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Motivation

o Different verification approaches have various
strengths and weaknesses

@ Examples:
o Polyhedra domain is good at inferring linear
invariants

o CEGAR based model checking good at
separating paths in programs

o Interval analysis scales to very large programs

Difficult, if not impossible, to design one approach
that is good at everything J
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This Talk

New technique for circular
compositional program verification

Program
@ Decompose the program proofs into
small lemmas using logical abduction Abduction
@ Represent lemmas as code fragments Fragment
. . + assumptions
annotated with assertions and + assertions

assumptions

@ Use portfolio of verification techniques Analysis Portfolio
to discharge fragments Analysis2

@ Use circular compositional reasoning to 4
turn some assertions into assumptions
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Proof Decomposition

Program

VC1, VC2,...

Compute VCs of assertion on program
fragment

For any VC of the form ¢ = ¢2 that is not
valid, find v such that (¢ A ¢1) = ¢ is valid
using abduction.

Now, introduce 1) as new assertion in
program

And eliminate old assertion by proving it
assuming 1y and converting it to an
assumption
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int z = 1-3;

int x=0, y=0, w=0;

while(*) {
assert(x==y);

@ Consider the following code
snippet

Z+=X+Y+W;
y++;
X+=2%2;
W+=2;




(" )
int 1=1, j=0;
while(*) {j++; i+=3;}
int z = 1-3;
int x=0, y=0, w=0;
while(*) {
@ Code contains assertion in assert(x==y);

second loop

@ Consider the following code
snippet

Z+=X+Y+W;
y++;
X+=2%2;
W+=2;




(" )
int i1=1, j=0;
while(*) {j++; i+=3;}
@ Consider the following code ,lnt =1
: int x=0, y=0, w=0;
snippet
while(*) {
@ Code contains assertion in assert(x==y);
second loop
@ Goal: Discharge assertion ZEEXHYHW;
using portfolio of analyses y++;
on fragments of this code X+=2%2;
wW+=2;
}
\_ J
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while(*) {
assert(x==y);
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4 )

@ Want to verify assertion only

int x=0, y=0, w=0; using highlighted fragment

while(*) { @ But not possible since
assert(x==y); precondition “z is odd” is
missing
Z+=X+Yy+W;
ey Want to solve for
X+=2%2 missing assumptions
WH=2; required to prove z =y

6 /22
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Parametric VC Generation

4 )

@ Use ¢ and ¢o to represent
unknown assumptions that
make the assertion valid

@ Compute VCs of x =y

int x=0, y=0, w=0;
parametric on ¢1 and ¢9

assume(?1) ;
while(*) { e VC 1: VALID

assert(x==y); o
assume(®2) ; (z=i—jAz=0Ay=0
ANo=0A¢)=z=1y
o Z+=X+Y+W;
yH+s e VC 2: NOT VALID
X+=2%2;
W+=2; (p2Nz = y) = wp(o,z = y)
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Finding Auxiliary Lemmas

First, use definition of wp to expand VC 2

(enNz=y)=>r+(z+r+yt+tw)f2=y+1

To prove VC 2, we need to find a ¢ that makes it valid

But ¢4 should not contradict = y (lemma we want to prove)

Therefore, want ¢ A x = y to be satisfiable

Insight: This is an instance of logical abduction )
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Abductive Inference

@ Given known facts F' and desired outcome O,
abductive inference finds simple explanatory
hypothesis E such that

F O FAEE O and SAT(F A E)
(N
@ Use abduction to generate simple assumptions
that make verification condition valid

abduce @ Known facts F' is verification condition,
desired outcome is true

@ Abductive solution becomes lemma in proof
and can now be established separately



Abductive Inference in Example

4 )

@ Here, for

(P2 Nz =1y)=
z+(z+z+y+w)h2=y+1

we compute the solution int x=0, y=0, w=0;
b2 (w4 2)%2=1 assume (¢1) ;
while(*) {
assert(x==y);
assume(®2) ;
Z+=X+Y+W;

y++;

