Synthesis of Circular Compositional
Program Proofs via Abduction

Boyang Li, Isil Dillig, Tom Dillig (College of William & Mary)
Ken McMillan (Microsoft Research)
Mooly Sagiv (Tel Aviv University)

Motivation

o Different verification approaches have various
strengths and weaknesses

N)
N
N

Motivation

o Different verification approaches have various
strengths and weaknesses

@ Examples:

)
N
N

Motivation

o Different verification approaches have various
strengths and weaknesses

@ Examples:

o Polyhedra domain is good at inferring linear
invariants

)
N
N

Motivation

o Different verification approaches have various
strengths and weaknesses

@ Examples:
o Polyhedra domain is good at inferring linear
invariants

o CEGAR based model checking good at
separating paths in programs

)
N
N

Motivation

o Different verification approaches have various
strengths and weaknesses

@ Examples:
o Polyhedra domain is good at inferring linear
invariants

o CEGAR based model checking good at
separating paths in programs

o Interval analysis scales to very large programs

)
N
N

Motivation

o Different verification approaches have various
strengths and weaknesses

@ Examples:
o Polyhedra domain is good at inferring linear
invariants

o CEGAR based model checking good at
separating paths in programs

o Interval analysis scales to very large programs

)
N
N

Motivation

o Different verification approaches have various
strengths and weaknesses

@ Examples:
o Polyhedra domain is good at inferring linear
invariants

o CEGAR based model checking good at
separating paths in programs

o Interval analysis scales to very large programs

Difficult, if not impossible, to design one approach
that is good at everything J

N
N
N

This Talk

New technique for circular ’

compositional program verification
Program

This Talk

New technique for circular
compositional program verification

@ Decompose the program proofs into
small lemmas using logical abduction

Program

Abduction

Fragment

+ assumptions
+ assertions

This Talk

New technique for circular
compositional program verification

@ Decompose the program proofs into
small lemmas using logical abduction

@ Represent lemmas as code fragments
annotated with assertions and
assumptions

Program

Abduction

Fragment

+ assumptions
+ assertions

This Talk

New technique for circular
compositional program verification

Program
@ Decompose the program proofs into
small lemmas using logical abduction Abduction
@ Represent lemmas as code fragments Fragment
. . + assumptions
annotated with assertions and + assertions

assumptions

@ Use portfolio of verification techniques Analysis Portfolio

to discharge fragments Analysis2

3 g

This Talk

New technique for circular
compositional program verification

Program
@ Decompose the program proofs into
small lemmas using logical abduction Abduction
@ Represent lemmas as code fragments Fragment
. . + assumptions
annotated with assertions and + assertions

assumptions

@ Use portfolio of verification techniques Analysis Portfolio
to discharge fragments Analysis2

@ Use circular compositional reasoning to 4
turn some assertions into assumptions

Proof Decomposition

@ Compute VCs of assertion on program
fragment

Program

VC1, VC2,...

Proof Decomposition

@ Compute VCs of assertion on program
fragment

@ For any VC of the form ¢; = ¢5 that is not
Program valid, find v such that (¢ A ¢1) = ¢ is valid
using abduction.

VC1, VC2,...

Proof Decomposition

@ Compute VCs of assertion on program
fragment

@ For any VC of the form ¢; = ¢5 that is not
Program valid, find v such that (¢ A ¢1) = ¢ is valid
using abduction.

_ @ Now, introduce v as new assertion in
Fragment

program
VC1, VC2,...

Proof Decomposition

Program

VC1, VC2,...

Compute VCs of assertion on program
fragment

For any VC of the form ¢ = ¢2 that is not
valid, find v such that (¢ A ¢1) = ¢ is valid
using abduction.

