Curves and Splines
Curves in Spaces

Consider some curve with parametric function $\gamma(t)$:

Why might this be useful?
Using Parameterized Curves

• Good for:
 • Interpolation in animation
 • Vector-based art (including fonts)
 • Smooth models for physics calculations

• Nice properties:
 • Easy to construct and compute
 • Relatively portable representation
Simpler Curves

Some formulas more well-known than others: $\gamma(t) = (\cos(t), \sin(t))$

How can we generalize this?
Linear Interpolation

Straight line segment between two points

\[\gamma(t) = P_0 + t(P_1 - P_0) \]

\[\gamma(t) = (1 - t)P_0 + tP_1 \]
Using Arbitrary Parameterization

Generalizes to any parameter t...

\[\gamma(u_1) = P_1 \]

\[\gamma(u_0) = P_0 \]

\[\gamma(t) = \frac{u_1-t}{u_1-u_0} P_0 + \frac{t-u_0}{u_1-u_0} P_1 \]
Piecewise Linear Interpolation

Straight line segment between point list

points in space (where curves goes)

points in parameter space (knots) (how fast it goes)
In-Class Exercise

Rewrite this parameterization:

\[\gamma(t) = \frac{u_1-t}{u_1-u_0} P_0 + \frac{t-u_0}{u_1-u_0} P_1 \]

for parameterizing an arbitrary point between \(P_i \) and \(P_{i+1} \) in a piecewise line segment:
Piecewise Linear Interpolation

“Pyramid Notation”

\[\gamma(t) = \frac{u_{i+1} - t}{u_{i+1} - u_i} P_i + \frac{t - u_i}{u_{i+1} - u_i} P_{i+1} \]
Piecewise Linear Interpolation

A good first approximation:
 • Easy to calculate
 • Intuitive to understand

Why is this not always sufficient?
Continuity

Smoothness level describes a function’s continuity after taking a derivative

C_0: Segments connected at joint
C_1: Segments share 1st derivative at joint
C_2: Segments share 2nd derivative at joint
C_n: Segments share nth derivative at joint
Lagrange Interpolation

Given a set of unique data points, possible to construct a polynomial that interpolates between data points.
Lagrange Polynomials

Construct polynomial of n-1 degrees from n data points:

expanded basis polynomial for x_0 from points \{x_0, x_1, x_2, x_3\}:

$$L_{3,0}(x) = \frac{(x - x_1) (x - x_2) (x - x_3)}{(x_0 - x_1) (x_0 - x_2) (x_0 - x_3)}$$
Solving as System of Equations

For any point along the curve, there is some polynomial

\[\gamma(t) = \begin{bmatrix} a_x + b_x t + c_x t^2 + \ldots \\ a_y + b_y t + c_y t^2 + \ldots \end{bmatrix} \]
Lagrange Interpolation

Each coordinate is a linear combination of a power of t

$$
\gamma(t) = \begin{bmatrix}
 a_x & b_x & c_x & \cdots \\
 a_y & b_y & c_y & \cdots
\end{bmatrix}
\begin{bmatrix}
 1 \\
 t \\
 t^2 \\
 \vdots
\end{bmatrix}
$$
Lagrange Interpolation

How to solve?

$$\gamma(t) = C_{2 \times k} \begin{bmatrix} 1 \\ t \\ t^2 \\ \vdots \end{bmatrix}_{k \times 1}$$
Lagrange Interpolation

Consider point P_i

\[P_i = C_{2 \times k} \begin{bmatrix} 1 \\ u_i \\ u_i^2 \\ \vdots \end{bmatrix}_{k \times 1} \]
Lagrange Interpolation

There are n known points

\[
\begin{bmatrix}
P_0 & P_1 & P_2
\end{bmatrix} = C_{2 \times k}
\begin{bmatrix}
1 & 1 & 1 \\
u_0^2 & u_1^2 & u_2^2 \\
\vdots & \vdots & \vdots
\end{bmatrix}_{k \times n}
\]
Vandermonde Matrix

If we use \(k = n \), we get a Vandermonde Matrix

\[
\begin{bmatrix}
P_0 & P_1 & P_2
\end{bmatrix}
= C_{2 \times n}
\begin{bmatrix}
1 & 1 & 1 \\
u_0 & u_1 & u_2 \\
u_0^2 & u_1^2 & u_2^2
\end{bmatrix}_{n \times n}
\]
Vandermonde Matrix

Inverse of Vandermonde matrix contains coefficients of Lagrange interpolation polynomials

\[
C_{2 \times n} = \begin{bmatrix}
P_0 & P_1 & P_2
\end{bmatrix} \begin{bmatrix}
1 & 1 & 1 \\
u_0 & u_1 & u_2 \\
u_0^2 & u_1^2 & u_2^2
\end{bmatrix}^{-1}
\]

Finds coefficients of C
Lagrange vs Vandermonde

Two different methods that solve for the same problem
Lagrange interpolation is easier to solve but more involved to use
Vandermonde matrices can be near singular making computation expensive
Lagrange Interpolation

If there are n points, the degree is $n-1$

- 2: linear interpolation
- 3: quadratic interpolation

Curves are C^{n-2} smooth
Lagrange Interpolation Problems

- No oscillation control
- Prone to problems of over-fitting
 - Only gets worse with more points
- Must be recalculated if point changes

How can we solve these issues?
Splines

Piecewise polynomial functions

• Allow greater control over specific areas of the curve
• Interpolation more stable than polynomial interpolation
• Guarantees on smoothness at knots
History of Splines

