
Sound, Complete, and Scalable Path-Sensitive Analysis

Sound, Complete, and Scalable Path-Sensitive
Analysis

Isil Dillig, Thomas Dillig, Alex Aiken
Computer Science Department

Stanford University

PLDI 2008

Sound, Complete, and Scalable Path-Sensitive Analysis

Motivation

Path- and context-sensitivity add useful precision to the
analysis of a large class of properties.

Therefore, there are many proposed techniques for path- and
context-sensitive program analysis.

Model checking tools: Bebop, BLAST, SLAM, ...
Lighter-weight static analysis tools: Saturn, ESP, ...

Sound, Complete, and Scalable Path-Sensitive Analysis

Motivation

Path- and context-sensitivity add useful precision to the
analysis of a large class of properties.

Therefore, there are many proposed techniques for path- and
context-sensitive program analysis.

Model checking tools: Bebop, BLAST, SLAM, ...
Lighter-weight static analysis tools: Saturn, ESP, ...

Sound, Complete, and Scalable Path-Sensitive Analysis

Motivation

Path- and context-sensitivity add useful precision to the
analysis of a large class of properties.

Therefore, there are many proposed techniques for path- and
context-sensitive program analysis.

Model checking tools: Bebop, BLAST, SLAM, ...

Lighter-weight static analysis tools: Saturn, ESP, ...

Sound, Complete, and Scalable Path-Sensitive Analysis

Motivation

Path- and context-sensitivity add useful precision to the
analysis of a large class of properties.

Therefore, there are many proposed techniques for path- and
context-sensitive program analysis.

Model checking tools: Bebop, BLAST, SLAM, ...
Lighter-weight static analysis tools: Saturn, ESP, ...

Sound, Complete, and Scalable Path-Sensitive Analysis

Tradeoff?

The Scalability Scale Sound & Complete Scale

Sound, Complete, and Scalable Path-Sensitive Analysis

This Talk

The Scalability Scale Sound & Complete Scale

Sound, Complete, and Scalable Path-Sensitive Analysis

This Talk

Technique for path- and context-sensitive analysis that guarantees:

soundness

relative completeness with respect to a finite abstraction

scales to multi-million line programs

Key Insight:

We can distinguish a special class of variables called
unobservable variables

These variables can be eliminated from formulas used to
express path-sensitive conditions without any loss of precision

Smaller formulas ⇒ Better scalability

Sound, Complete, and Scalable Path-Sensitive Analysis

This Talk

Technique for path- and context-sensitive analysis that guarantees:

soundness

relative completeness with respect to a finite abstraction

scales to multi-million line programs

Key Insight:

We can distinguish a special class of variables called
unobservable variables

These variables can be eliminated from formulas used to
express path-sensitive conditions without any loss of precision

Smaller formulas ⇒ Better scalability

Sound, Complete, and Scalable Path-Sensitive Analysis

This Talk

Technique for path- and context-sensitive analysis that guarantees:

soundness

relative completeness with respect to a finite abstraction

scales to multi-million line programs

Key Insight:

We can distinguish a special class of variables called
unobservable variables

These variables can be eliminated from formulas used to
express path-sensitive conditions without any loss of precision

Smaller formulas ⇒ Better scalability

Sound, Complete, and Scalable Path-Sensitive Analysis

This Talk

Technique for path- and context-sensitive analysis that guarantees:

soundness

relative completeness with respect to a finite abstraction

scales to multi-million line programs

Key Insight:

We can distinguish a special class of variables called
unobservable variables

These variables can be eliminated from formulas used to
express path-sensitive conditions without any loss of precision

Smaller formulas ⇒ Better scalability

Sound, Complete, and Scalable Path-Sensitive Analysis

An Example

bool queryUser(bool featureEnabled) {
if(!featureEnabled) return false;

char userInput = getUserInput();

if(userInput == ’y’) return true;

if(userInput==’n’) return false;

printf("Input must be y or n! Please try again");

return queryUser(featureEnabled);

}

Sound, Complete, and Scalable Path-Sensitive Analysis

An Example

bool queryUser(bool featureEnabled) {
if(!featureEnabled) return false;

char userInput = getUserInput();

if(userInput == ’y’) return true;

if(userInput==’n’) return false;

printf("Input must be y or n! Please try again");

return queryUser(featureEnabled);

}

When does queryUser return true?

Sound, Complete, and Scalable Path-Sensitive Analysis

An Example

bool queryUser(bool featureEnabled) {
if(!featureEnabled) return false;

char userInput = getUserInput();

if(userInput == ’y’) return true;

if(userInput==’n’) return false;

printf("Input must be y or n! Please try again");

return queryUser(featureEnabled);

}

Given an arbitrary argument α, what is the constraint Πα,true

under which queryUser returns true?

Sound, Complete, and Scalable Path-Sensitive Analysis

An Example

bool queryUser(bool featureEnabled) {
if(!featureEnabled) return false;

char userInput = getUserInput();

if(userInput == ’y’) return true;

if(userInput==’n’) return false;

printf("Input must be y or n! Please try again");

return queryUser(featureEnabled);

}

Πα,true =?