Now, introduce 1) as new assertion in
program

And eliminate old assertion by proving it
assuming 1y and converting it to an
assumption

(")

int i=1, j=0;

while(*) {j++; i+=3;}

int z = 1-3;

int x=0, y=0, w=0;

while(*) {
assert(x==y);

@ Consider the following code
snippet

Z+=X+Y+W;
y++;
X+=2%2;
W+=2;

(")
int 1=1, j=0;
while(*) {j++; i+=3;}
int z = 1-3;
int x=0, y=0, w=0;
while(*) {
@ Code contains assertion in assert(x==y);

second loop

@ Consider the following code
snippet

Z+=X+Y+W;
y++;
X+=2%2;
W+=2;

(")
int i1=1, j=0;
while(*) {j++; i+=3;}
@ Consider the following code ,lnt =1
: int x=0, y=0, w=0;
snippet
while(*) {
@ Code contains assertion in assert(x==y);
second loop
@ Goal: Discharge assertion ZEEXHYHW;
using portfolio of analyses y++;
on fragments of this code X+=2%2;
wW+=2;
}
_ J

4)

@ Want to verify assertion only

int x=0, y=0, w=0; using highlighted fragment

while(*) {
assert(x==y);

Z+=X+Yy+W;
y++;
X+=2%2;
W+=2;

6 /22

-

int x=0, y=0, w=0;
while(*) {
assert(x==y);

Z+=X+Yy+W;
y++;
X+=2%2;
W+=2;

~N

@ Want to verify assertion only
using highlighted fragment

@ But not possible since
precondition “z is odd" is
missing

6 /22

4)

@ Want to verify assertion only

int x=0, y=0, w=0; using highlighted fragment

while(*) { @ But not possible since
assert(x==y); precondition “z is odd” is
missing
Z+=X+Yy+W;
ey Want to solve for
X+=2%2 missing assumptions
WH=2; required to prove z =y

6 /22

Parametric VC Generation

4)

@ Use ¢ and ¢o to represent
unknown assumptions that
make the assertion valid

int x=0, y=0, w=0;
assume(?1) ;
while(*) {
assert(x==y);
assume(@2) ;
Z+=X+Y+W;
y++;
X+=2%2;
W+=2;

Parametric VC Generation

4)

@ Use ¢ and ¢o to represent
unknown assumptions that
make the assertion valid

@ Compute VCs of x =y

int x=0, y=0, w=0;
parametric on ¢1 and ¢9

assume(?1) ;
while(*) {
assert(x==y);
assume(@2) ;
ZH=X+YHW;
y++;
X+=2%2;
W+=2;

Parametric VC Generation

4)

@ Use ¢ and ¢o to represent
unknown assumptions that
make the assertion valid

@ Compute VCs of x =y

int x=0, y=0, w=0;
parametric on ¢1 and ¢9

assume(?1) ;
while(*) { e VC1:
assert(x==y);
assume(@2) ;
ZH=X+Y+W;
y++;
X+=2%2;
W+=2;

(z=i—jAz=0Ay=0
ANo=0A¢)=z=1y

Parametric VC Generation

4)

@ Use ¢ and ¢o to represent
unknown assumptions that
make the assertion valid

@ Compute VCs of x =y

int x=0, y=0, w=0;
parametric on ¢1 and ¢9

assume(?1) ;
while(*) { o VC1:

assert(x==y); o
assume(®2) ; (z=i—jAz=0Ay=0
ANo=0A¢)=z=1y
o Z+=X+Y+W;
y+t; o VC2:
X+=2%2;
W+=2; (p2Az = y) = wp(o,z = y)

Parametric VC Generation

4)

@ Use ¢ and ¢o to represent
unknown assumptions that
make the assertion valid

@ Compute VCs of x =y

int x=0, y=0, w=0;
parametric on ¢1 and ¢9

assume(?1) ;
while(*) { e VC 1: VALID

assert(x==y); o
assume(®2) ; (z=i—jAz=0Ay=0
ANo=0A¢)=z=1y
o Z+=X+Y+W;
y+t; o VC2:
X+=2%2;
W+=2; (p2Az = y) = wp(o,z = y)

Parametric VC Generation

4)

@ Use ¢ and ¢o to represent
unknown assumptions that
make the assertion valid

@ Compute VCs of x =y

int x=0, y=0, w=0;
parametric on ¢1 and ¢9

assume(?1) ;
while(*) { e VC 1: VALID

assert(x==y); o
assume(®2) ; (z=i—jAz=0Ay=0
ANo=0A¢)=z=1y
o Z+=X+Y+W;
yH+s e VC 2: NOT VALID
X+=2%2;
W+=2; (p2Nz = y) = wp(o,z = y)

