)

540 {
...

543 struct sctp transport *transport = packet->transport;

...

545 struct sctp association *asoc = transport->asoc;

...

562 rwnd = asoc->peer.rwnd;

Static Error Detection Using Semantic Inconsistency Inference

Sample Linux Error Report

/* Linux, net/sctp/output.c, line 270 */

236 pmtu = ((packet->transport->asoc) ?

237 (packet->transport->asoc->pathmtu) :

238 (packet->transport->pathmtu));

...

269 if (sctp chunk is data(chunk)) {
270 retval = sctp packet append data(packet, chunk);

...

286 }

538 sctp xmit t sctp packet append data (struct sctp packet *packet,

539 struct sctp chunk *chunk)

540 {
...

543 struct sctp transport *transport = packet->transport;

...

545 struct sctp association *asoc = transport->asoc;

...

562 rwnd = asoc->peer.rwnd;

Static Error Detection Using Semantic Inconsistency Inference

Sample Linux Error Report

/* Linux, net/sctp/output.c, line 270 */

236 pmtu = ((packet->transport->asoc) ?

237 (packet->transport->asoc->pathmtu) :

238 (packet->transport->pathmtu));

...

269 if (sctp chunk is data(chunk)) {
270 retval = sctp packet append data(packet, chunk);

...

286 }

538 sctp xmit t sctp packet append data (struct sctp packet *packet,

539 struct sctp chunk *chunk)

540 {
...

543 struct sctp transport *transport = packet->transport;

...

545 struct sctp association *asoc = transport->asoc;

...

562 rwnd = asoc->peer.rwnd;

Static Error Detection Using Semantic Inconsistency Inference

Sample Linux Error Report

/* Linux, net/sctp/output.c, line 270 */

236 pmtu = ((packet->transport->asoc) ?

237 (packet->transport->asoc->pathmtu) :

238 (packet->transport->pathmtu));

...

269 if (sctp chunk is data(chunk)) {
270 retval = sctp packet append data(packet, chunk);

...

286 }

538 sctp xmit t sctp packet append data (struct sctp packet *packet,

539 struct sctp chunk *chunk)

540 {
...

543 struct sctp transport *transport = packet->transport;

...

545 struct sctp association *asoc = transport->asoc;

...

562 rwnd = asoc->peer.rwnd;

Static Error Detection Using Semantic Inconsistency Inference

Sample Linux Error Report

/* Linux, net/sctp/output.c, line 270 */

236 pmtu = ((packet->transport->asoc) ?

237 (packet->transport->asoc->pathmtu) :

238 (packet->transport->pathmtu));

...

269 if (sctp chunk is data(chunk)) {
270 retval = sctp packet append data(packet, chunk);

...

286 }

538 sctp xmit t sctp packet append data (struct sctp packet *packet,

539 struct sctp chunk *chunk)

540 {
...

543 struct sctp transport *transport = packet->transport;

...

545 struct sctp association *asoc = transport->asoc;

...

562 rwnd = asoc->peer.rwnd;

Static Error Detection Using Semantic Inconsistency Inference

Sample Linux Error Report

/* Linux, net/sctp/output.c, line 270 */

236 pmtu = ((packet->transport->asoc) ?

237 (packet->transport->asoc->pathmtu) :

238 (packet->transport->pathmtu));

...

269 if (sctp chunk is data(chunk)) {
270 retval = sctp packet append data(packet, chunk);

...

286 }

538 sctp xmit t sctp packet append data (struct sctp packet *packet,

539 struct sctp chunk *chunk)

540 {
...

543 struct sctp transport *transport = packet->transport;

...

545 struct sctp association *asoc = transport->asoc;

...

562 rwnd = asoc->peer.rwnd;

Static Error Detection Using Semantic Inconsistency Inference

OpenSSL Example

/* OpenSSL, e chil.c line 1040 */

static int hwcrhk rsa mod exp(BIGNUM *r, const BIGNUM *I,

RSA *rsa, BN CTX *ctx)

967 {
985 if ((hptr = RSA get ex data(rsa, hndidx rsa))!= NULL)

987 {
990 if(!rsa->n){
994 goto err;

995 }

997 /* Prepare the params */

998 bn expand2(r, rsa->n->top); /* Check for error !! */

...

1027 }
1028 else {

...

1039 /* Prepare the params */

1040 bn expand2(r, rsa->n->top); /* Check for error !! */

...

1080 }

Static Error Detection Using Semantic Inconsistency Inference

OpenSSL Example

/* OpenSSL, e chil.c line 1040 */

static int hwcrhk rsa mod exp(BIGNUM *r, const BIGNUM *I,

RSA *rsa, BN CTX *ctx)

967 {
985 if ((hptr = RSA get ex data(rsa, hndidx rsa))!= NULL)

987 {
990 if(!rsa->n){
994 goto err;

995 }

997 /* Prepare the params */

998 bn expand2(r, rsa->n->top); /* Check for error !! */

...

1027 }
1028 else {

...

1039 /* Prepare the params */

1040 bn expand2(r, rsa->n->top); /* Check for error !! */

...

1080 }

Static Error Detection Using Semantic Inconsistency Inference

OpenSSL Example

/* OpenSSL, e chil.c line 1040 */

static int hwcrhk rsa mod exp(BIGNUM *r, const BIGNUM *I,

RSA *rsa, BN CTX *ctx)

967 {
985 if ((hptr = RSA get ex data(rsa, hndidx rsa))!= NULL)

987 {
990 if(!rsa->n){
994 goto err;

995 }

997 /* Prepare the params */

998 bn expand2(r, rsa->n->top); /* Check for error !! */

...

1027 }
1028 else {

...

1039 /* Prepare the params */

1040 bn expand2(r, rsa->n->top); /* Check for error !! */

...

1080 }

Static Error Detection Using Semantic Inconsistency Inference

Related Work

D. Engler, D. Chen, S. Hallem, A. Chou, and B. Chelf.

Bugs as deviant behavior: A general approach to inferring errors in systems code.
Operating Systems Review, 35(5):57–72, 2001.

B. Hackett and A. Aiken.

How is aliasing used in systems software?
In Proceedings of the ACM International Symposium on Foundations of Software Engineering, pages 69–80,
2006.

G. Necula, S. McPeak, and W. Weimer.

CCured: Type-safe retrofitting of legacy code.
In Proc. of the Symp. on Principles of Prog. Languages, pages 128–139, 2002.

D. Beyer, T. Henzinger, R. Jhala, and R. Majumdar.

Checking memory safety with Blast.
In Proc. of the Conf. on Fundamental Approaches to Software Engineering, pages 2–18, 2005.

R. Cartwright and M. Fagan.

Soft typing.
In Proc. of the Conf. on Prog. Language Design and Implementation, pages 278–292, 1991.

M. Faehndrich and K. Rustan M. Leino.

Declaring and checking non-null types in an object-oriented language.
In Proc. of the Conf. on Object-Oriented Programing, Systems, Languages and Applications, pages
302–312, 2003.

Thanks for listening!

