The NeverMost 3D Soccer Simulation Team
Desctiption 2012

Yalong Yang, Yang Yu, Haobo Ma,
Jun Song, Chang Gao, and Jianrong Wang

Computer Science Department
Software Engineering Department
Tianjin University, Tianjin, China

http://cs.tju.edu.cn

Abstract. This paper presents an overview of the NeverMost team. In
this release we use the vision information of the field lines to enhance
the accuracy of self-localization. We also establish a new mechanism of
communication that transfer information between Cerebrum and Cere-
bellum. We develop a framework of extracting higher level information
from the basic information that get from the server. In this paper, a
description of our current and future works is presented. abstract envi-
ronment.

1 Introduction

NeverMost 3D soccer simulation team, established in 2010, is the third 3D soccer
simulation team from Tianjin University. Robocup 3D Simulation has been long
kept as a major subject of our team. It is a young team that boasts many sedulous
researchers and honored by excellent results. In August 2011, we expanded the
our team by recruting new members. Thanks to the brilliant work of RoboCup
3D Simulation League, the cute humanoid robot Nao and the powerful simulation
platform make a great amount of people become interested in the 3D simulation
field. Compared with the other leagues, programming humanoid agents under
the simspark brings several advantages such as making simplified assumptions
about the world, low debugging costs, and the ability to automate experiments,
especially for beginners.

This paper represents the major ideas and the establiment of NeverMost 3D
soccer simulation team. Different from the first 3D soccer simulation team of
Tianjin University, the TJUnited, the architecture of NeverMost is based on the
NeverMore 3D soccer simulation team (the second team from Tianjin University)
[1] in some degree. After a year of development, the NeverMost has grown up
from a small and simple team to a strong team with sound designed and stable
implemented achievements.

The whole architecture of NeverMost agent can be simply described into
three levels hierarchically.

Data-processing level, which we called ”WorldModel”, commits two tasks.
First, maintain the world states, such as the information of each perceptor; and



2 The NeverMost 3D Soccer Simulation Team Desctiption 2012

second, pick up more complex information from the raw data offered by the
sever, such as agent’s global position and the situation of current game.

The strategy level, which we called ” Cerebrum?”, is based on an HTN(Hieratical
Task Network) planner. This part was written in PROLOG, and integrated into
agent by the use of interface of SWI-Prolog to C++[2]. As we can imagine, the
task of ”Cerebrum” is to think the behaviors, which can be treated as a commu-
nication protocol that transfer information between Cerebrum and Cerebellum,
like BeamBehavior, WalkBehavior and so on.

The Operation Level, which executes agent’s behaviors from the Cerebrum.
Mainly the instruction type behaviors, like beam; and action type behaviors, like
walk, shoot and etc. We use the kinematics to implement a real time calculation
of agent’s action instead of the use of the static data which we use in the last
version NeverMore, in the piece of biped walking, we use the preview control of
ZMP to get a stable walking action. This level is written in C++.

The detailed concepts of NeverMost design are presented in the following sec-
tions. Section 2 introduces the overall agent architecture. Section 3 presents the
World Model Data Processor. Section 4 illustrates the Method of agent locating.
Section 5 explain the concept of Behavior, following by Section 6 Cerebellum
and Conclusions and future works in Section 7.

2 Agent Architecture

World Maodel Cerebrum

* RobotModel WIMDP 2 i ey
= Pasition
= Rotation
WMDP1 WMDP3

World Maodel Data Action

Behaviors

Cerebellum

Server Proxy

S-exp Strings l

Simspark Server

Fig. 1. Agent Architecture

Similar with the last version Nevermore, the NeverMost agent uses a flex-
ible architecture which based on the idea of Vorsts Layered architecture[3], as
demonstrated in Fig.1. Each component is explained as follow:



The NeverMost 3D Soccer Simulation Team Desctiption 2012 3

— Server Proxy: This module is responsible for communication with the serv-
er. There are network submodule, effectors submodule, perceptors submod-
ule, agentproxy submodule in server proxy module. This module can make
the conversion between s-expression and program internal strong type data
easily.

— World Model: The world model is the abstract of simulation world in the
rcssserver3D. It saves the internal representation of the environment and on
the other hand, extracts useful high level abstraction from this information
by using World Model Data Processor(following referred to as WMDP).
WMDP is a list of processors, which can get more abstracted information
like agent location. The front WMDP can be accessed by behind WMDPs.
This feature can make our World Model more flexible.

— Cerebellum: the execution module of the agent. Cerebellum controls the
joints of the agent, and receives the behavior from the Cerebrum and executes
it with monitoring mechanism.

— Cerebrum: the thinking component of the agent. It thinks over the next
best behavior for the whole team with the given world state.

