CS344M
Autonomous Multiagent Systems

Todd Hester

Department of Computer Science
The University of Texas at Austin
Good Afternoon, Colleagues

Are there any questions?
Good Afternoon, Colleagues

Are there any questions?

- TAC currently
- Real-world TAC
Logistics

- FAI talk on Friday
 - Dr. Karthik Dantu (Fri, 11am, PAI 3.14)
 - Challenges in Building a Swarm of Robotic Bees
Logistics

- FAI talk on Friday
 - Dr. Karthik Dantu (Fri, 11am, PAI 3.14)
 - Challenges in Building a Swarm of Robotic Bees

- Final tournament: Monday 12/17, 2pm
Logistics

• FAI talk on Friday
 – Dr. Karthik Dantu (Fri, 11am, PAI 3.14)
 – Challenges in Building a Swarm of Robotic Bees

• Final tournament: Monday 12/17, 2pm

• Peer review process — thoughts?
Logistics

- FAI talk on Friday
 - Dr. Karthik Dantu (Fri, 11am, PAI 3.14)
 - Challenges in Building a Swarm of Robotic Bees

- Final tournament: Monday 12/17, 2pm

- Peer review process — thoughts?

- Progress reports coming back
 - Hand graded version in with your final reports
Logistics

• FAI talk on Friday
 – Dr. Karthik Dantu (Fri, 11am, PAI 3.14)
 – Challenges in Building a Swarm of Robotic Bees

• Final tournament: Monday 12/17, 2pm

• Peer review process — thoughts?

• Progress reports coming back
 – Hand graded version in with your final reports

• Final projects due in 3 weeks!
Your Progress Reports

- Overall quite good! (writing and content)
Your Progress Reports

- Overall quite good! (writing and content)
- Best ones motivate the problem before giving solutions
Your Progress Reports

- Overall quite good! (writing and content)
- Best ones motivate the problem before giving solutions
- Say not only what’s done, but what’s yet to do
Your Progress Reports

- Overall quite good! (writing and content)
- Best ones motivate the problem before giving solutions
- Say not only what’s done, but what’s yet to do
- More about what worked than what didn’t
Your Progress Reports

- Overall quite good! (writing and content)
- Best ones motivate the problem before giving solutions
- Say not only what’s done, but what’s yet to do
- More about what worked than what didn’t
- Clear enough for outsider to understand

Todd Hester
Your Progress Reports

- Overall quite good! (writing and content)
- Best ones motivate the problem before giving solutions
- Say not only what’s done, but what’s yet to do
- More about what worked than what didn’t
- Clear enough for outsider to understand
- Do not just paste in proposal text... modify/merge it in
 - Especially if your plans have changed
 - Report should not say what you plan to put in the report
Details

- Be specific - enough detail so that we could reimplement
 - Use pseudocode and/or diagrams
Details

- Be specific - enough detail so that we could reimplement
 - Use pseudocode and/or diagrams
- Break into sections
Details

- Be specific - enough detail so that we could reimplement
 - Use pseudocode and/or diagrams
- Break into sections
- Say up front specifically what you are doing
Details

• Be specific - enough detail so that we could reimplement
 – Use pseudocode and/or diagrams

• Break into sections

• Say up front specifically what you are doing
 – Not “working on passing”
 – But making pass decisions based on x, y, and z
Details

• Be specific - enough detail so that we could reimplement
 – Use pseudocode and/or diagrams

• Break into sections

• Say up front specifically what you are doing
 – Not “working on passing”
 – But making pass decisions based on x, y, and z

• It should not be left to the reader to figure it out
Details

- Be specific - enough detail so that we could reimplement
 - Use pseudocode and/or diagrams
- Break into sections
- Say up front specifically what you are doing
 - Not “working on passing”
 - But making pass decisions based on x, y, and z
- It should not be left to the reader to figure it out
- Can you say exactly how your work differs from baseline?
Style

- More about your approach, less about the process
Style

- More about your approach, less about the process
 - Not “What I did on summer vacation”
Style