Sound, Complete, and Scalable Path-Sensitive Analysis

An Example

bool queryUser(bool featureEnabled) {
if(!featureEnabled) return false;

char userInput = getUserInput();

if(userInput == ’y’) return true;

if(userInput==’n’) return false;

printf("Input must be y or n! Please try again");

return queryUser(featureEnabled);

}

Πα,true = (α = true) ∧ ?

Sound, Complete, and Scalable Path-Sensitive Analysis

An Example

bool queryUser(bool featureEnabled) {
if(!featureEnabled) return false;

char userInput = getUserInput();

if(userInput == ’y’) return true;

if(userInput==’n’) return false;

printf("Input must be y or n! Please try again");

return queryUser(featureEnabled);

}

Πα,true = ((α = true) ∧ (β = ’y’ ∨ ?))

Sound, Complete, and Scalable Path-Sensitive Analysis

An Example

bool queryUser(bool featureEnabled) {
if(!featureEnabled) return false;

char userInput = getUserInput();

if(userInput == ’y’) return true;

if(userInput==’n’) return false;

printf("Input must be y or n! Please try again");

return queryUser(featureEnabled);

}

Πα,true = ∃β. ((α = true) ∧ (β = ’y’ ∨ ?))

The existential quantifier expresses:

Environment choice: We merely know that β has some value, i.e. it exists.

Scope: Each input is used for only one recursive call.

Note: The existential has slightly non-standard semantics.

Sound, Complete, and Scalable Path-Sensitive Analysis

An Example

bool queryUser(bool featureEnabled) {
if(!featureEnabled) return false;

char userInput = getUserInput();

if(userInput == ’y’) return true;

if(userInput==’n’) return false;

printf("Input must be y or n! Please try again");

return queryUser(featureEnabled);

}

Πα,true = ∃β. ((α = true) ∧ (β = ’y’ ∨ ?))

The existential quantifier expresses:

Environment choice: We merely know that β has some value, i.e. it exists.

Scope: Each input is used for only one recursive call.

Note: The existential has slightly non-standard semantics.

Sound, Complete, and Scalable Path-Sensitive Analysis

An Example

bool queryUser(bool featureEnabled) {
if(!featureEnabled) return false;

char userInput = getUserInput();

if(userInput == ’y’) return true;

if(userInput==’n’) return false;

printf("Input must be y or n! Please try again");

return queryUser(featureEnabled);

}

Πα,true = ∃β. ((α = true) ∧ (β = ’y’ ∨ ?))

The existential quantifier expresses:

Environment choice: We merely know that β has some value, i.e. it exists.

Scope: Each input is used for only one recursive call.

Note: The existential has slightly non-standard semantics.

Sound, Complete, and Scalable Path-Sensitive Analysis

An Example

bool queryUser(bool featureEnabled) {
if(!featureEnabled) return false;

char userInput = getUserInput();

if(userInput == ’y’) return true;

if(userInput==’n’) return false;

printf("Input must be y or n! Please try again");

return queryUser(featureEnabled);

}

Πα,true = ∃β. ((α = true) ∧ (β = ’y’ ∨ ?))

The existential quantifier expresses:

Environment choice: We merely know that β has some value, i.e. it exists.

Scope: Each input is used for only one recursive call.

Note: The existential has slightly non-standard semantics.

Sound, Complete, and Scalable Path-Sensitive Analysis

An Example

bool queryUser(bool featureEnabled) {
if(!featureEnabled) return false;

char userInput = getUserInput();

if(userInput == ’y’) return true;

if(userInput==’n’) return false;

printf("Input must be y or n! Please try again");

return queryUser(featureEnabled) ;

}

Πα,true = ∃β.((α = true) ∧ (β = ’y’ ∨ (β 6= ’n’ ∧Πα,true[true/α])))

Sound, Complete, and Scalable Path-Sensitive Analysis

An Example

bool queryUser(bool featureEnabled) {
if(!featureEnabled) return false;

char userInput = getUserInput();

if(userInput == ’y’) return true;

if(userInput==’n’) return false;

printf("Input must be y or n! Please try again");

return queryUser(featureEnabled);

}

Πα,true = ∃β.((α = true) ∧ (β = ’y’ ∨ (β 6= ’n’ ∧Πα,true[true/α])))

Sound, Complete, and Scalable Path-Sensitive Analysis

An Example

bool queryUser(bool featureEnabled) {
if(!featureEnabled) return false;

char userInput = getUserInput();

if(userInput == ’y’) return true;

if(userInput==’n’) return false;

printf("Input must be y or n! Please try again");

return queryUser(featureEnabled);

}

Πα,true = ∃β.((α = true) ∧ (β = ’y’ ∨ (β 6= ’n’ ∧Πα,true[true/α])))

Sound, Complete, and Scalable Path-Sensitive Analysis

Problem: Convergence

If we try to solve the above constraint, we get:

Πα,true = ∃β.(α = true) ∧ (β = ′y′ ∨ ¬(β = ′n′)∧
∃β′.(true = true) ∧ (β′ = ′y′ ∨ ¬(β′ = ′n′)∧
∃β′′.(true = true) ∧ (β′′ = ′y′ ∨ ¬(β′′ = ′n′)∧
. . .