Finding Auxiliary Lemmas

o First, use definition of wp to expand VC 2

Finding Auxiliary Lemmas

o First, use definition of wp to expand VC 2

(enNz=y)=>r+(z+r+yt+tw)f2=y+1

Finding Auxiliary Lemmas

o First, use definition of wp to expand VC 2
(enNz=y)=>r+(z+r+yt+tw)f2=y+1

@ To prove VC 2, we need to find a ¢o that makes it valid

Finding Auxiliary Lemmas

o First, use definition of wp to expand VC 2
(enNz=y)=>r+(z+r+yt+tw)f2=y+1
@ To prove VC 2, we need to find a ¢o that makes it valid

@ But ¢ should not contradict z = y (lemma we want to prove)

Finding Auxiliary Lemmas

First, use definition of wp to expand VC 2

(enNz=y)=>r+(z+r+yt+tw)f2=y+1

To prove VC 2, we need to find a ¢ that makes it valid

But ¢4 should not contradict = y (lemma we want to prove)

Therefore, want ¢ A x = y to be satisfiable

Finding Auxiliary Lemmas

First, use definition of wp to expand VC 2

(enNz=y)=>r+(z+r+yt+tw)f2=y+1

To prove VC 2, we need to find a ¢ that makes it valid

But ¢4 should not contradict = y (lemma we want to prove)

Therefore, want ¢ A x = y to be satisfiable

Insight: This is an instance of logical abduction)

Abductive Inference

@ Given known facts F' and desired outcome O,
abductive inference finds simple explanatory
hypothesis E such that

F O~ FAEEO and SAT(F AE)

abduce

Abductive Inference

@ Given known facts F' and desired outcome O,
abductive inference finds simple explanatory
hypothesis E such that

F O~ FAEE O and SAT(F A E)

@ Use abduction to generate simple assumptions
that make verification condition valid

abduce

Abductive Inference

@ Given known facts F' and desired outcome O,
abductive inference finds simple explanatory
hypothesis E such that

F O FAEE O and SAT(F A E)
(N
@ Use abduction to generate simple assumptions
that make verification condition valid

abduce @ Known facts F' is verification condition,
desired outcome is true

Abductive Inference

@ Given known facts F' and desired outcome O,
abductive inference finds simple explanatory
hypothesis E such that

F O FAEE O and SAT(F A E)
(N
@ Use abduction to generate simple assumptions
that make verification condition valid

abduce @ Known facts F' is verification condition,
desired outcome is true

@ Abductive solution becomes lemma in proof
and can now be established separately

Abductive Inference in Example

4)

@ Here, for

(P2 Nz =1y)=
z+(z+z+y+w)h2=y+1

we compute the solution int x=0, y=0, w=0;
b2 (w4 2)%2=1 assume (¢1) ;
while(*) {
assert(x==y);
assume(®2) ;
Z+=X+Y+W;

y++;

X+=z%2;

W+=2;

10/22

Abductive Inference in Example

4)

@ Here, for

(P2 Nz =1y)=
z+(z+z+y+w)h2=y+1

we compute the solution int x=0, y=0, w=0;
do: (w4 2)%2=1
while(*) {
assert(x==y);
assume((w+z)%2==1);
Z+H=X+Y+W;
y++;
X+=z%2;
W+=2;

10/22

Abductive Inference in Example

4)

@ Here, for

(P2 Nz =1y)=
z+(z+z+y+w)h2=y+1

we compute the solution int x=0, y=0, w=0;
do: (w4 2)%2=1
while(*) {
@ Can now show z = y, which assert(x==y);

turns into an assumption assume((w+z)%2==1);
ZH=X+YHW;
Y
X+=2%2;
wW+=2;

10/22

Abductive Inference in Example

4)

@ Here, for

(P2 Nz =1y)=
z+(z+z+y+w)h2=y+1

we compute the solution int x=0, y=0, w=0;
do: (w4 2)%2=1
while(*) {
e Can now show z = ¥, which assume(x==y);

turns into an assumption assume((w+z)%2==1);
ZH=X+YHW;
Y
X+=z%2;
wW+=2;

10/22

Abductive Inference in Example

@ Here, for (")