3 World Model Data Processor

As the same idea of last year version of NeverMore, World Model Data Proces-
sor (following referred to as WMDP) is a mechanism designed for processing the
primitive data from the World Model. Each data processor focus on one aspect
of analysis of the world state.[1] As the information from the server are all basic
data, which include data from the perceptors and the basic status of the game.
While for the strategy, more abstract information is needed, like the global posi-
tion of the players, whether the agent is falling down or not, and etc. Analyzing
the basic data and extracting the higher information is what the framework does.
At the same time, we found that the processing of the higher information may
cause the interdependent problem in WMDPs. That is, one WMDP may need
the result of another WMDP, for example, when we want to know the situation
of the game, the players global position is needed as the input data. Therefore,
under this framework, this problem can be solved by adding properties in WMD-
P that mark those needed WMDPs, and use the topological sort algorithm to
determine the processing order of all the WMDPs.

4 Method of agent locating

Before the rcssserver3D adds lines to vision perceptor, locating agent itself uses
the flag around the field to perform. During one cycle of server, if more than
three flags can be seen, the calculation of the position of agent should be applied
intersection of three spheres formula, then calculate the rotation of agent with
the horizontal angle, vertical angle, and the position we get before. If only two
flags can be seen, an algorithm like the Robocup 2D location method[4] is best
applied here. However, our team has made some improvement from assuming



4 The NeverMost 3D Soccer Simulation Team Desctiption 2012

the z value of position vector to be zero. We use forward kinematics to calculate
the height of agent, and then set z to this height. It is in this way that accurate
the location.

Lines are added to vision perceptor in new version of rcssserver3D. With
many fixed lines in the soccer field, agent can see a series of points including
the endpoints of lines and the intersection points caused by visual limit. If the
endpoints of lines can be extracted, just like there are more fixed flags on the
field so as to reduce the difficulty in the calculation of locating agent.

The following several steps are the algorithm of the extraction the endpoints
of lines:

0,7,0)

(-10.5,2,0 (-8.7,2,0) (-0.56,1.71,0) (0.56,1.71,0) 8.7,2,0 __ |(10.5,2,0)

(-1. 45, 1. 05, 0) (1.45,1.05,0)
(-1.8,0,0) (1.8,0,0)
(-1.45, 1. 05, 0) (1. 45,-1.05,0)

: 56 5,-2,0)
(-10.5,-2, 0 8.7,-2,0) (-0.56,-1.71,0)| (0.56,-1.71,0) (10.5,-2,0)

Fig. 2. Soccer Field

First of all, we locate the endpoints of lines by using traditional location
method (turn off the noise and limit of vision). The result is shown in Fig. 2.
Secondly, extract the endpoints of lines based on the distance between endpoints
and flags (F1L, F1R, etc.) in normal situation. We can map this endpoints to the
position of points on Fig. 2. It is noteworthy that this algorithm is independent
from the traditional location method’s result. In the end, more points with global
position and vision information can be gained, i.e., more global flags are available
for locating.

—x1
—1

—x2

—¥2
.5 W

Fig. 3. Locating Results




The NeverMost 3D Soccer Simulation Team Desctiption 2012 5

The Fig. 3 shows the locating result after beaming to (-3, -5). The red line
is the result of traditional location method, and the blue line added lines. It is
obvious that the lines perceptor adding make location more accurate.

5 Behavior

Behavior works as a communication mechanism that transfers information be-
tween Cerebrum and Cerebellum, which describes the result of action planning.
An appropriate structure of behavior is crucial to extensible and stable design
of cerebrum and cerebellum.

As the reasons above, we have designed a new way to describe the data for
communication:

1. Parameters for a behavior
2. Resources which is needed by executing the behavior
3. Priority of the behavior

At the same time some revolutionary changes have been made in the imple-
ment of the behaviors:

1. Make the coordinate system of the walk behavior relative
In the Tjunited and NeverMore version, description of parameters of the
walk behavior is based on the global Cartesian coordinate system. Howev-
er, the dealing with the frequent change of the destination turns to be a
tough one. In Nevermost, We choose the relative coordinate system. It is a
system that uses the agent as the origin and the direction as the axis, and
then commands such as left, right and etc. can be sent smoothly, just like
authentic football playing. In this case, we will be able to get a flexible walk
decision, and the parameters are also useful for the online biped walk pat-
tern generator algorithm, like using preview control of zero-moment point[5].

2. Implement the multiple behavior handle system

For handling multiple behaviors, needed resources and the priority of a be-

havior are added in description. When the Cerebellum generates multiple

behaviors in one cycle, the system will check whether there is a conflict in

the use of resource promptly. If there is no conflict, the multiple behaviors

can execute together. Otherwise we use the following algorithm to solve the

conflict.

(a) Get the behavior which has the highest priority, and add to the canAct
list

(b) Delete all the behaviors that has conflict with the behavior got from step

(a)

(c) If exist leaving behaviors jump to step (a), else finish algorithm. The
canAct list is the final result



6 The NeverMost 3D Soccer Simulation Team Desctiption 2012

With the algorithm above, it won’t appear the conflicts, and it will also make
as much behaviors act as possible.
For example,

(a) TurnHeadBehavior will use the resource of the head joint, and WalkBe-
havior will use the joints on the leg. There is no conflict, then these two
behaviors can act together

(b) StandUpBehavior will use the resource of all the joints of the agent, so
there will be conflicts between StandUpBehavior and the WalkBehavior.
However, the StandUpBehavior has a higher priority, so the system will
choose the StandUpBehavior to execute.