∃-bound variables cause problems with termination.

Sound, Complete, and Scalable Path-Sensitive Analysis

Problem: Convergence

If we try to solve the above constraint, we get:

Πα,true = ∃β.(α = true) ∧ (β = ′y′ ∨ ¬(β = ′n′)∧
∃β′.(true = true) ∧ (β′ = ′y′ ∨ ¬(β′ = ′n′)∧
∃β′′.(true = true) ∧ (β′′ = ′y′ ∨ ¬(β′′ = ′n′)∧
. . .

∃-bound variables cause problems with termination.

Sound, Complete, and Scalable Path-Sensitive Analysis

Problem: Convergence

If we try to solve the above constraint, we get:

Πα,true = ∃β.(α = true) ∧ (β = ′y′ ∨ ¬(β = ′n′)∧
∃β′.(true = true) ∧ (β′ = ′y′ ∨ ¬(β′ = ′n′)∧
∃β′′.(true = true) ∧ (β′′ = ′y′ ∨ ¬(β′′ = ′n′)∧
. . .

∃-bound variables cause problems with termination.

Sound, Complete, and Scalable Path-Sensitive Analysis

Classification of Variables

Observable Variables (α)

caller-supplied inputs to a function, e.g., arguments and globals
value is available to caller prior to invocation of this function

Unobservable Variables (β)

∃-bound variables that represent environment choices
Environment choice: Any variable that the user-provided
abstraction cannot relate to the function inputs
e.g., user input

Sound, Complete, and Scalable Path-Sensitive Analysis

Classification of Variables

Observable Variables (α)

caller-supplied inputs to a function, e.g., arguments and globals

value is available to caller prior to invocation of this function

Unobservable Variables (β)

∃-bound variables that represent environment choices
Environment choice: Any variable that the user-provided
abstraction cannot relate to the function inputs
e.g., user input

Sound, Complete, and Scalable Path-Sensitive Analysis

Classification of Variables

Observable Variables (α)

caller-supplied inputs to a function, e.g., arguments and globals
value is available to caller prior to invocation of this function

Unobservable Variables (β)

∃-bound variables that represent environment choices
Environment choice: Any variable that the user-provided
abstraction cannot relate to the function inputs
e.g., user input

Sound, Complete, and Scalable Path-Sensitive Analysis

Classification of Variables

Observable Variables (α)

caller-supplied inputs to a function, e.g., arguments and globals
value is available to caller prior to invocation of this function

Unobservable Variables (β)

∃-bound variables that represent environment choices
Environment choice: Any variable that the user-provided
abstraction cannot relate to the function inputs
e.g., user input

Sound, Complete, and Scalable Path-Sensitive Analysis

Classification of Variables

Observable Variables (α)

caller-supplied inputs to a function, e.g., arguments and globals
value is available to caller prior to invocation of this function

Unobservable Variables (β)

∃-bound variables that represent environment choices

Environment choice: Any variable that the user-provided
abstraction cannot relate to the function inputs
e.g., user input

Sound, Complete, and Scalable Path-Sensitive Analysis

Classification of Variables

Observable Variables (α)

caller-supplied inputs to a function, e.g., arguments and globals
value is available to caller prior to invocation of this function

Unobservable Variables (β)

∃-bound variables that represent environment choices
Environment choice: Any variable that the user-provided
abstraction cannot relate to the function inputs

e.g., user input

Sound, Complete, and Scalable Path-Sensitive Analysis

Classification of Variables

Observable Variables (α)

caller-supplied inputs to a function, e.g., arguments and globals
value is available to caller prior to invocation of this function

Unobservable Variables (β)

∃-bound variables that represent environment choices
Environment choice: Any variable that the user-provided
abstraction cannot relate to the function inputs
e.g., user input

Sound, Complete, and Scalable Path-Sensitive Analysis

Classification of Variables

Observable Variables (α)

caller-supplied inputs to a function, e.g., arguments and globals
value is available to caller prior to invocation of this function

Unobservable Variables (β)

∃-bound variables that represent environment choices
Environment choice: Any variable that the user-provided
abstraction cannot relate to the function inputs
e.g., user input

char userInput = getUserInput();
if(userInput == ’y’) return true;

Sound, Complete, and Scalable Path-Sensitive Analysis

Classification of Variables

Observable Variables (α)

caller-supplied inputs to a function, e.g., arguments and globals
value is available to caller prior to invocation of this function

Unobservable Variables (β)

∃-bound variables that represent environment choices
Environment choice: Any variable that the user-provided
abstraction cannot relate to the function inputs
e.g., user input, system state

Sound, Complete, and Scalable Path-Sensitive Analysis

Classification of Variables

Observable Variables (α)

caller-supplied inputs to a function, e.g., arguments and globals
value is available to caller prior to invocation of this function

Unobservable Variables (β)

∃-bound variables that represent environment choices
Environment choice: Any variable that the user-provided
abstraction cannot relate to the function inputs
e.g., user input, system state

int* p = malloc(sizeof(int));
if(!p) return;