- More about your approach, less about the process
 - Not “What I did on summer vacation”
 - Not just “we decided.”
Style

• More about your approach, less about the process
 – Not “What I did on summer vacation”
 – Not just “we decided.”
 – How? Why? What alternatives?
 – Say where parameters came from
Style

• More about your approach, less about the process
 – Not “What I did on summer vacation”
 – Not just “we decided.”
 – How? Why? What alternatives?
 – Say where parameters came from

• Slides on resources page
Style

• More about your approach, less about the process
 – Not “What I did on summer vacation”
 – Not just “we decided.”
 – How? Why? What alternatives?
 – Say where parameters came from

• Slides on resources page

• Final projects: content matters more
Trading Agent Competition

- Put forth as a **benchmark problem** for e-marketplaces (Wellman, Wurman, et al., 2000)

- Autonomous agents act as **travel agents**
Trading Agent Competition

• Put forth as a benchmark problem for e-marketplaces (Wellman, Wurman, et al., 2000)

• Autonomous agents act as travel agents
 – **Game**: 8 agents, 12 min.
 – **Agent**: simulated travel agent with 8 clients
 – **Client**: TACtown ↔ Tampa within 5-day period
Trading Agent Competition

- Autonomous agents act as travel agents
 - **Game**: 8 agents, 12 min.
 - **Agent**: simulated travel agent with 8 clients
 - **Client**: TACtown ↔ Tampa within 5-day period

- **Auctions** for flights, hotels, entertainment tickets
 - **Server** maintains markets, sends prices to agents
 - Agent sends bids to server over network
28 Simultaneous Auctions

Flights: Inflight days 1-4, Outflight days 2-5 (8)

- Unlimited supply; prices tend to increase; immediate clear; no resale
28 Simultaneous Auctions

Flights: Inflight days 1-4, Outflight days 2-5 (8)

- Unlimited supply; prices tend to increase; immediate clear; no resale

Hotels: Tampa Towers/Shoreline Shanties days 1-4 (8)

- 16 rooms per auction; 16th-price ascending auction; quote is ask price; no resale
- Random auction closes minutes 4 – 11
28 Simultaneous Auctions

Flights: Inflight days 1-4, Outflight days 2-5 (8)

- Unlimited supply; prices tend to increase; immediate clear; no resale

Hotels: Tampa Towers/Shoreline Shanties days 1-4 (8)

- 16 rooms per auction; 16th-price ascending auction; quote is ask price; no resale
- Random auction closes minutes 4 – 11

Entertainment: Wrestling/Museum/Park days 1-4 (12)

- Continuous double auction; initial endowments; quote is bid-ask spread; resale allowed
Client Preferences and Utility

Preferences: randomly generated per client

- Ideal arrival, departure days
- Good Hotel Value
- Entertainment Values
Client Preferences and Utility

Preferences: randomly generated per client

- Ideal arrival, departure days
- Good Hotel Value
- Entertainment Values

Utility: 1000 (if valid) – travel penalty + hotel bonus + entertainment bonus
Client Preferences and Utility

Preferences: randomly generated per client

- Ideal arrival, departure days
- Good Hotel Value
- Entertainment Values

Utility: 1000 (if valid) – travel penalty + hotel bonus + entertainment bonus

Score: Sum of client utilities – expenditures
Allocation

\[G \equiv \text{complete allocation of goods to clients} \]
\[v(G) \equiv \text{utility of } G \text{ – cost of needed goods} \]
\[G^* \equiv \text{argmax } v(G') \]
Allocation

\[G \equiv \text{complete allocation of goods to clients} \]

\[v(G) \equiv \text{utility of } G \text{ – cost of needed goods} \]

\[G^* \equiv \arg\max v(G') \]

Given holdings and prices, find \(G^* \)
Allocation

\[G \equiv \text{complete allocation of goods to clients} \]
\[v(G) \equiv \text{utility of } G \text{ – cost of needed goods} \]
\[G^* \equiv \text{argmax } v(G) \]