6 Cerebellum

Cerebellum is the core module of generating and managing motions of Nao. Since
its major function is to translate behaviors received from the Cerebrum into
arrays of actions which can be recognized by the agent. In addition, Cerebellum
also monitors the execution of those behaviors by using the information stored
in the World Model.

Behaviors are generated by Cerebrum and passed to Cerebellum, which using
the current agent state, will translate them into a sequence of activities and each
of activities will again be translated into a sequence of key frame. Key frames are
Fig.d out by Frame Manager depending on the kind of activity it processed and
the current frame, also called the current agent state. For more Frame Manager
is also responsible for calculating the transition from the current frame to the
target key frame.

6.1 Frame Manager

H § § £
§ i £ & & 7 3 N Y
< & 3 & & 1 <

0000000600000 06

FE,

K

Fig. 4. Frames and Key Frames

Frame Manager takes care of the transition from current frame to the target
frame.



The NeverMost 3D Soccer Simulation Team Desctiption 2012 7

Frame One frame is the concept of an agent state in a specific time. An array of
frames can form one behavior. There are some frames among those frames that
are called as key frames. For example, the turning point of a joint. Those frames
between key frames can easily be computed by using proper function such as
linear or trigonometric functions.

Key Frame Key frames are significant frames in a behavior. The importance
of key frames lies in not only the fact that they can be used to compute other
frames, but in they provide the possibilities to connect two different activities
seamlessly.

It is obvious that not every frame can be treated as a key frame. A key
frame must accord with the ”3P” rule, saying, ”proper position, proper velocity
and proper torque”. One key frame must satisfy each of its joints has a proper
position, a proper velocity and a proper torque. The ”3P” rule makes sure the
stability of the Frame-KeyFrame design.

One execution of behavior is an execution of actions that make the agent
reaches key frames one after another and at last reaches expected target frame.
This series of the actions is also called Activity. The key frame system makes
the generation and debugging of a behavior more convenient. We neednt concern
about the total process any more, but only the states between key frames instead.
It becomes much easier for us to find a function to process each joint’s movement,
as those key frames separate each behavior into short segments. What’s more,
it provides us the seamless connection between two behaviors and the flexibility
of behavior transition.

Significant Phase

7 7 7

:'
&

o O@ Behaviorl

]
&

OO@OOOO@OOO

Significant Phase
Fig. 5. Transition from Behavior 1 to Behavior 2

Fig. 5 shows how the Frame Manager implements the transition between two
behaviors. Frame Manager searches the shorted path of the Key Frames from all
the current behavior to the next one. We have built a function to calculate the
difference between two frames. For each behavior, there is a ”significant phase”.
The transition from the current behavior to the next behavior should be finished



8 The NeverMost 3D Soccer Simulation Team Desctiption 2012

before the significant phase of the next one, because it would be meaningless if
we just reach the tail of a behavior by transition, which may cause the agent to
do some unexpected activities.

7 Conclusions and future works

This paper is an introduction of the features and implementation of our team,
including the architecture of the agent, the self-localization of agent, the method
to maintain the higher level information of the WorldModel, the frame system
and the information transformed between the Cerebrum and Cerebellum. We
use the lines in vision perceptor of the new version of rcssserver to localize the
agent, and the result proves that it will make the self-localization more accurate.

The follow-up of NeverMost agent development will mainly focus on the
following aspects:

— use the reinforcement learning to make the implement of agent’s actions
more stable and more efficient

— combine the machine learning with the preview control to improve the sta-
bility of the biped walking

— in the self-localization, make use of the intersection between the vision area
and the lines of the field

— make a conclusion of the information of the fixed point of the field line and
submit it to the official simspark wiki



The NeverMost 3D Soccer Simulation Team Desctiption 2012 9

References

. Yaolong Huang, Chao Ma, Haobo Ma, Yalong Yang, Yang Yu,Jun Song and Jianrong
Wang, The NeverMore 3D Soccer Simulation Team Description 2011. Robot Soccer
World Cup, Istanbul, Turkey. July 2011.

. Jan Wielemaker: An overview of the SWI-Prolog programming environment. In
Fred Mesnard and Alexander Serebenik, editors, Proceedings of the 13th Interna-
tional Work shop on Logic Programming Environments, pages 116, Heverlee, Bel-
gium.2003.

. Philipp Vorst: Readylog agents for the robocup 3d soccer simulation league, Masters
thesis, RWTH Aachen.2006.

. Jelle Kok, Remco de Boer, Nikos Vlassis, and Frans Groen. UvA Trilearn 2002 Team
Description. Robot Soccer World Cup. 2002.

. Shuuji Kajita, Fumio Kanehiro, Kenjio Kaneko, Kiyoshi Fujiwara, Kensuke Harada,
Kazuhito Yokoi and Hirohisa Hirukawa. Biped wlaking pattern generation using
preview control of zero-moment point. In International Conference on Robotics and
Automation; Proceedings of the 2003 IEEE, 2003.