Sound, Complete, and Scalable Path-Sensitive Analysis

Classification of Variables

Observable Variables (α)

caller-supplied inputs to a function, e.g., arguments and globals
value is available to caller prior to invocation of this function

Unobservable Variables (β)

∃-bound variables that represent environment choices
Environment choice: Any variable that the user-provided
abstraction cannot relate to the function inputs
e.g., user input, system state, imprecision in memory
abstraction

Sound, Complete, and Scalable Path-Sensitive Analysis

Classification of Variables

Observable Variables (α)

caller-supplied inputs to a function, e.g., arguments and globals
value is available to caller prior to invocation of this function

Unobservable Variables (β)

∃-bound variables that represent environment choices
Environment choice: Any variable that the user-provided
abstraction cannot relate to the function inputs
e.g., user input, system state, imprecision in memory
abstraction

if(arr[i]==0) return;

Sound, Complete, and Scalable Path-Sensitive Analysis

Classification of Variables

Observable Variables (α)

inputs to a function provided by callers
e.g., arguments and globals

Unobservable Variables (β)

∃-bound variables that represent environment choices
Environment choice: Any variable that the user-provided
abstraction cannot relate to the function inputs
e.g., user input, system state, imprecision in memory
abstraction

Return Variables (Π)

Represent unknowns we want to solve for

Sound, Complete, and Scalable Path-Sensitive Analysis

Classification of Variables

Observable Variables (α)

inputs to a function provided by callers
e.g., arguments and globals

Unobservable Variables (β)

∃-bound variables that represent environment choices
Environment choice: Any variable that the user-provided
abstraction cannot relate to the function inputs
e.g., user input, system state, imprecision in memory
abstraction

Return Variables (Π)

Represent unknowns we want to solve for

Sound, Complete, and Scalable Path-Sensitive Analysis

Generalized Recursive Constraints

E =

 [~Πf1,α,Ci] = ∃ ~β1. [~φ1i(~α1, ~β1, ~Π[~b1/~α])]
...

...

[~Πfk,α,Ci] = ∃ ~βk. [~φki(~αk, ~βk, ~Π[~bk/~α])]



Sound, Complete, and Scalable Path-Sensitive Analysis

Generalized Recursive Constraints

E =

 [~Πf1,α,Ci] = ∃ ~β1. [~φ1i(~α1, ~β1, ~Π[~b1/~α])]
...

...

[~Πfk,α,Ci] = ∃ ~βk. [~φki(~αk, ~βk, ~Π[~bk/~α])]



Sound, Complete, and Scalable Path-Sensitive Analysis

Generalized Recursive Constraints

E =

 [~Πf1,α,Ci] = ∃ ~β1. [~φ1i(~α1, ~β1, ~Π[~b1/~α])]
...

...

[~Πfk,α,Ci] = ∃ ~βk. [~φki(~αk, ~βk, ~Π[~bk/~α])]



Sound, Complete, and Scalable Path-Sensitive Analysis

Bad News

Unfortunately, we do not know of a way to obtain an exact
solution to these constraints.

Sound, Complete, and Scalable Path-Sensitive Analysis

Good News

Fortunately, for program analysis purposes, we are almost
never interested in an exact solution.

Instead, as is well known, we are often interested in answering
may and must queries about program properties.

Safety: May this pointer be dereferenced?
Liveness: Must this pointer be freed?

To answer may queries precisely, the solution only needs to
preserve satisfiability.

For must queries, we only need a validity preserving solution.

Sound, Complete, and Scalable Path-Sensitive Analysis

Good News

Fortunately, for program analysis purposes, we are almost
never interested in an exact solution.

Instead, as is well known, we are often interested in answering
may and must queries about program properties.

Safety: May this pointer be dereferenced?
Liveness: Must this pointer be freed?

To answer may queries precisely, the solution only needs to
preserve satisfiability.

For must queries, we only need a validity preserving solution.

Sound, Complete, and Scalable Path-Sensitive Analysis

Good News

Fortunately, for program analysis purposes, we are almost
never interested in an exact solution.

Instead, as is well known, we are often interested in answering
may and must queries about program properties.

Safety: May this pointer be dereferenced?

Liveness: Must this pointer be freed?

To answer may queries precisely, the solution only needs to
preserve satisfiability.

For must queries, we only need a validity preserving solution.

Sound, Complete, and Scalable Path-Sensitive Analysis

Good News

Fortunately, for program analysis purposes, we are almost
never interested in an exact solution.

Instead, as is well known, we are often interested in answering
may and must queries about program properties.

Safety: May this pointer be dereferenced?
Liveness: Must this pointer be freed?

To answer may queries precisely, the solution only needs to
preserve satisfiability.

For must queries, we only need a validity preserving solution.

Sound, Complete, and Scalable Path-Sensitive Analysis

Good News

Fortunately, for program analysis purposes, we are almost
never interested in an exact solution.

Instead, as is well known, we are often interested in answering
may and must queries about program properties.

Safety: May this pointer be dereferenced?
Liveness: Must this pointer be freed?