Ship-building tool
Thin strip of wood to model boat’s curves
Weights (ducks or knots) ensure smooth, reproducible curvature
Spline Keywords

Interpolatory
• Spline goes through all control points

Linear
• Curve points linear in control points

Degree n
• Curve points depend on nth power of t

Uniform
• Knots evenly spaced
Bézier Curves

Spline building blocks
Polynomial
Control point at each end
Curve lies in convex hull of control points
B-Splines ("Basis Splines")

Piecewise polynomial
- (cubic common)

Used in Illustrator, Inkscape, etc

Arbitrary number of control points
- only first and last interpolated
de Casteljau’s Algorithm

Main idea: recursive linear interpolation
Start with four points – control polygon
de Casteljau’s Algorithm

Main idea: recursive linear interpolation
Start with four points – control polygon
Clip corners

\[P_0 \rightarrow P_1 \rightarrow P_2 \rightarrow P_3 \]
de Casteljau’s Algorithm

Main idea: recursive linear interpolation
Start with four points – control polygon
Clip corners

\[P_0 \rightarrow P_1 \rightarrow P_2 \rightarrow P_3 \]
de Casteljau’s Algorithm

Four control points \rightarrow cubic Bézier curve
de Casteljau’s Algorithm

More control points \rightarrow smoother curve
(more pyramid levels)
de Casteljau Evaluation

Numerically stable
Slow
Control points have global influence
de Boor’s Algorithm

Pyramid algorithm
Generalization of de Casteljau
Efficient and numerically stable
Allows local influence of control points

Idea: determine curve by inserting a knot n times (n is degree of polynomial)
B-Spline Properties

Local support: Polynomials are non-zero in a finite domain \((i - n\) to \(i)\) where \(n\) is polynomial’s degree.

Increasing multiplicity of knot decreases number of non-zero basis functions.

- If \(k\) knots at point, at most \(n - k + 1\) non-zero basis functions at point.
Computing de Boor’s

If knot has multiplicity of n, there is only one non-zero basis function at knot

- i.e. the point on the curve is at the control point

If knot is inserted n times, final control point calculated from pyramid is point on curve
de Boor’s Algorithm

Identify point in space for knot position \(t \)

- Predetermine spline’s degree
- Recursively determine control points \((P)\) from local knots \((u)\) and previous level of control points
de Boor’s Algorithm

Degree 3 spline: \(n = 3 \)

\(l = \) pyramid level

\[
P_{i,l}(t) = (1 - \alpha_{i,l})P_{i-1,l-1}(t) + \alpha_{i,l}P_{i,l-1}(t)
\]

\[
\alpha_{i,l} = \frac{t - u_i}{u_{i+1+n-l} - u_i}
\]
de Boor’s Algorithm: Example

\[P_{i,1}(t) = (1 - \alpha_{i,1})P_{i-1,0}(t) + \alpha_{i,1}P_{i,0}(t) \]

\[\alpha_{i,1} = \frac{t - u_i}{u_{i+1+3-1} - u_i} \]
de Boor’s Algorithm: Example

\[P_{i+1,2} = (1 - \alpha_{i+1,2})P_{i,1}(t) + \alpha_{i+1,2}P_{i+1,1}(t) \]

\[\alpha_{i+1,2} = \frac{t - u_{i+1}}{u_{i+1+3} - u_{i+1}} \]
de Boor’s Algorithm: Example

\[P_{i+2,3} = (1 - \alpha_{i+2,3})P_{i+1,2}(t) + \alpha_{i+2,3}P_{i+2,2}(t) \]

\[\alpha_{i+2,3} = \frac{t - u_{i+2}}{u_{i+1+3-3} - u_{i+2}} \]
de Boor's Algorithm: Point Space
de Boor's Algorithm: Control Points

\[\alpha \text{ weights } (u) \]

\[t \text{ (u)} \]
de Boor’s Algorithm: Control Points
de Boor’s Algorithm: Control Points

\[P_0,0 \quad P_{1,0} \quad P_{2,0} \quad P_{3,0} \quad t(u) \quad P_{4,0} \quad P_{5,0} \]

\[P_{4,3} \]

\[P_{3,2} \quad P_{4,2} \]

\[P_{2,1} \quad P_{3,1} \quad P_{4,1} \]

\[P_{0,0} \quad P_{1,0} \quad P_{2,0} \quad P_{3,0} \quad t(u) \quad P_{4,0} \quad P_{5,0} \]

\[\alpha \text{ weights (} u \text{)} \]

\[\alpha \text{ weights (} u \text{)} \]
de Boor’s Algorithm

Degree 3 spline requires 4 control points…
de Boor’s Algorithm

Degree 3 spline requires 4 control points…
And 6 knots…
What about the end positions?
de Boor’s Algorithm

Knot copied at boundary

(Higher degree means more levels means more knots)

\[u_0 = u_1 = u_2 = u_3 \quad u_4 \quad \ldots \quad u_{n-4} \quad u_{n-3} = u_{n-2} = u_{n-1} = u_n \]
Other Spline Types

Hermite
• Can specify derivatives at boundary

Catmull-Rom
• Interpolatory
Further Reading

(History)
http://www.alatown.com/spline/

(de Boor’s)
https://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/de-Boor.html

http://www.inf.ed.ac.uk/teaching/courses/cg/d3/deBoor.html