
beeStanbul
RoboCup 3D Simulation League
Team Description Paper 2012

Baris Demirdelen, Berkay Toku, Onuralp Ulusoy, Tuna Sonmez, Kubra Ayvaz,
Elif Senturk, and Sanem Sariel-Talay

Artificial Intelligence and Robotics Laboratory
Istanbul Technical University

Computer Engineering Department
Istanbul, TURKEY

http://air.cs.itu.edu.tr/beestanbul
sariel@itu.edu.tr

Abstract. The main objective of the beeStanbul project is to develop
an efficient software system to correctly model the behaviors of simu-
lated Nao robots in a competitive environment. Several AI algorithms
are being used and developed for contributing to robotics research while
also advancing the quality of competitions in 3D Simulation League. This
team description paper presents important aspects of the overall system
design and outlines the methods used in different modules.

1 Introduction

The beeStanbul project from the Artificial Intelligence and Robotics laboratory
(AIR lab) at Istanbul Technical University (ITU) is the first initiative from ITU
to participate in RoboCup competitions. Earlier projects in the AIR lab were
mainly on cooperative multirobot systems. This challenging project was initiated
in 2009 to apply the experience, gained from earlier research on multirobot
systems [1], to competitive environments as well.

The beeStanbul team consists of undergraduate and graduate students from
the Computer Engineering Department of ITU. The main goal of the team is to
contribute to the main objective of the RoboCup project by an efficient design
of a software system. The designed software system serves as a basis to apply
several high-level intelligence, reasoning and learning methods.

beeStanbul team have participated in the RoboCup competitions since 2010.
The team won several games during the competitions. The software architecture
of the system has been revised and several promising motion types have already
been developed since 2010. With the completion of the high-level modules, the
team is expected to achieve the project’s main goal.

The organization of the rest of the team description paper is as follows.
Section 2 presents the software system architecture for simulated Nao robots in
the SimSpark simulation environment. Motions and behaviors available for an



agent are presented in Sections 3 and 4 respectively. The developed team-strategy
and planning methods are discussed in Section 5, followed by the conclusion in
Section 6.

2 System Architecture

The overall software system consists of several modules that interact with each
other (Fig. 1). The Server Layer perfoms a two-way communication with the
SimSpark server, decodes incoming messages and encodes outgoing messages. In
order to carry out these operations, the SimSpark utilities and rcssnet library,
provided by SimSpark, are used.

SimSpark

Server Layer

Server

Communication
Parser

Agent Layer

Agent ModelWorld Model Walking Engine
Agent

Communication

Behaviour

Planner

Team Strategy

Vision

Localization

Fig. 1. Overall Software Architecture.

The Agent Layer is responsible for performing the main functionalities of
an agent. Each agent maintains its own world model for the environment and
the agent model for its own state. The Localization module is responsible for
determining the correct pose of the agent using information gained from seen
flags. Localization is performed by using triangulation method with Kalman



Filter using distance and angles to a flag. In situations where triangulation is
not possible, odometry information is used. The Vision module is responsible
for determining the positions of the observed objects in the environment. Based
on the observation history, a semantic analysis of the objects (including the
opponents) and predictions are made. The agent decides on a behavior based
on its agent and world models, the selected team strategy and the assigned role
for itself. Walking engine module determines how the agent should walk given a
target position and an orientation. Behaviour module is responsible for executing
certain commands like move-to-target or dribble-to-target. Commands for the
corresponding behavior is sent to the Server Layer to generate the desired effect.
Simultaneously, either informative or query messages might be sent to teammates
based on the selected team role.

3 Motions

In our earlier implementation, we used the Partial Fourier Series (PFS) model [2]
for motions in coronal plane [3]. This implementation includes seven main body
motion types and special transition functions for smoothly switching between two
arbitrary motion types. Although robots are able to walk fast enough with this
model, transitions cause delays in reactive behaviors. Therefore, we have shifted
our focus on implementing omnidirectional motions using the motion model
given in [4]. The new implementation will include static and dynamic motions.
Static motions include standing up or searching the ball with head as predefined
motions. On the other hand, dynamic motion patterns are generated dynamically
depending on a target. These correspond to different types of walks, turns and
alignments. We’re planning to optimize the parameters with an optimization
algorithm such as Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
[5] that is almost a parameter-free algorithm.

4 Behaviors

There is a layered motion selection architecture for motions, behaviors, plans
and cases in the team strategy. Modularity and ease of maintenance could be
achieved by using such a hierarchy. While motions operate on the lowest level,
behaviors are constructed as sequences of low-level motions. Some behavior ex-
amples include move-to-target, turn-to-target and dribble-to-target. On top of
these behaviors, static plans are constructed in the form of behavior sequences.
The team strategy component uses these plans in a modular way. A sample
instantiation of a plan is given in Figure 2.