X+=z%2;

W+=2;
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(P2 Nz =1y)=
z+(z+z+y+w)h2=y+1

we compute the solution int x=0, y=0, w=0;
do: (w4 2)%2=1
while(*) {
assert(x==y);
assume((w+z)%2==1);
Z+H=X+Y+W;
y++;
X+=z%2;
W+=2;
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Abductive Inference in Example

@ Here, for (" )

(P2 Nz =1y)=
z+(z+z+y+w)h2=y+1

we compute the solution int x=0, y=0, w=0;
do: (w4 2)%2=1
while(*) {
e Can now show z = ¥, which assume(x==y);
turns into an assumption assert((w+z)%2==1);
ZH=X+YHW;
@ But still need to prove ¢ = Y+t
add as assertion X+=2%23
w+=2;
@ Circular compositional
\_} y,

reasoning at work!
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4 )

o New assertion still not provable
since value of z unconstrained

int x=0, y=0, w=0;

while(*) {
assume(x==y);
assert((w+z)%2==1);
ZH=X+YHW;
y++;
X+=2%2;
w+=2;

\_J Y
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4 N
o New assertion still not provable
since value of z unconstrained
int x=0, y=0, w=0; @ Again generate parametric VCs
assert(@i);
while(*) { @ First VC introduces assertion

assume(x==y); before loop

assert((w+z)%2==1);
Z+=X+Y+W;

y++;

X+=2%2;

wW+=2;

\ y
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int x=0, y=0, w=0;
assert(@i);
while(*) {
assume(x==y);
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y++;
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\_}

~N

o New assertion still not provable
since value of z unconstrained

o Again generate parametric VCs

@ First VC introduces assertion
before loop
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int x=0, y=0, w=0;
assert(@i);
while(*) {

assume(x==y);
assert((w+z)%2==1);
ZH=X+Y+W;

y++;

X+=2%2;

w+=2;

~N

o New assertion still not provable
since value of z unconstrained

o Again generate parametric VCs

@ First VC introduces assertion
before loop

(1 Nz—i—jAz=0
Ny=0ANw=0Az=y)=
(w+ 2%2=1)

@ Solution computed via
abduction ¢ : 2%2 =1

11/22
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@ Now left with two assertions

int x=0, y=0, w=0; in the code fragment

assert(z%2==1);
while(*) {
assume(x==y);
assert((w+z)%2==1);
ZH=X+YHW;
y++;
X+=2%2;
w+=2;
\_J} Y,
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int x=0, y=0, w=0;
assert(z%2==1);
while(*) {

assume(x==y);
assert((w+z)%2==1);
ZH=X+Y+W;

y++;

X+=2%2;

w+=2;
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@ Now left with two assertions
in the code fragment

o Convert first assertion to
assumption and invoke our
client analyses
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int x=0, y=0, w=0;
assert(z%2==1);
while(*) {

assume(x==y);
assert((w+z)%2==1);
ZH=X+Y+W;

y++;

X+=2%2;

w+=2;

~N

@ Now left with two assertions
in the code fragment

o Convert first assertion to
assumption and invoke our
client analyses

@ Again, circular compositional
reasoning at work



Invoking Client Analyses

/\rAnaIysis Portfolio

s N

int x=0, y=0, w=0;
assume(z%2==1);
while(*) {
assume(x==y);
assert((w+z)%2==1);
ZH=X+YHW;
yHs
X+=2%2;
w+=2;

Analysis 2

J/

o Give fragment with assumptions and assertions to clients
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Invoking Client Analyses

4 N\
/\ Analysis Portfolio

(" int x=0, y=0, w=0; h

assume(z%2==1);
while(*) {
assume(x==y);
assert((w+z)%2==1);
ZH=X+YHW;
yHs
X+=2%2;
w+=2;