To answer may queries precisely, the solution only needs to
preserve satisfiability.

For must queries, we only need a validity preserving solution.

Sound, Complete, and Scalable Path-Sensitive Analysis

Good News

Fortunately, for program analysis purposes, we are almost
never interested in an exact solution.

Instead, as is well known, we are often interested in answering
may and must queries about program properties.

Safety: May this pointer be dereferenced?
Liveness: Must this pointer be freed?

To answer may queries precisely, the solution only needs to
preserve satisfiability.

For must queries, we only need a validity preserving solution.

Sound, Complete, and Scalable Path-Sensitive Analysis

Strongest Necessary and Weakest Sufficient Conditions

For any formula φ, the strongest necessary condition dφe of
φ containing only observable variables preserves satisfiability.

(1) φ⇒ dφe
(2) ∀φ′.((φ⇒ φ′) ⇒ (dφe ⇒ φ′))

Similarly, for any formula φ the weakest sufficient condition
bφc over only observable variables preserves validity of φ.

(1) bφc ⇒ φ
(2) ∀φ′.((φ′ ⇒ φ) ⇒ (φ′ ⇒ bφc))

Sound, Complete, and Scalable Path-Sensitive Analysis

Strongest Necessary and Weakest Sufficient Conditions

For any formula φ, the strongest necessary condition dφe of
φ containing only observable variables preserves satisfiability.

(1) φ⇒ dφe
(2) ∀φ′.((φ⇒ φ′) ⇒ (dφe ⇒ φ′))

Similarly, for any formula φ the weakest sufficient condition
bφc over only observable variables preserves validity of φ.

(1) bφc ⇒ φ
(2) ∀φ′.((φ′ ⇒ φ) ⇒ (φ′ ⇒ bφc))

Sound, Complete, and Scalable Path-Sensitive Analysis

Strongest Necessary and Weakest Sufficient Conditions (2)

If φ is the constraint under which a program property P holds, we
have the following guarantees:

SAT(dφe) ⇔ P MAY hold

VALID(bφc) ⇔ P MUST hold

Sound, Complete, and Scalable Path-Sensitive Analysis

Example Revisited

bool queryUser(bool featureEnabled) {
if(!featureEnabled) return false;

char userInput = getUserInput();

if(userInput == ’y’) return true;

if(userInput==’n’) return false;

printf("Input must be y or n! Please try again");

return queryUser(featureEnabled);

}

Original constraint:

Πα,true = ∃β. ((α = true) ∧ (β = ’y’ ∨ (β 6= ’n’ ∧Πα,true[true/α])))

Strongest Necessary Condition: dΠα,truee = (α = true)

Weakest Sufficient Condition: bΠα,truec = false

Sound, Complete, and Scalable Path-Sensitive Analysis

Example Revisited

bool queryUser(bool featureEnabled) {
if(!featureEnabled) return false;

char userInput = getUserInput();

if(userInput == ’y’) return true;

if(userInput==’n’) return false;

printf("Input must be y or n! Please try again");

return queryUser(featureEnabled);

}

Original constraint:

Πα,true = ∃β. ((α = true) ∧ (β = ’y’ ∨ (β 6= ’n’ ∧Πα,true[true/α])))

Strongest Necessary Condition: dΠα,truee = (α = true)

Weakest Sufficient Condition: bΠα,truec = false

Sound, Complete, and Scalable Path-Sensitive Analysis

Example Revisited

bool queryUser(bool featureEnabled) {
if(!featureEnabled) return false;

char userInput = getUserInput();

if(userInput == ’y’) return true;

if(userInput==’n’) return false;

printf("Input must be y or n! Please try again");

return queryUser(featureEnabled);

}

Original constraint:

Πα,true = ∃β. ((α = true) ∧ (β = ’y’ ∨ (β 6= ’n’ ∧Πα,true[true/α])))

Strongest Necessary Condition: dΠα,truee = (α = true)

Weakest Sufficient Condition: bΠα,truec = false

Sound, Complete, and Scalable Path-Sensitive Analysis

Example Revisited

bool queryUser(bool featureEnabled) {
if(!featureEnabled) return false;

char userInput = getUserInput();

if(userInput == ’y’) return true;

if(userInput==’n’) return false;

printf("Input must be y or n! Please try again");

return queryUser(featureEnabled);

}

Original constraint:

Πα,true = ∃β. ((α = true) ∧ (β = ’y’ ∨ (β 6= ’n’ ∧Πα,true[true/α])))

Strongest Necessary Condition: dΠα,truee = (α = true)

Weakest Sufficient Condition: bΠα,truec = false

Sound, Complete, and Scalable Path-Sensitive Analysis

Generalized Recursive Constraints Revisited

E =

 [~Πf1,α,Ci] = ∃ ~β1. [~φ1i(~α1, ~β1, ~Π[~b1/~α])]
...

...

[~Πfk,α,Ci] = ∃ ~βk. [~φki(~αk, ~βk, ~Π[~bk/~α])]



Goal: Compute observable strongest necessary and weakest
sufficient conditions for the solution of E.