5 Team Strategy and Planning

Team strategy involves four sequential processes to determine the target of an
agent [6]. Figure 3 presents the main modules for the team strategy. Initially



dribble-to-goal

move-to-target dribble-to-target

turn in
diagonal walk

side walk

forward walk

backward walk

turn out
dribble

stopturn a-

ball

plans

behaviors

motions

attacker attacker

kick-to-goal

Fig. 2. A sample instantiation of the dribble-to-goal plan.

two groups, namely attackers and defenders, are formed by using a group forma-
tion strategy. The role of each agent is determined based on these groups. The
attackers group involves the forward and the midfielder agents while the defend-
ers group involves only the defender agents. There are three different planners
designed for four different roles. Forward planner uses a finite state machine
(FSM) that moves to the ball regardless of the teammates and chooses an ap-
propriate action from kick and dribble behaviors. Goalkeeper planner always
stays in team’s penalty area and tries to form an obstacle against opponents to
prevent them from scoring. Final planner is a FSM both used by defenders and
midfielders. Only difference in the FSM for both roles is the target calculation.
Based on the assigned role of an agent, the corresponding planner is activated. A

Fig. 3. General structure of the team strategy.



case-based group formation method is used to determine the number of defender
agents and midfielder agents dynamically. Since two agents are assigned to the
goalkeeper and the forward roles, the remaining seven agents are to be assigned
to these roles. Instead of using a predetermined number for these roles, a case-
based method is applied to determine the best separation. Equation 1 shows the
information that is considered in selecting a case.

Case = (BallPos., Score,AgentPos.,Numberofmidf.,Numberofdef.) (1)

The midfielder and defender agents need to position themselves for maintaining

Fig. 4. Step-by-step calculation of the Voronoi cell for an agent (a2).

close proximity to the forward agent and defending the goal respectively. This
is accomplished by a distributed Voronoi cell construction approach in which
each agent calculates its own cell independently from that of the others. There-
fore, every agent has a differently shaped cell and these can overlap. The time
complexity of the method is O(n2) where n is the number of agents in the team.

Figure 4 illustrates the iterations for calculating the final cell and the corre-
sponding target as the center of this cell for agent #2 (a2), which is a midfielder
and draws its initial cell according to the ball position. As mentioned before,
only teammates in the viewpoint of the agent are considered. The area that is



out of a2’s point of view is shown as the shaded area. Figure 4 (a) shows the
initial cell construction by considering the ball position (PB). In Figure 4 (b),
(c), and (d), the cell is modified according to the locations of a5, a6, a8 and
a9, respectively. The line for a9 doesn’t have any intersection points with the
current cell, so it doesn’t make any changes in the cell. The final Voronoi cell of
a2 is shown with the red frame and the center of that cell is marked with a red
point in Figure 4 (d).

The method is used for both midfielders and defenders. Defenders create their
cells with the same algorithm, but their initial cell is calculated according to the
midpoint of the line connecting the ball position and the center of the team’s
goal position while midfielders use the ball location. After constructing the cell
for itself, each agent determines the center of the cell as its new target. Agents
become closer to each other by using this strategy, which is more beneficial for
attacking in soccer.

6 Conclusion

This team description report outlines different parts of the developed software
system for beeStanbul robots. The beeStanbul is an ongoing project and the
low-level modules of the architecture were designed and implemented. Current
work includes designing the omnidirectional motions. The future focus will be
on the use of efficient team coordination strategies with the designed motions
and the integration of learning capabilities for robots.

References

1. Sariel-Talay, S., Balch, T.R., Erdogan, N.: A generic framework for distributed
multirobot cooperation. Journal of Intelligent and Robotic Systems 63(2) (2011)
323–358

2. Asta, S., Sariel-Talay, S.: Nature-inspired optimization for biped robot locomotion
and gait planning. In: Proceedings of the 6th European Event on Nature-inspired
Techniques in Scheduling, Planning and Timetabling. evoSTIM (2011) 434–443

3. Picado, H., Gestal, M., Lau, N., Reis, L.P., Tomé, A.M.: Automatic generation
of biped walk behavior using genetic algorithms. In: Proceedings of the 10th In-
ternational Work-Conference on Artificial Neural Networks: Part I: Bio-Inspired
Systems: Computational and Ambient Intelligence. IWANN ’09, Berlin, Heidelberg,
Springer-Verlag (2009) 805–812

4. Graf, C., Rfer, T.: A closed-loop 3d-lipm gait for the robocup standard platform
league humanoid. In Zhou, C., Pagello, E., Behnke, S., Menegatti, E., Rfer, T.,
Stone, P., eds.: Proceedings of the Fourth Workshop on Humanoid Soccer Robots,
IEEE-RAS International Conference on Humanoid Robots (Humanoids-10). (2010)

5. Igel, C., Hansen, N., Roth, S.: Covariance matrix adaptation for multi-objective
optimization. Evolutionary Computation 15(1) (2007) 1–28

6. Ulusoy, O., Sariel-Talay, S.: Distributed team formation for humanoid robot soc-
cer. In: Proceedings of the 4th International Conference on Agents and Artificial
Intelligence, Vilamoura, Algarve, Portugal (2012)


