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Abstract. MarliK is a 2D soccer simulation team which has been participating 

in RoboCup competitions since 2008. In this paper we briefly describe our 

latest developments which are mainly focused on optimizing our algorithms and 

making our dribble skills more dynamic. Also although still in the preliminary 

stages, we are looking forward to develop some proper level of learning in our 

team which will be used to improve the recently optimized dribble algorithm 

and also our existing block algorithm in next stages in order to improve the goal 

of the more realistic simulated soccer agents. 
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1   Introduction 

We first started our work in the soccer simulation field back in 2006. Our first team, 

MarliK, was based on the UvA Trilearn source code and we won many national 

competitions with it. Later on we started another team which was based on Mersad 

2005 released source code, completing many incomplete modules implemented in last 

stages of the Mersad project and adding new ones to it. This new team’s name was 

LEAKIN’DROPS and with it we started participating in RoboCup competitions. 

LEAKIN’DROPS was present in RC 2008 at Suzhou and RC 2009 at Graz 

competitions. Afterwards we changed our base code and began working on the Helios 

base code, also changing our name to MarliK once again in the process [1].  

Our works in the past was mostly focused on positioning systems for offensive and 

defensive situations. This year we tried optimizing our code a bit and making our 

algorithms more flexible and dynamic in order to adapt to any possible situation that 

might arise during the matches. 

In this paper, we’ll explain some of the algorithms that we are working on, and the 

dribble direction finding skill we developed in our team up until now. 
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Fig. 1. A simple model of the decision tree we are using for our agents. 

2 The Optimized Dynamic Path Finding Algorithm for Ball Owner 

This algorithm is planned for the ball owner to find an optimum path to dribble with 

ball and create a better situation to pass the ball or create a dangerous situation in 

front of opponent’s goal to score a goal. In this algorithm, the agent is making a 

decision based on the current situation of the environment without any further 

knowledge about its last experiences [2]. 

In every different part of the field the agent must have a default dribble target 

which is not affected by opponent agents yet and then the algorithm will change the 

path in order to achieve the best effective movement. A simple default target for each 

part of the field is shown in Fig. 2. 

 

 Fig. 2. Default dribble path for an agent in the soccer field.  

 



If the ball owner is behind the red line, dribble target will be set to a point in front 

of the agent toward the X dimension only. But ahead of the red line, when the agent is 

near the opponent’s goal, dribble target will be set to the center of the goal line in 

order to carry the ball to a position that a shoot may be viable. In the dribble skill, the 

ball owner agent performs a dribble to a particular direction which is calculated by the 

algorithm. 

After setting the default target, a comparative factor d is defined. This factor is the 

main part of the algorithm which affects the final direction of dribbling and is 

associated with the distance of the opponent to the ball owner agent. It is calculated 

with a comparative ratio. This d should be converted from distance to an angle with a 

high sensitivity for small distances and low sensitivity for long distances so the agent 

can have a good reflex while the opponent moves near him and to have less 

consideration while the opponent moves in far distances e.g. when opponent’s 

distance from agent changes from 4 meters to 2 meters, it should affect more on the 

dribble direction than a change from 15 meters to 13 meters. The inverse tangent 

function is appropriate for this situation. As shown is Fig. 3, the inverse tangent 

function has more sensitivity for low values and low sensitivity for high values in 

both negative and positive values [2]. 

 

 

 

Fig. 3. The graph of inverse tangent function.  

 

 

After d is converted to the desired angle with the suitable function, the range of d 

should be changed to match with all possible movements for agent. 

The agent should do this process for every single opponent to find one effective 

direction for each opponent and in the end, add the average of these calculated 

directions to the default dribble direction which was created from the defined dribble 

targets. The algorithm for this process is shown below, in Table 1.  

 

 



Table 1.  The optimized path finding algorithm. 

Initialize the environment’s current situation. 

Define a modifier with the value 0. 

Repeat for every opponent: 

Declare difference with value of the difference of angle between these two 

vectors:  

- current opponent's position to ball 

- agent's dribble target to ball 

Define d, the distance between the opponent and the ball owner. 

Normalize the value of d. 

Convert the type of d with inverse tangent function. 

Normalize the range of d. 

Update the value of modifier according to: 

modifier ← modifier + difference*d. 

Until next seen opponent is not checked. 

Update the final dribble direction according to: 

final direction ← default direction + (modifier / number of checked opponents) 

 

3   Conclusions and Future Work 

In this paper, we have briefly described our latest works in the field of multi-agent 

systems and artificial intelligence. Despite our efforts, we are yet to develop a proper 

learning system for our agents. We hope to achieve this goal in the near future and 

manage to develop techniques allowing our agents to learn and adapt to any situation 

like humans do. 
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