Given holdings and prices, find \(G^ \)*

- General allocation NP-complete
 - Tractable in TAC: mixed-integer LP (ATTac-2000)
 - Estimate \(v(G^*) \) quickly with LP relaxation
Allocation

\[G \equiv \text{complete allocation of goods to clients} \]
\[v(G) \equiv \text{utility of } G - \text{cost of needed goods} \]
\[G^* \equiv \text{argmax } v(G) \]

Given holdings and prices, find \(G^* \)

- General allocation NP-complete
 - Tractable in TAC: mixed-integer LP (ATTac-2000)
 - Estimate \(v(G^*) \) quickly with LP relaxation

Prices known \(\Rightarrow G^* \) known \(\Rightarrow \) optimal bids known
High-Level Strategy

- Learn model of expected hotel price
High-Level Strategy

- Learn model of expected hotel price distributions
High-Level Strategy

• Learn model of expected hotel price distributions

• For each auction:
 – Repeatedly sample price vector from distributions
High-Level Strategy

• Learn model of expected hotel price distributions

• For each auction:
 - Repeatedly sample price vector from distributions
 - Bid avg marginal expected utility: $v(G^*_w) - v(G^*_l)$
High-Level Strategy

• Learn model of expected hotel price distributions

• For each auction:
 – Repeatedly sample price vector from distributions
 – Bid avg marginal expected utility: \(v(G^*_w) - v(G^*_l) \)

• Bid for all goods — not just those in \(G^* \)
High-Level Strategy

• Learn model of expected hotel price distributions

• For each auction:
 – Repeatedly sample price vector from distributions
 – Bid avg marginal expected utility: $v(G^*_w) - v(G^*_l)$

• Bid for all goods — not just those in G^*

Goal: analytically calculate optimal bids
Hotel Price Prediction

Features:

- Current hotel and flight prices
- Current time in game
- Hotel closing times
- Agents in the game (when known)
- Variations of the above
Hotel Price Prediction

• **Features:**
 - Current hotel and flight prices
 - Current time in game
 - Hotel closing times
 - Agents in the game (when known)
 - Variations of the above

• **Data:**
 - Hundreds of seeding round games
Hotel Price Prediction

- **Features:**
 - Current hotel and flight prices
 - Current time in game
 - Hotel closing times
 - Agents in the game (when known)
 - Variations of the above

- **Data:**
 - Hundreds of seeding round games
 - Assumption: similar economy
Hotel Price Prediction

• **Features:**
 - Current hotel and flight prices
 - Current time in game
 - Hotel closing times
 - Agents in the game (when known)
 - Variations of the above

• **Data:**
 - Hundreds of seeding round games
 - Assumption: similar economy
 - Features \mapsto actual prices
The Learning Algorithm

• $X \equiv \text{feature vector } \in \mathbb{R}^n$

• $Y \equiv \text{closing price} - \text{current price } \in \mathbb{R}$
The Learning Algorithm

- $X \equiv \text{feature vector } \in \mathbb{R}^n$
- $Y \equiv \text{closing price } - \text{current price } \in \mathbb{R}$
- Break Y into $k \approx 50$ cut points $b_1 \leq \cdots \leq b_k$
The Learning Algorithm

- \(X \equiv \text{feature vector} \in \mathbb{R}^n \)
- \(Y \equiv \text{closing price} - \text{current price} \in \mathbb{R} \)
- Break \(Y \) into \(k \approx 50 \) cut points \(b_1 \leq \cdots \leq b_k \)
- For each \(b_i \), estimate probability \(Y \geq b_i \), given \(X \)
The Learning Algorithm

- $X \equiv$ feature vector $\in \mathbb{R}^n$

- $Y \equiv$ closing price – current price $\in \mathbb{R}$

- Break Y into $k \approx 50$ cut points $b_1 \leq \cdots \leq b_k$

- For each b_i, estimate probability $Y \geq b_i$, given X
 - Say X belongs to class C_i if $Y \geq b_i$
The Learning Algorithm

- $X \equiv \text{feature vector } \in \mathbb{R}^n$
- $Y \equiv \text{closing price} - \text{current price } \in \mathbb{R}$