Sound, Complete, and Scalable Path-Sensitive Analysis

Outline of the Algorithm

Step 0: Transform constraints to propositional formulas.

Step 1: Eliminate the unobservable β variables.

Step 2: Transform the constraint system to preserve strongest
necessary and weakest sufficient conditions under syntactic
substitution.

Step 3: Solve the recursive constraints via fixed-point
computation (syntactic substitution)

Sound, Complete, and Scalable Path-Sensitive Analysis

Outline of the Algorithm

Step 0: Transform constraints to propositional formulas.

Step 1: Eliminate the unobservable β variables.

Step 2: Transform the constraint system to preserve strongest
necessary and weakest sufficient conditions under syntactic
substitution.

Step 3: Solve the recursive constraints via fixed-point
computation (syntactic substitution)

Sound, Complete, and Scalable Path-Sensitive Analysis

Outline of the Algorithm

Step 0: Transform constraints to propositional formulas.

Step 1: Eliminate the unobservable β variables.

Step 2: Transform the constraint system to preserve strongest
necessary and weakest sufficient conditions under syntactic
substitution.

Step 3: Solve the recursive constraints via fixed-point
computation (syntactic substitution)

Sound, Complete, and Scalable Path-Sensitive Analysis

Outline of the Algorithm

Step 0: Transform constraints to propositional formulas.

Step 1: Eliminate the unobservable β variables.

Step 2: Transform the constraint system to preserve strongest
necessary and weakest sufficient conditions under syntactic
substitution.

Step 3: Solve the recursive constraints via fixed-point
computation (syntactic substitution)

Sound, Complete, and Scalable Path-Sensitive Analysis

Step 1: Eliminate Unobservable Variables

SNC(φ, β) = φ[true/β] ∨ φ[false/β]

WSC(φ, β) = φ[true/β] ∧ φ[false/β]

Sound, Complete, and Scalable Path-Sensitive Analysis

Result of Step 1

ENC =

 dΠf1,α,C1e = φ′11(~α1, ~dΠe[~b1/~α])
...

dΠfk,α,Cne = φ′kn(~αk, ~dΠe[~bk/~α])



ESC =

 bΠf1,α,C1c = φ′11(~α1, ~bΠc[~b1/~α])
...

bΠfk,α,Cnc = φ′kn(~αk, ~bΠc[~bk/~α])



Sound, Complete, and Scalable Path-Sensitive Analysis

Step 2: Preservation of SNC’s and WSC’s under
Syntactic Substitution

For subsequent fixed-point computation, the constraints must
preserve SNC’s and WSC’s under syntactic substitution.

In their current form, ENC and ESC do not have this property
for two reasons:

Constraints contain negated Π literals.
But ¬dφe 6⇔ d¬φe and ¬bφc 6⇔ b¬φc

Implicit constraints: Existence and uniqueness

Sound, Complete, and Scalable Path-Sensitive Analysis

Step 2: Preservation of SNC’s and WSC’s under
Syntactic Substitution

For subsequent fixed-point computation, the constraints must
preserve SNC’s and WSC’s under syntactic substitution.

In their current form, ENC and ESC do not have this property
for two reasons:

Constraints contain negated Π literals.
But ¬dφe 6⇔ d¬φe and ¬bφc 6⇔ b¬φc

Implicit constraints: Existence and uniqueness

Sound, Complete, and Scalable Path-Sensitive Analysis

Step 2: Preservation of SNC’s and WSC’s under
Syntactic Substitution

For subsequent fixed-point computation, the constraints must
preserve SNC’s and WSC’s under syntactic substitution.

In their current form, ENC and ESC do not have this property
for two reasons:

Constraints contain negated Π literals.
But ¬dφe 6⇔ d¬φe and ¬bφc 6⇔ b¬φc

Implicit constraints: Existence and uniqueness

Sound, Complete, and Scalable Path-Sensitive Analysis

Step 2: Preservation of SNC’s and WSC’s under
Syntactic Substitution

For subsequent fixed-point computation, the constraints must
preserve SNC’s and WSC’s under syntactic substitution.

In their current form, ENC and ESC do not have this property
for two reasons:

Constraints contain negated Π literals.
But ¬dφe 6⇔ d¬φe and ¬bφc 6⇔ b¬φc

Implicit constraints: Existence and uniqueness

Sound, Complete, and Scalable Path-Sensitive Analysis

Step 2: Preservation under Syntactic Substitution I

To ensure monotonicity:

Either replace ¬Πf,α,ci
with

∨
j 6=i Πf,α,cj

.

Or use the property d¬φe ⇔ ¬bφc and b¬φc ⇔ ¬dφe

The latter requires simultaneous fixpoint computation of
strongest necessary and weakest sufficient conditions

But important for a practical implementation

Sound, Complete, and Scalable Path-Sensitive Analysis

Step 2: Preservation under Syntactic Substitution I

To ensure monotonicity:

Either replace ¬Πf,α,ci
with

∨
j 6=i Πf,α,cj

.

