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Motivation

Path- and context-sensitivity add useful precision to the
analysis of a large class of properties.

Therefore, there are many proposed techniques for path- and
context-sensitive program analysis.

Model checking tools: Bebop, BLAST, SLAM, ...
Lighter-weight static analysis tools: Saturn, ESP, ...
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This Talk

Technique for path- and context-sensitive analysis that guarantees:

soundness

relative completeness with respect to a finite abstraction

scales to multi-million line programs

Key Insight:

We can distinguish a special class of variables called
unobservable variables

These variables can be eliminated from formulas used to
express path-sensitive conditions without any loss of precision

Smaller formulas ⇒ Better scalability
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An Example

bool queryUser(bool featureEnabled) {
if(!featureEnabled) return false;

char userInput = getUserInput();

if(userInput == ’y’) return true;

if(userInput==’n’) return false;

printf("Input must be y or n! Please try again");

return queryUser(featureEnabled);

}
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under which queryUser returns true?
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Environment choice: We merely know that β has some value, i.e. it exists.

Scope: Each input is used for only one recursive call.

Note: The existential has slightly non-standard semantics.
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Problem: Convergence

If we try to solve the above constraint, we get:

Πα,true = ∃β.(α = true) ∧ (β = ′y′ ∨ ¬(β = ′n′)∧
∃β′.(true = true) ∧ (β′ = ′y′ ∨ ¬(β′ = ′n′)∧
∃β′′.(true = true) ∧ (β′′ = ′y′ ∨ ¬(β′′ = ′n′)∧
. . .

∃-bound variables cause problems with termination.
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Classification of Variables

Observable Variables (α)

caller-supplied inputs to a function, e.g., arguments and globals
value is available to caller prior to invocation of this function

Unobservable Variables (β)

∃-bound variables that represent environment choices
Environment choice: Any variable that the user-provided
abstraction cannot relate to the function inputs
e.g., user input
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Observable Variables (α)

caller-supplied inputs to a function, e.g., arguments and globals
value is available to caller prior to invocation of this function

Unobservable Variables (β)

∃-bound variables that represent environment choices
Environment choice: Any variable that the user-provided
abstraction cannot relate to the function inputs
e.g., user input

char userInput = getUserInput();
if(userInput == ’y’) return true;
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abstraction cannot relate to the function inputs
e.g., user input, system state
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Classification of Variables

Observable Variables (α)

caller-supplied inputs to a function, e.g., arguments and globals
value is available to caller prior to invocation of this function

Unobservable Variables (β)

∃-bound variables that represent environment choices
Environment choice: Any variable that the user-provided
abstraction cannot relate to the function inputs
e.g., user input, system state

int* p = malloc(sizeof(int));
if(!p) return;
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Classification of Variables

Observable Variables (α)

caller-supplied inputs to a function, e.g., arguments and globals
value is available to caller prior to invocation of this function

Unobservable Variables (β)

∃-bound variables that represent environment choices
Environment choice: Any variable that the user-provided
abstraction cannot relate to the function inputs
e.g., user input, system state, imprecision in memory
abstraction

if(arr[i]==0) return;
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inputs to a function provided by callers
e.g., arguments and globals

Unobservable Variables (β)

∃-bound variables that represent environment choices
Environment choice: Any variable that the user-provided
abstraction cannot relate to the function inputs
e.g., user input, system state, imprecision in memory
abstraction

Return Variables (Π)

Represent unknowns we want to solve for
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Generalized Recursive Constraints

E =

 [~Πf1,α,Ci ] = ∃ ~β1. [~φ1i(~α1, ~β1, ~Π[~b1/~α])]
...

...

[~Πfk,α,Ci ] = ∃ ~βk. [~φki(~αk, ~βk, ~Π[~bk/~α])]


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Bad News

Unfortunately, we do not know of a way to obtain an exact
solution to these constraints.
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Fortunately, for program analysis purposes, we are almost
never interested in an exact solution.

Instead, as is well known, we are often interested in answering
may and must queries about program properties.

Safety: May this pointer be dereferenced?
Liveness: Must this pointer be freed?

To answer may queries precisely, the solution only needs to
preserve satisfiability.

For must queries, we only need a validity preserving solution.
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Strongest Necessary and Weakest Sufficient Conditions

For any formula φ, the strongest necessary condition dφe of
φ containing only observable variables preserves satisfiability.

(1) φ⇒ dφe
(2) ∀φ′.((φ⇒ φ′) ⇒ (dφe ⇒ φ′))

Similarly, for any formula φ the weakest sufficient condition
bφc over only observable variables preserves validity of φ.