- Break Y into $k \approx 50$ cut points $b_1 \leq \cdots \leq b_k$

- For each b_i, estimate probability $Y \geq b_i$, given X
 - Say X belongs to class C_i if $Y \geq b_i$
 - k-class problem: each example in many classes
The Learning Algorithm

- $X \equiv \text{feature vector} \in \mathbb{R}^n$
- $Y \equiv \text{closing price} – \text{current price} \in \mathbb{R}$
- Break Y into $k \approx 50$ cut points $b_1 \leq \cdots \leq b_k$
- For each b_i, estimate probability $Y \geq b_i$, given X
 - Say X belongs to class C_i if $Y \geq b_i$
 - k-class problem: each example in many classes
 - Use BoostTexter (boosting \cite{schapire1990boosting})
The Learning Algorithm

- $X \equiv$ feature vector $\in \mathbb{R}^n$

- $Y \equiv$ closing price – current price $\in \mathbb{R}$

- Break Y into $k \approx 50$ cut points $b_1 \leq \cdots \leq b_k$

- For each b_i, estimate probability $Y \geq b_i$, given X

 - Say X belongs to class C_i if $Y \geq b_i$

 - k-class problem: each example in many classes

 - Use BoostTexter (boosting (Schapire, 1990))

- Can convert to estimated distribution of $Y|X$
The Learning Algorithm

- \(X \equiv \text{feature vector} \in \mathbb{R}^n \)
- \(Y \equiv \text{closing price} - \text{current price} \in \mathbb{R} \)
- Break \(Y \) into \(k \approx 50 \) cut points \(b_1 \leq \cdots \leq b_k \)
- For each \(b_i \), estimate probability \(Y \geq b_i \), given \(X \)
 - Say \(X \) belongs to class \(C_i \) if \(Y \geq b_i \)
 - \(k \)-class problem: each example in many classes
 - Use **BoostTexter** (boosting (Schapire, 1990))
- Can convert to estimated distribution of \(Y|X \)

New algorithm for conditional density estimation
Hotel Expected Values

- Repeat until time bound, for each hotel:
 1. Assume this hotel closes next
Hotel Expected Values

- Repeat until time bound, for each hotel:
 1. Assume this hotel closes next
 2. Sample prices from predicted price distributions
Hotel Expected Values

● Repeat until time bound, for each hotel:

1. Assume this hotel closes next
2. Sample prices from predicted price distributions
3. Given these prices compute \(V_0, V_1, \ldots, V_8 \)
 - \(V_i = \nu(G^*) \) if own exactly \(i \) of the hotel
 - \(V_0 \leq V_1 \leq \ldots \leq V_8 \)
Hotel Expected Values

- Repeat until time bound, for each hotel:
 1. Assume this hotel closes next
 2. Sample prices from predicted price distributions
 3. Given these prices compute $V_0, V_1, \ldots V_8$
 - $V_i = \nu(G^*)$ if own \textit{exactly} i of the hotel
 - $V_0 \leq V_1 \leq \ldots \leq V_8$

- Value of ith copy is $\text{avg}(V_i - V_{i-1})$
Other Uses of Sampling

Flights: Cost/benefit analysis for *postponing commitment*
Other Uses of Sampling

Flights: Cost/benefit analysis for postponing commitment

Cost: Price expected to rise over next n minutes

Benefit: More price info becomes known
 - Compute expected marginal value of buying some different flight
Other Uses of Sampling

Flights: Cost/benefit analysis for postponing commitment

- **Cost:** Price expected to rise over next n minutes
- **Benefit:** More price info becomes known
 - Compute expected marginal value of buying some different flight

Entertainment: Bid more (ask less) than expected value of having one more (fewer) ticket
Finals