(P2 Nz =1y)=
z+(z+z+y+w)h2=y+1

we compute the solution int x=0, y=0, w=0;
do: (w4 2)%2=1
while(*) {
e Can now show z = ¥, which assume(x==y);
turns into an assumption assert((w+z)%2==1);
ZH=X+YHW;
@ But still need to prove ¢ = Y+t
add as assertion X+=2%23
wW+=2;

10/22

Abductive Inference in Example

@ Here, for (")

(P2 Nz =1y)=
z+(z+z+y+w)h2=y+1

we compute the solution int x=0, y=0, w=0;
do: (w4 2)%2=1
while(*) {
e Can now show z = ¥, which assume(x==y);
turns into an assumption assert((w+z)%2==1);
ZH=X+YHW;
@ But still need to prove ¢ = Y+t
add as assertion X+=2%23
w+=2;
@ Circular compositional
_} y,

reasoning at work!

10/22

4)

o New assertion still not provable
since value of z unconstrained

int x=0, y=0, w=0;

while(*) {
assume(x==y);
assert((w+z)%2==1);
ZH=X+YHW;
y++;
X+=2%2;
w+=2;

_J Y

11/22

4)
o New assertion still not provable
since value of z unconstrained
int x=0, y=0, w=0; @ Again generate parametric VCs
while(*) {

assume(x==y);
assert((w+z)%2==1);
ZH=X+YHW;

y++;

X+=2%2;

w+=2;

_J Y

11/22

4 N
o New assertion still not provable
since value of z unconstrained
int x=0, y=0, w=0; @ Again generate parametric VCs
assert(@i);
while(*) { @ First VC introduces assertion

assume(x==y); before loop

assert((w+z)%2==1);
Z+=X+Y+W;

y++;

X+=2%2;

wW+=2;

\ y

11/22

-

int x=0, y=0, w=0;
assert(@i);
while(*) {
assume(x==y);
assert((w+z)%2==1);
ZH=X+YHW;
y++;
X+=2%2;
w+=2;

_}

~N

o New assertion still not provable
since value of z unconstrained

o Again generate parametric VCs

@ First VC introduces assertion
before loop

(1 Nz—i—jAz=0
Ny=0ANw=0Az=y)=
(w+ 2%2=1)

11/22

-

_}

int x=0, y=0, w=0;
assert(@i);
while(*) {

assume(x==y);
assert((w+z)%2==1);
ZH=X+Y+W;

y++;

X+=2%2;

w+=2;

~N

o New assertion still not provable
since value of z unconstrained

o Again generate parametric VCs

@ First VC introduces assertion
before loop

(1 Nz—i—jAz=0
Ny=0ANw=0Az=y)=
(w+ 2%2=1)

@ Solution computed via
abduction ¢ : 2%2 =1

11/22

Invoking Client Analyses

4)

@ Now left with two assertions

int x=0, y=0, w=0; in the code fragment

assert(z%2==1);
while(*) {
assume(x==y);
assert((w+z)%2==1);
ZH=X+YHW;
y++;
X+=2%2;
w+=2;
_J} Y,

12 /22

Invoking Client Analyses

-

_}

int x=0, y=0, w=0;
assert(z%2==1);
while(*) {

assume(x==y);
assert((w+z)%2==1);
ZH=X+Y+W;

y++;

X+=2%2;

w+=2;

~N

@ Now left with two assertions
in the code fragment

o Convert first assertion to
assumption and invoke our
client analyses

12 /22

Invoking Client Analyses

-

_}

int x=0, y=0, w=0;
assert(z%2==1);
while(*) {

assume(x==y);
assert((w+z)%2==1);
ZH=X+Y+W;

y++;

X+=2%2;

w+=2;

~N

@ Now left with two assertions
in the code fragment

o Convert first assertion to
assumption and invoke our
client analyses

@ Again, circular compositional
reasoning at work

Invoking Client Analyses

/\rAnaIysis Portfolio

s N

int x=0, y=0, w=0;
assume(z%2==1);
while(*) {
assume(x==y);
assert((w+z)%2==1);
ZH=X+YHW;
yHs
X+=2%2;
w+=2;

