GPUs
Why GPUs?

In order to render a scene, we must determine the color assigned to each pixel (usually based on light transport)
Work Per Fragment

Fixed work per fragment
Ideally process several hundred thousands of these at 60Hz

```
sample r0, v4, t0, s0
mul r3, v0, cb0[0]
madd r3, v1, cb0[1], r3
madd r3, v2, cb0[2], r3
clmp r3, r3, l(0.0), l(1.0)
mul o0, r0, r3
mul o1, r1, r3
mul o2, r2, r3
mov o3, l(1.0)
```
Working on the CPU

CPU is big and complex but fast on a single thread

...But even a really fast thread isn’t sufficient for shader execution...
Graphics Processing Unit

Built for rendering pipeline
 • Process large number of vertices
 • Assumes similar, relatively simple, operations

What sort of architecture facilitates this?
Throughput Architecture

Simpler cores but lots of them in parallel!
Remember the Rendering Pipeline?
Modern GPU Characteristics

- Homogeneous programmable cores for all programmable stages
- Relatively few special purpose texture units
- Even fewer fixed function units
- Task parallel at pipeline level
SIMD

- Single instruction, multiple data
- Large vectors of data that have the same operation applied to individual elements in parallel
- Based on old super computing techniques but has regained popularity in modern architectures (both CPU and GPU)
Shared Instructions

- Same thing is done in parallel for all fragments/verts/etc
- SIMD amortizes instruction handling over multiple ALUs
Multiple Types of Processing

GPUs do more than shading
 • Allow execution of more than one program

Replicate SIMD processors for different SIMD computations in parallel

8 programs running in parallel, 128 threads in parallel
Problems?

What situations does this throughput style of architecture not handle well?
Branching and Stalling

- Threads stall when next instruction depends on previous instruction’s result
- Pipeline dependencies
- Memory latency
- How to handle these?
Multithreading

- We can assume there are more threads (scheduled computations) than processors
- Threads with similar code executed in “warps” to maintain minimal divergence
- Interleaving warp execution keeps hardware busy when an individual warp stalls
Threads 1-8

Threads 9-16

Threads 17-24

Threads 24-36

Stall waiting

Stall waiting

Stall waiting

extra latency

extra latency

extra latency

Stall
Working with Latency

• Latency hiding
 • Executing many warps can minimize latency (delay in processing)
• More context switching requires more storage (values in registers etc)
GPU Memory and Architecture

Designed for throughput, so bandwidth is critical

- Wide bus (150 GB/s+)
- High bandwidth DRAM organization
- Warp scheduling for latency hiding
- Small execution contexts and efficient local memory
- Limited cache hierarchy
Example: Pascal Architecture
Global and Shared Memory

Global memory scoped for entire program
 • Functions like a heap
 • Slowest (on device) access
 • Good access patterns minimize cache touches

Shared memory located on chip
 • Scoped to block
 • Very fast and localized
 • Good access patterns minimize bank accesses by different threads
Local Memory and Registers

Local memory is scoped to a thread

- Includes everything that does not fit onto registers

- Registers are very fast, so spilling into local memory leads to slowdowns
Programming on the GPU

The programmable shader pipeline is highly specific to rendering.

Idea: Create a language that can harness GPU throughput with more accessible programming paradigms.
GPGPUs

- Solve non-graphics problems on GPUs
 - Textures act as memory
 - Compute shaders allow for small, highly parallel executions
 - Methods like map, reduce, scatter, gather, etc provided for convenience
- Languages like CUDA and OpenCL facilitate development
CUDA Example

main function runs on host (CPU)
 • Allocates memory on host and device global memory
kernels that run on device (GPU) specified with __global__
 • Functions treated much like standard C functions
CUDA Example: SAXPY

For every 2d vector \((x, y)\), multiply constant \(a\) times \(x\), then add \(y\)

Easily parallelized and simple algorithm
Host Code

int main(void) {
 /* Allocate variables here */

 //Allocate memory on host
 x = (float*)malloc(N*sizeof(float));
 y = (float*)malloc(N*sizeof(float));

 //Allocate memory on device
 cudaMemcpy(&d_x, N*sizeof(float));
 cudaMemcpy(&d_y, N*sizeof(float));
/* Initialize host array here */

//Copy host array data to device
cudaMemcpy(d_x, x, N*sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(d_y, y, N*sizeof(float), cudaMemcpyHostToDevice);

//Launch the device kernel on N+255/256 thread blocks with 256 threads each
saxpy<<<(N+255)/256, 256>>>(N, 2.0, d_x, d_y);

//Clean up host and device memory
cudaFree(d_x);
cudaFree(d_y);
free(x);
free(y);
Device Code

__global__
void saxpy(int n, float a, float *x, float *y) {
 //Get global index into array
 int i = blockIdx.x*blockDim.x + threadIdx.x;
 //Run saxpy
 if (i < n) y[i] = a*x[i] + y[i];
}

Note: blockIdx, blockDim, threadIdx predefined in CUDA
GPGPU Challenges

- Parallelization algorithms
- Memory for throughput architecture
- Work scheduling on throughput architecture
- Hiding latency
Toward Heterogeneous Architecture

Idea: CPUs are good at some things and GPUs are good at others. Why not have them closer together to get the best of both worlds?

- Already commonly used in embedded devices (e.g. system on a chip)
- Has attractive properties for general computing as well
- Also presents numerous software and hardware challenges at all levels of programming!