<table>
<thead>
<tr>
<th>Team</th>
<th>Avg.</th>
<th>Adj.</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTac</td>
<td>3622</td>
<td>4154</td>
<td>AT&T</td>
</tr>
<tr>
<td>livingagents</td>
<td>3670</td>
<td>4094</td>
<td>Living Systems (Germ.)</td>
</tr>
<tr>
<td>whitebear</td>
<td>3513</td>
<td>3931</td>
<td>Cornell</td>
</tr>
<tr>
<td>Urlaub01</td>
<td>3421</td>
<td>3909</td>
<td>Penn State</td>
</tr>
<tr>
<td>Retsina</td>
<td>3352</td>
<td>3812</td>
<td>CMU</td>
</tr>
<tr>
<td>CaiserSose</td>
<td>3074</td>
<td>3766</td>
<td>Essex (UK)</td>
</tr>
<tr>
<td>Southampton</td>
<td>3253*</td>
<td>3679</td>
<td>Southampton (UK)</td>
</tr>
<tr>
<td>TacsMan</td>
<td>2859</td>
<td>3338</td>
<td>Stanford</td>
</tr>
</tbody>
</table>

- **ATTac** improves over time
- **livingagents** is an open-loop strategy
Controlled Experiments

- $ATTac_s$: "full-strength" agent based on boosting
Controlled Experiments

- $ATTac_s$: “full-strength” agent based on boosting
- $SimpleMean_s$: sample from empirical distribution (previously played games)
Controlled Experiments

- ATTac_s: "full-strength" agent based on boosting

- SimpleMean_s: sample from empirical distribution (previously played games)

- ConditionalMean_s: condition on closing time
Controlled Experiments

- \(\text{ATTac}_s \): "full-strength" agent based on boosting

- \(\text{SimpleMean}_s \): sample from empirical distribution (previously played games)

- \(\text{ConditionalMean}_s \): condition on closing time

- \(\text{ATTac}_{ns}, \text{ConditionalMean}_{ns}, \text{SimpleMean}_{ns} \): predict expected value of the distribution
Controlled Experiments

- $ATTac_s$: "full-strength" agent based on boosting
- $SimpleMean_s$: sample from empirical distribution (previously played games)
- $ConditionalMean_s$: condition on closing time
- $ATTac_{ns}, ConditionalMean_{ns}, SimpleMean_{ns}$: predict expected value of the distribution
- $CurrentPrice$: predict no change
Controlled Experiments

- $ATTac_s$: "full-strength" agent based on boosting
- $SimpleMean_s$: sample from empirical distribution (previously played games)
- $ConditionalMean_s$: condition on closing time
- $ATTac_{ns}, ConditionalMean_{ns}, SimpleMean_{ns}$: predict expected value of the distribution
- $CurrentPrice$: predict no change
- $EarlyBidder$: motivated by TAC-01 entry livingagents
Controlled Experiments

- **ATTac**: "full-strength" agent based on boosting
- **SimpleMean**: sample from empirical distribution (previously played games)
- **ConditionalMean**: condition on closing time
- **ATTac, ConditionalMean, SimpleMean**: predict expected value of the distribution
- **CurrentPrice**: predict no change
- **EarlyBidder**: motivated by TAC-01 entry livingagents
 - Immediately bids high for G^* (with SimpleMean)
 - Goes to sleep
Stability

- 7 *EarlyBidder*’s with 1 *ATTac*

<table>
<thead>
<tr>
<th>Agent</th>
<th>Score</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTac</td>
<td>2431 ± 464</td>
<td>8909 ± 264</td>
</tr>
<tr>
<td>EarlyBidder</td>
<td>−4880 ± 337</td>
<td>9870 ± 34</td>
</tr>
</tbody>
</table>
Stability

- 7 EarlyBidder’s with 1 ATTac

<table>
<thead>
<tr>
<th>Agent</th>
<th>Score</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTac</td>
<td>2431 ± 464</td>
<td>8909 ± 264</td>
</tr>
<tr>
<td>EarlyBidder</td>
<td>-4880 ± 337</td>
<td>9870 ± 34</td>
</tr>
</tbody>
</table>