Or use the property d¬φe ⇔ ¬bφc and b¬φc ⇔ ¬dφe

The latter requires simultaneous fixpoint computation of
strongest necessary and weakest sufficient conditions

But important for a practical implementation

Sound, Complete, and Scalable Path-Sensitive Analysis

Step 2: Preservation under Syntactic Substitution I

To ensure monotonicity:

Either replace ¬Πf,α,ci
with

∨
j 6=i Πf,α,cj

.

Or use the property d¬φe ⇔ ¬bφc and b¬φc ⇔ ¬dφe

The latter requires simultaneous fixpoint computation of
strongest necessary and weakest sufficient conditions

But important for a practical implementation

Sound, Complete, and Scalable Path-Sensitive Analysis

Step 2: Preservation under Syntactic Substitution I

To ensure monotonicity:

Either replace ¬Πf,α,ci
with

∨
j 6=i Πf,α,cj

.

Or use the property d¬φe ⇔ ¬bφc and b¬φc ⇔ ¬dφe

The latter requires simultaneous fixpoint computation of
strongest necessary and weakest sufficient conditions

But important for a practical implementation

Sound, Complete, and Scalable Path-Sensitive Analysis

Step 2: Preservation under Syntactic Substitution I

To ensure monotonicity:

Either replace ¬Πf,α,ci
with

∨
j 6=i Πf,α,cj

.

Or use the property d¬φe ⇔ ¬bφc and b¬φc ⇔ ¬dφe

The latter requires simultaneous fixpoint computation of
strongest necessary and weakest sufficient conditions

But important for a practical implementation

Sound, Complete, and Scalable Path-Sensitive Analysis

Step 2: Preservation under Syntactic Substitution II

To eliminate implicit existence and uniqueness constraints:

Convert to DNF and drop contradictions
(for necessary conditions)

Convert to CNF and drop tautologies
(for sufficient conditions)

The resulting constraints preserve strongest necessary and
weakest sufficient conditions under syntactic substitution.

Sound, Complete, and Scalable Path-Sensitive Analysis

Step 2: Preservation under Syntactic Substitution II

To eliminate implicit existence and uniqueness constraints:

Convert to DNF and drop contradictions
(for necessary conditions)

Convert to CNF and drop tautologies
(for sufficient conditions)

The resulting constraints preserve strongest necessary and
weakest sufficient conditions under syntactic substitution.

Sound, Complete, and Scalable Path-Sensitive Analysis

The Main Result

Main Result

The technique is sound and complete for answering
satisfiability and validity queries with respect to some
user-provided finite abstraction.

Furthermore, since the computed strongest necesssary and
weakest sufficient conditions do not contain any unobservable
variables, the resulting constraints are small in practice,
allowing the technique to scale to large programs.

Sound, Complete, and Scalable Path-Sensitive Analysis

The Main Result

Main Result

The technique is sound and complete for answering
satisfiability and validity queries with respect to some
user-provided finite abstraction.

Furthermore, since the computed strongest necesssary and
weakest sufficient conditions do not contain any unobservable
variables, the resulting constraints are small in practice,
allowing the technique to scale to large programs.

Sound, Complete, and Scalable Path-Sensitive Analysis

Experiments I

We compute the full interprocedural constraint -in terms of
SNC’s and WSC’s- for every pointer dereference in OpenSSH,
Samba and the Linux kernel (>6 MLOC).

Stress-test: pointer dereferences are ubiquitous in C programs.

 1

 10

 100

 1000

 10000

 100000

0-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39 40-44

F
re

qu
en

cy
 (

in
 lo

g
sc

al
e)

Size of necessary and sufficient conditions

Necessary and Sufficient Condition Size Frequency

Necessary Condition
Sufficient Condition

Sound, Complete, and Scalable Path-Sensitive Analysis

Experiments I

We compute the full interprocedural constraint -in terms of
SNC’s and WSC’s- for every pointer dereference in OpenSSH,
Samba and the Linux kernel (>6 MLOC).

Stress-test: pointer dereferences are ubiquitous in C programs.

 1

 10

 100

 1000

 10000

 100000

0-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39 40-44

F
re

qu
en

cy
 (

in
 lo

g
sc

al
e)

Size of necessary and sufficient conditions

Necessary and Sufficient Condition Size Frequency

Necessary Condition
Sufficient Condition

Sound, Complete, and Scalable Path-Sensitive Analysis

Experiments I

We compute the full interprocedural constraint -in terms of
SNC’s and WSC’s- for every pointer dereference in OpenSSH,
Samba and the Linux kernel (>6 MLOC).

Stress-test: pointer dereferences are ubiquitous in C programs.

 1

 10

 100

 1000

 10000

 100000

0-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39 40-44

F
re

qu
en

cy
 (

in
 lo

g
sc

al
e)

Size of necessary and sufficient conditions

Necessary and Sufficient Condition Size Frequency

Necessary Condition
Sufficient Condition

Sound, Complete, and Scalable Path-Sensitive Analysis

Experiments II

We also used this technique for an interprocedurally
path-sensitive null dereference analysis.