Analysis 2

1 ) \ J

o Give fragment with assumptions and assertions to clients

@ Fragment can be locally verified by divisibility analysis

13 /22



Remaining Code

4 )
int 1=1, j=0;

while(*) {j++; i1+=3;}
int z = 1-3;

int x=0, y=0, w=0; @ Now, only one assertion left
assert(z%2==1); in our program
while(*) {

assume(x==y);
assume((w+z)%2==1);
ZH=X+Y+W;

y+;

X+=2%2;

w+=2;
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Remaining Code

4 )
int 1=1, j=0;

while(*) {j++; i1+=3;}
int z = 1-j;

int x=0, y=0, w=0; @ Now, only one assertion left
assert(z%2==1); in our program

@ Extract next fragment for
this assertion and give to
client analyses

14 /22



Invoking Client Analyses

( ; - D
/\ Analysis Portfolio
int i=1, j=0;
while(*) {j++; 1+=3;} Analysis 2
int z = 1-3;
int x=0, y=0, w=0;
assert(z%2==1);
\_ J

@ Invoke clients on current fragment
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Invoking Client Analyses
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int i=1, j=0;
while(*) {j++; i1+=3;}
int z = 1-3;

int x=0, y=0, w=0;
assert(z%2==1);

( : ) N
Analysis Portfolio

Analysis 2 P

G J

@ Invoke clients on current fragment

@ This assertion can be shown by any client analysis that can

establish + =35 + 1
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Invoking Client Analyses

7~ N

int i=1, j=0;
while(*) {j++; i1+=3;}
int z = 1-3;

int x=0, y=0, w=0;
assert(z%2==1);

( . . )
Analysis Portfolio

Analysis 2 P

G J

@ Invoke clients on current fragment

@ This assertion can be shown by any client analysis that can

establish + =35 + 1

We have now proven the original assertion)

15 /22
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Our Technique at a High Level

@ Technique decomposes proof of program
into subgoals on syntactic fragments

@ While we show one subgoal, we can safely
assume the others = circular reasoning

@ If a subgoal cannot be shown by any
client analysis, we backtrack and generate
new subgoals using abductive inference

16 /22
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Advantages of this Approach

Progra @ Clients only analyze (typically) small
fragments

Abductionl . . . .
@ Interaction is demand-driven (i.e., lazy)

Fragment

+ assumptions
+ assertions

@ Analyses with complementary strengths
can help each other

Analysis Portfolio

Arasis2 @ Can prove properties no client analysis or

@ eager combination can prove alone

17 /22
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Analogy to SMT Solver

o O

> SAT Solver <—>.

O O

@ Can view client analyses as theory solvers

@ Proving assertion on program invokes clients on fragments
and speculated subgoals, backtracks when needed

18 /22
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@ Implemented this techique and used four client tools:

e Interproc Polyhedra
e Interproc Linear Congruence
e Blast

o Compass

These tools have very different strengths and weaknesses )
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@ No tool can individually prove any benchmark

|Name|LOC|Time (s)|# queries|Polyhedra|Linear Cong[Blast‘Compass|

Bl | 45 0.6 2
B2 | 37 0.2
B3 | 51 1.0
B4 | 59 0.4
B5 | 89 0.6
B6 | 60 0.5

B7 | 56 0.6
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But all benchmarks can be proven when analyses
are combined using our technique
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Second Experiment

We also verified a complicated assertion each on five real programs

[Name [LOC|Time (s)[# queries|Avg # vars in query[Avg LOC in query
Wizardpen Linux Driver|1242| 3.8 5 1.5 29
OpenSSH clientloop 1987 2.8 3 2.3 5
Coreutils su 1057 3.0 5 1.7 6
GSL Histogram 526 0.6 4 3.6 15
GSL Matrix 7233| 16.9 8 1.8 7

Fragments extracted for queries small in practiceJ
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Summary
@ New technique to decompose @
program’s correctness proof into Any Questions?
small lemmas

@ Allows a portfolio of diverse analyses \(_\\G\}'
with different strengths to cooperate V\(}y\

@ Interaction is goal-directed and _—

effective in practice



