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Source-Sink Errors

Many state-of-the-art static analysis tools target a class of
errors we call source-sink errors.

These errors arise when a distinguished “source” reaches a
distinguished “sink”.

Typical examples of source sink errors include:

-Does a null pointer reach a dereference?
-Does a tainted input reach a security-critical operation?
-Does a closed file reach a read operation?

Detection of these errors requires finding a “feasible” path
between the source and the sink.
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Inconsistency Errors

A complementary approach for finding errors is inconsistency
detection (“Bugs as Deviant Behavior”, Engler et al.).

A prototypical example:
if(x) a=*x;

...

b=*x;

Inconsistency detection can be seen as a variation of type
inference.

The above program would not type check because x cannot
have both maybe-null and non-null types.
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Why is Inconsistency Detection Useful?

Source-sink analyzers assume closed programs. In open
programs, sources can come from “the outside”.

Inconsistency errors are more local and hence easier to inspect
and understand.

Source-sink errors lie on a single program path.
Inconsistencies can involve multiple program paths.
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Defining Inconsistency

An inconsistency error arises if two equivalent expressions are
used in ways that indicate contradictory beliefs of the
programmer.

Question #1: When are expressions equivalent?

Question #2: How do we know if two uses indicate
contradictory beliefs of the programmer?
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Formalizing Inconsistencies

Function F ::= define f (x1, ..., xn) = s

Statement S ::= x ←ρ Ci

|checkρ x = Ci

|if ρ (x = Ci) s1 else s2
| x ←ρ y | f (x1, ..., xn)

ρ | s1;
ρ s2

Constructors model type-state properties.
e.g. locked/unlocked, null/non-null, tainted/clean etc.

The only sources are constructor assignments; and the only
sinks are check statements.

Program points ρ are unique identifiers for every statement in
the program.
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Null Pointer Example

We want to express that null pointer dereferences are illegal.

Add constructors null and non-null.

Instrument every pointer dereference with a check statement:

For every dereference

*x

add a check:

check(x=non-null)
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Guards

To define semantics of inconsistency, we need path
constraints.

We represent constraints as boolean formulas and call them
guards.

Useful to differentiate between two kinds of guards:

1 Statement guards γ
ρ that describe the conditions under which

a statement ρ is reached.

2 Constructor guards Γρ(x)(j) which describe the conditions
under which a variable x evaluates to constructor Cj .
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Definition of Inconsistency

Consider two check statements checkρ0(x = Ci) and
checkρ1(y = Ci).

An inconsistency error arises if:

1. x ∼= y

x and y are semantically equivalent.

2. ¬SAT (γρ0 ∧
∨

j 6=i Γ(x)(j))

x is guaranteed to be Ci at ρ0

3. SAT (γρ1 ∧
∨

j 6=i Γ(y)(j)))

At ρ1 it is possible for y to be Cj
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The definition of congruence (or semantic equivalence)
depends on the language and types of expressions.

An especially problematic case is pointers.

Given a points-to graph (V ,E ) and two pointer variables
v1, v2 ∈ V , we define congruence as:

v1
∼= v2 ⇔ ∀v3 ∈ V .(((v1, v3) ∈ E

⇔ (v2, v3) ∈ E )
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Congruence

The definition of congruence (or semantic equivalence)
depends on the language and types of expressions.

An especially problematic case is pointers.

Given a guarded points-to graph (V ,E ) and two pointer
variables v1, v2 ∈ V , we have:

v1
∼= v2 ⇔ ∀v3 ∈ V .(((v1, v3)

g1 ∈ E

⇔ (v2, v3)
g2 ∈ E ) ∧ g1 ≡ g2
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b ← C0

else
b ← C1;
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if(p=null)
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Inconsistency Example

example.c

b = (p!=NULL)
q = p;
if(b)

*p = 8;
*q = 4;

The Analysis

if(p=null)
b ← C0

else
b ← C1;

q ← p;
if(b=C1) γ=Γ(b)(C1)=(p=non-null)
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else
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if(b)
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if(p=null)
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Inconsistency Example

example.c

b = (p!=NULL)
q = p;
if(b)

*p = 8;
*q = 4;

The Analysis

if(p=null)
b ← C0

else
b ← C1;

q ← p; q ∼= p

if(b=C1)
check(p=non-null); ¬SAT (γ ∧ Γ(p)(null))

check(q=non-null); SAT (γ ∧ Γ(q)(null))
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void f(int* x) void f’(int* x)

{ {
if(x) *x=2;

*x = 2; g’(x);

g(x); }
}
void g(int* y) void g’(int* y)

{ {
*y=3; if(y)

} *y=3;

}
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Interprocedural Inconsistencies

The definition of inconsistencies needs to be slightly modified
in the interprocedural case.

Consider these slightly different function definitions:

void f(int* x) void f’(int* x)

{ {
if(x) *x=2;

*x = 2; g’(x);

g(x); }
}
void g(int* y) void g’(int* y)

{ {
*y=3; if(y)

} *y=3;

}
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Revised Definition for Interprocedural Inconsistencies

Consider two check statements checkρ0(x = Ci) and
checkρ1(y = Ci ). An inconsistency error arises if:

1. x ∼= y

2. ¬SAT (γρ0 ∧
∨

j 6=i Γ(x)(j)) ∧ InCaller(ρ0)

3. SAT (γρ1 ∧
∨

j 6=i Γ(x)(j))) ∧ InCallee(ρ1)
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Implementation and Results

We implemented a null dereference analysis for C with both a
source-sink analyzer and an inconsistency detector using the
SATURN infrastructure.

We analyzed OpenSSH, OpenSSL, Samba, Sendmail, Pine,
MPlayer, and the entire Linux kernel to find source-sink and
inconsistency errors.

We found 518 inconsistency errors and 77 source-sink errors
with a false positve rate of 19.5%.

Developers of Samba and Linux claim the errors found by our
tool had not been detected by other static analysis tools, from
which they receive regular checking.
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Sample Linux Error Report

/* Linux, net/sctp/output.c, line 270 */

236 pmtu = ((packet->transport->asoc) ?

237 (packet->transport->asoc->pathmtu) :

238 (packet->transport->pathmtu));

...

269 if (sctp chunk is data(chunk)) {
270 retval = sctp packet append data(packet, chunk);

...

286 }

538 sctp xmit t sctp packet append data (struct sctp packet *packet,

539 struct sctp chunk *chunk)

540 {
...

543 struct sctp transport *transport = packet->transport;

...

545 struct sctp association *asoc = transport->asoc;

...

562 rwnd = asoc->peer.rwnd;
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OpenSSL Example

/* OpenSSL, e chil.c line 1040 */

static int hwcrhk rsa mod exp(BIGNUM *r, const BIGNUM *I,

RSA *rsa, BN CTX *ctx)

967 {
985 if ((hptr = RSA get ex data(rsa, hndidx rsa))!= NULL)

987 {
990 if(!rsa->n){
994 goto err;

995 }

997 /* Prepare the params */

998 bn expand2(r, rsa->n->top); /* Check for error !! */

...

1027 }
1028 else {

...

1039 /* Prepare the params */

1040 bn expand2(r, rsa->n->top); /* Check for error !! */

...

1080 }
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