Interprocedurally Path-sensitive Intraprocedurally Path-sensitive
OpenSSH Samba Linux OpenSSH Samba Linux

4.3p2 3.0.23b 2.6.17.1 4.3p2 3.0.23b 2.6.17.1
Total Reports 3 48 171 21 379 1495
Bugs 1 17 134 1 17 134
False Positives 2 25 37 20 356 1344
Undecided 0 6 17 0 6 17
Report to Bug Ratio 3 2.8 1.3 21 22.3 11.2

Sound, Complete, and Scalable Path-Sensitive Analysis

Experiments II

We also used this technique for an interprocedurally
path-sensitive null dereference analysis.

Interprocedurally Path-sensitive Intraprocedurally Path-sensitive
OpenSSH Samba Linux OpenSSH Samba Linux

4.3p2 3.0.23b 2.6.17.1 4.3p2 3.0.23b 2.6.17.1
Total Reports 3 48 171 21 379 1495
Bugs 1 17 134 1 17 134
False Positives 2 25 37 20 356 1344
Undecided 0 6 17 0 6 17
Report to Bug Ratio 3 2.8 1.3 21 22.3 11.2

Sound, Complete, and Scalable Path-Sensitive Analysis

Experiments II

We also used this technique for an interprocedurally
path-sensitive null dereference analysis.

Interprocedurally Path-sensitive Intraprocedurally Path-sensitive
OpenSSH Samba Linux OpenSSH Samba Linux

4.3p2 3.0.23b 2.6.17.1 4.3p2 3.0.23b 2.6.17.1
Total Reports 3 48 171 21 379 1495
Bugs 1 17 134 1 17 134
False Positives 2 25 37 20 356 1344
Undecided 0 6 17 0 6 17
Report to Bug Ratio 3 2.8 1.3 21 22.3 11.2

Observed close to an order of magnitude reduction of false
positives without resorting to (potentially unsound) ad-hoc
heuristics.

Sound, Complete, and Scalable Path-Sensitive Analysis

Experiments II

We also used this technique for an interprocedurally
path-sensitive null dereference analysis.

Interprocedurally Path-sensitive Intraprocedurally Path-sensitive
OpenSSH Samba Linux OpenSSH Samba Linux

4.3p2 3.0.23b 2.6.17.1 4.3p2 3.0.23b 2.6.17.1
Total Reports 3 48 171 21 379 1495
Bugs 1 17 134 1 17 134
False Positives 2 25 37 20 356 1344
Undecided 0 6 17 0 6 17
Report to Bug Ratio 3 2.8 1.3 21 22.3 11.2

Observed close to an order of magnitude reduction of false
positives without resorting to (potentially unsound) ad-hoc
heuristics.

Sound, Complete, and Scalable Path-Sensitive Analysis

Future Work

Caveat: Previous results table excludes any error reports
arising from array elements and recursive data structures.

Underlying framework collapses all unbounded data structures
into one summary node

Imprecise for verifying memory safety.

Shape analysis is our current work-in-progress.

Sound, Complete, and Scalable Path-Sensitive Analysis

Future Work

Caveat: Previous results table excludes any error reports
arising from array elements and recursive data structures.

Underlying framework collapses all unbounded data structures
into one summary node

Imprecise for verifying memory safety.

Shape analysis is our current work-in-progress.

Sound, Complete, and Scalable Path-Sensitive Analysis

Future Work

Caveat: Previous results table excludes any error reports
arising from array elements and recursive data structures.

Underlying framework collapses all unbounded data structures
into one summary node

Imprecise for verifying memory safety.

Shape analysis is our current work-in-progress.

Sound, Complete, and Scalable Path-Sensitive Analysis

Future Work

Caveat: Previous results table excludes any error reports
arising from array elements and recursive data structures.

Underlying framework collapses all unbounded data structures
into one summary node

Imprecise for verifying memory safety.

Shape analysis is our current work-in-progress.

Sound, Complete, and Scalable Path-Sensitive Analysis

Related Work

T. Ball and S. Rajamani.

Bebop: A symbolic model checker for boolean programs.
In Proceedings of the 7th International SPIN Workshop on SPIN Model Checking and Software Verification,
pages 113–130, London, UK, 2000. Springer-Verlag.

M. Das, S. Lerner, and M. Seigle.

ESP: Path-sensitive program verification in polynomial time.
In Proc. Conference on Programming Language Design and Implementation, pages 57–68, 2002.

T. Henzinger, R. Jhala, R. Majumdar, and K. McMillan.

Abstractions from proofs.
In Proc. 31st Symposium on Principles of Programming Languages, pages 232–244, 2004.

A. Mycroft.

Polymorphic type schemes and recursive definitions.
In Proc. Colloquium on International Symposium on Programming, pages 217–228, 1984.

T. Reps, S. Horwitz, and M. Sagiv.

Precise interprocedural dataflow analysis via graph reachability.
In POPL ’95: Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 49–61, New York, NY, USA, 1995. ACM.

D. Schmidt.

A calculus of logical relations for over- and underapproximating static analyses.
Science of Computer Programming, 64(1):29–53, 2007.

Y. Xie and A. Aiken.

Scalable error detection using boolean satisfiability.
SIGPLAN Not., 40(1):351–363, 2005.