(1) bφc ⇒ φ
(2) ∀φ′.((φ′ ⇒ φ) ⇒ (φ′ ⇒ bφc))
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Strongest Necessary and Weakest Sufficient Conditions (2)

If φ is the constraint under which a program property P holds, we
have the following guarantees:

SAT(dφe) ⇔ P MAY hold

VALID(bφc) ⇔ P MUST hold
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Example Revisited

bool queryUser(bool featureEnabled) {
if(!featureEnabled) return false;

char userInput = getUserInput();

if(userInput == ’y’) return true;

if(userInput==’n’) return false;

printf("Input must be y or n! Please try again");

return queryUser(featureEnabled);

}

Original constraint:

Πα,true = ∃β. ((α = true) ∧ (β = ’y’ ∨ (β 6= ’n’ ∧Πα,true[true/α])))

Strongest Necessary Condition: dΠα,truee = (α = true)

Weakest Sufficient Condition: bΠα,truec = false
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Generalized Recursive Constraints Revisited

E =

 [~Πf1,α,Ci ] = ∃ ~β1. [~φ1i(~α1, ~β1, ~Π[~b1/~α])]
...

...

[~Πfk,α,Ci ] = ∃ ~βk. [~φki(~αk, ~βk, ~Π[~bk/~α])]



Goal: Compute observable strongest necessary and weakest
sufficient conditions for the solution of E.



Sound, Complete, and Scalable Path-Sensitive Analysis

Outline of the Algorithm

Step 0: Transform constraints to propositional formulas.

Step 1: Eliminate the unobservable β variables.

Step 2: Transform the constraint system to preserve strongest
necessary and weakest sufficient conditions under syntactic
substitution.

Step 3: Solve the recursive constraints via fixed-point
computation (syntactic substitution)
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Step 1: Eliminate Unobservable Variables

SNC(φ, β) = φ[true/β] ∨ φ[false/β]

WSC(φ, β) = φ[true/β] ∧ φ[false/β]
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Result of Step 1

ENC =

 dΠf1,α,C1e = φ′11( ~α1, ~dΠe[~b1/~α])
...

dΠfk,α,Cne = φ′kn(~αk, ~dΠe[~bk/~α])



ESC =

 bΠf1,α,C1c = φ′11( ~α1, ~bΠc[~b1/~α])
...

bΠfk,α,Cnc = φ′kn(~αk, ~bΠc[~bk/~α])


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Step 2: Preservation of SNC’s and WSC’s under
Syntactic Substitution

For subsequent fixed-point computation, the constraints must
preserve SNC’s and WSC’s under syntactic substitution.

In their current form, ENC and ESC do not have this property
for two reasons:

Constraints contain negated Π literals.
But ¬dφe 6⇔ d¬φe and ¬bφc 6⇔ b¬φc

Implicit constraints: Existence and uniqueness
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Step 2: Preservation under Syntactic Substitution I

To ensure monotonicity:

Either replace ¬Πf,α,ci
with

∨
j 6=i Πf,α,cj

.

Or use the property d¬φe ⇔ ¬bφc and b¬φc ⇔ ¬dφe

The latter requires simultaneous fixpoint computation of
strongest necessary and weakest sufficient conditions

But important for a practical implementation
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Step 2: Preservation under Syntactic Substitution II

To eliminate implicit existence and uniqueness constraints:

Convert to DNF and drop contradictions
(for necessary conditions)

Convert to CNF and drop tautologies
(for sufficient conditions)

The resulting constraints preserve strongest necessary and
weakest sufficient conditions under syntactic substitution.
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(for necessary conditions)

Convert to CNF and drop tautologies
(for sufficient conditions)

The resulting constraints preserve strongest necessary and
weakest sufficient conditions under syntactic substitution.



Sound, Complete, and Scalable Path-Sensitive Analysis

The Main Result

Main Result

The technique is sound and complete for answering
satisfiability and validity queries with respect to some
user-provided finite abstraction.

Furthermore, since the computed strongest necesssary and
weakest sufficient conditions do not contain any unobservable
variables, the resulting constraints are small in practice,
allowing the technique to scale to large programs.
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Experiments I

We compute the full interprocedural constraint -in terms of
SNC’s and WSC’s- for every pointer dereference in OpenSSH,
Samba and the Linux kernel (>6 MLOC).

Stress-test: pointer dereferences are ubiquitous in C programs.
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Experiments II

We also used this technique for an interprocedurally
path-sensitive null dereference analysis.

Interprocedurally Path-sensitive Intraprocedurally Path-sensitive
OpenSSH Samba Linux OpenSSH Samba Linux

4.3p2 3.0.23b 2.6.17.1 4.3p2 3.0.23b 2.6.17.1
Total Reports 3 48 171 21 379 1495
Bugs 1 17 134 1 17 134
False Positives 2 25 37 20 356 1344
Undecided 0 6 17 0 6 17
Report to Bug Ratio 3 2.8 1.3 21 22.3 11.2
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positives without resorting to (potentially unsound) ad-hoc
heuristics.
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Future Work

Caveat: Previous results table excludes any error reports
arising from array elements and recursive data structures.

Underlying framework collapses all unbounded data structures
into one summary node

Imprecise for verifying memory safety.

Shape analysis is our current work-in-progress.
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