Analysis 2

J/

o Give fragment with assumptions and assertions to clients

13 /22

Invoking Client Analyses

4 N\
/\ Analysis Portfolio

(" int x=0, y=0, w=0; h

assume(z%2==1);
while(*) {
assume(x==y);
assert((w+z)%2==1);
ZH=X+YHW;
yHs
X+=2%2;
w+=2;

Analysis 2

1) \ J

o Give fragment with assumptions and assertions to clients

@ Fragment can be locally verified by divisibility analysis

13 /22

Remaining Code

4)
int 1=1, j=0;

while(*) {j++; i1+=3;}
int z = 1-3;

int x=0, y=0, w=0; @ Now, only one assertion left
assert(z%2==1); in our program
while(*) {

assume(x==y);
assume((w+z)%2==1);
ZH=X+Y+W;

y+;

X+=2%2;

w+=2;

_J Y,

14 /22

Remaining Code

4)
int 1=1, j=0;

while(*) {j++; i1+=3;}
int z = 1-j;

int x=0, y=0, w=0; @ Now, only one assertion left
assert(z%2==1); in our program

@ Extract next fragment for
this assertion and give to
client analyses

14 /22

Invoking Client Analyses

(; - D
/\ Analysis Portfolio
int i=1, j=0;
while(*) {j++; 1+=3;} Analysis 2
int z = 1-3;
int x=0, y=0, w=0;
assert(z%2==1);
_ J

@ Invoke clients on current fragment

15 /22

Invoking Client Analyses

7~ N

int i=1, j=0;
while(*) {j++; i1+=3;}
int z = 1-3;

int x=0, y=0, w=0;
assert(z%2==1);

(:) N
Analysis Portfolio

Analysis 2 P

G J

@ Invoke clients on current fragment

@ This assertion can be shown by any client analysis that can

establish + =35 + 1

15 /22

Invoking Client Analyses

7~ N

int i=1, j=0;
while(*) {j++; i1+=3;}
int z = 1-3;

int x=0, y=0, w=0;
assert(z%2==1);

(. .)
Analysis Portfolio

Analysis 2 P

G J

@ Invoke clients on current fragment

@ This assertion can be shown by any client analysis that can

establish + =35 + 1

We have now proven the original assertion)

15 /22

Our Technique at a High Level

@ Technique decomposes proof of program
into subgoals on syntactic fragments

16 /22

Our Technique at a High Level

@ Technique decomposes proof of program
into subgoals on syntactic fragments

@ While we show one subgoal, we can safely
assume the others = circular reasoning

16 /22

Our Technique at a High Level

@ Technique decomposes proof of program
into subgoals on syntactic fragments

@ While we show one subgoal, we can safely
assume the others = circular reasoning

@ If a subgoal cannot be shown by any
client analysis, we backtrack and generate
new subgoals using abductive inference

16 /22

Advantages of this Approach

Progra @ Clients only analyze (typically) small
fragments

Abductionl

Fragment

+ assumptions
+ assertions

Analysis Portfolio

Analysis 2

¥

17 /22

Advantages of this Approach

Progra @ Clients only analyze (typically) small
fragments

Abductionl
@ Interaction is demand-driven (i.e., lazy)

Fragment

+ assumptions
+ assertions

Analysis Portfolio

Analysis 2

¥

17 /22

Advantages of this Approach

Progra @ Clients only analyze (typically) small
fragments

Abduction
@ Interaction is demand-driven (i.e., lazy)

Fragment

+ assumptions
+ assertions

@ Analyses with complementary strengths
can help each other

Analysis Portfolio

Analysis 2

¥

17 /22

Advantages of this Approach

Progra @ Clients only analyze (typically) small
fragments

Abductionl
@ Interaction is demand-driven (i.e., lazy)

Fragment

+ assumptions
+ assertions

@ Analyses with complementary strengths
can help each other

Analysis Portfolio

Arasis2 @ Can prove properties no client analysis or

@ eager combination can prove alone

17 /22

Analogy to SMT Solver

o O

> SAT Solver <—>‘

@ Can view client analyses as theory solvers

18 /22

Analogy to SMT Solver

o O

> SAT Solver <—>.

O O

@ Can view client analyses as theory solvers

@ Proving assertion on program invokes clients on fragments
and speculated subgoals, backtracks when needed

18 /22

@ Implemented this techique and used four client tools:

19 /22

@ Implemented this techique and used four client tools:

e Interproc Polyhedra

19 /22

@ Implemented this techique and used four client tools:

e Interproc Polyhedra

e Interproc Linear Congruence

19 /22

@ Implemented this techique and used four client tools:

e Interproc Polyhedra
e Interproc Linear Congruence

o Blast

19 /22

@ Implemented this techique and used four client tools:

e Interproc Polyhedra
e Interproc Linear Congruence
e Blast

o Compass

19 /22

@ Implemented this techique and used four client tools:

e Interproc Polyhedra
e Interproc Linear Congruence
e Blast

o Compass

These tools have very different strengths and weaknesses)

19/22

First Experiment

@ 10 challenging micro-benchmarks with one assertion each

First Experiment

@ 10 challenging micro-benchmarks with one assertion each

@ No tool can individually prove any benchmark

First Experiment

@ 10 challenging micro-benchmarks with one assertion each

@ No tool can individually prove any benchmark

|Name|LOC|Time (s)|# queries|Polyhedra|Linear Cong|Blast‘Compass|

Bl | 45 0.6 2
B2 | 37 0.2
B3 | 51 1.0
B4 | 59 0.4
B5 | 89 0.6
B6 | 60 0.5

B7 | 56 0.6
B8 | 45 0.2
B9 | 59 0.5
B10 | 47 0.2

U X% %]| %] x
x| x| x| x|]| x| x| x| | x

A AR SR AR AR AN
]| x| x|]| x| x| x|x|x

N | DN N O W| W] DN D

First Experiment

@ 10 challenging micro-benchmarks with one assertion each

@ No tool can individually prove any benchmark

|Name|LOC|Time (s)|# queries|Polyhedra|Linear Cong[Blast‘Compass|

Bl | 45 0.6 2
B2 | 37 0.2
B3 | 51 1.0
B4 | 59 0.4
B5 | 89 0.6
B6 | 60 0.5

B7 | 56 0.6
B8 | 45 0.2
B9 | 59 0.5
B10 | 47 0.2

U X% %]| %] x
x| x| x| x|]| x| x| x| | x

A AR SR AR AR AN
]| x| x|]| x| x| x|x|x

N | DN N O W| W| DN D

But all benchmarks can be proven when analyses
are combined using our technique

Second Experiment

We also verified a complicated assertion each on five real programs

Second Experiment

We also verified a complicated assertion each on five real programs

[Name

[LOC|Time (s)[# queries|Avg # vars in query[Avg LOC in query

Wizardpen Linux Driver|1242| 3.8 5 1.5 29
OpenSSH clientloop 1987 2.8 3 2.3 5
Coreutils su 1057 3.0 5 1.7 6
GSL Histogram 526 0.6 4 3.6 15
GSL Matrix 7233| 16.9 8 1.8 7

Second Experiment

We also verified a complicated assertion each on five real programs

[Name [LOC|Time (s)[# queries|Avg # vars in query[Avg LOC in query
Wizardpen Linux Driver|1242| 3.8 5 1.5 29
OpenSSH clientloop 1987 2.8 3 2.3 5
Coreutils su 1057 3.0 5 1.7 6
GSL Histogram 526 0.6 4 3.6 15
GSL Matrix 7233| 16.9 8 1.8 7

Fragments extracted for queries small in practiceJ

Summary

@ New technique to decompose
program’s correctness proof into
small lemmas

Summary
@ New technique to decompose
program’s correctness proof into
small lemmas

@ Allows a portfolio of diverse analyses
with different strengths to cooperate

N
N

N

Summary

@ New technique to decompose
program’s correctness proof into
small lemmas

@ Allows a portfolio of diverse analyses
with different strengths to cooperate

@ Interaction is goal-directed and
effective in practice

N
N

N

Summary
@ New technique to decompose @
program’s correctness proof into Any Questions?
small lemmas

@ Allows a portfolio of diverse analyses \(_\\G\}'
with different strengths to cooperate V\(}y\

@ Interaction is goal-directed and _—

effective in practice