- 7 ATTac’s with 1 EarlyBidder

<table>
<thead>
<tr>
<th>Agent</th>
<th>Score</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTac</td>
<td>2578 ± 25</td>
<td>9650 ± 21</td>
</tr>
<tr>
<td>EarlyBidder</td>
<td>2869 ± 69</td>
<td>10079 ± 55</td>
</tr>
</tbody>
</table>
Stability

- 7 EarlyBidder’s with 1 ATTac

<table>
<thead>
<tr>
<th>Agent</th>
<th>Score</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTac</td>
<td>2431 ± 464</td>
<td>8909 ± 264</td>
</tr>
<tr>
<td>EarlyBidder</td>
<td>-4880 ± 337</td>
<td>9870 ± 34</td>
</tr>
</tbody>
</table>

- 7 ATTac’s with 1 EarlyBidder

<table>
<thead>
<tr>
<th>Agent</th>
<th>Score</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTac</td>
<td>2578 ± 25</td>
<td>9650 ± 21</td>
</tr>
<tr>
<td>EarlyBidder</td>
<td>2869 ± 69</td>
<td>10079 ± 55</td>
</tr>
</tbody>
</table>

EarlyBidder gets more utility; *ATTac* pays less
Results

- Phase I: Training from TAC-01 (seeding round, finals)
Results

- **Phase I**: Training from TAC-01 (seeding round, finals)
- **Phase II**: Training from TAC-01, phases I, II
Results

- **Phase I**: Training from TAC-01 (seeding round, finals)
- **Phase II**: Training from TAC-01, phases I, II
- **Phase III**: Training from phases I – III
Results

- **Phase I**: Training from TAC-01 (seeding round, finals)
- **Phase II**: Training from TAC-01, phases I, II
- **Phase III**: Training from phases I – III

<table>
<thead>
<tr>
<th>Agent</th>
<th>Relative Score</th>
<th>Phase I</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTac_{ns}</td>
<td></td>
<td>105.2 ± 49.5 (2)</td>
<td>166.2 ± 20.8 (1)</td>
</tr>
<tr>
<td>ATTac_s</td>
<td></td>
<td>27.8 ± 42.1 (3)</td>
<td>122.3 ± 19.4 (2)</td>
</tr>
<tr>
<td>EarlyBidder</td>
<td></td>
<td>140.3 ± 38.6 (1)</td>
<td>117.0 ± 18.0 (3)</td>
</tr>
<tr>
<td>SimpleMean_{ns}</td>
<td></td>
<td>-28.8 ± 45.1 (5)</td>
<td>-11.5 ± 21.7 (4)</td>
</tr>
<tr>
<td>SimpleMean_s</td>
<td></td>
<td>-72.0 ± 47.5 (7)</td>
<td>-44.1 ± 18.2 (5)</td>
</tr>
<tr>
<td>$\text{ConditionalMean}_{ns}$</td>
<td></td>
<td>8.6 ± 41.2 (4)</td>
<td>-60.1 ± 19.7 (6)</td>
</tr>
<tr>
<td>ConditionalMean_s</td>
<td></td>
<td>-147.5 ± 35.6 (8)</td>
<td>-91.1 ± 17.6 (7)</td>
</tr>
<tr>
<td>CurrentPrice</td>
<td></td>
<td>-33.7 ± 52.4 (6)</td>
<td>-198.8 ± 26.0 (8)</td>
</tr>
</tbody>
</table>
Other TAC competitions

• Supply Chain Management

• Ad Auctions

• Power
Discussion

- Are these agents useful for the real version of these tasks?
Discussion

• Are these agents useful for the real version of these tasks?
• What can we learn from these competitions?
Discussion

- Are these agents useful for the real version of these tasks?
- What can we learn from these competitions?
- General strategy that works well?
Last-minute bidding (R,O, 2001)

- eBay: first-price, ascending auction
- Amazon: auction extended if bid in last 10 minutes
- eBay: bots exist to incrementally raise your bid to a maximum

• Still people *snipe*. Why?
 – There’s a risk that the bid might not make it
 – However, common-value \rightarrow bid conveys info
 – Late-bidding can be seen as implicit collusion
 – Or . . . , lazy, unaware, etc. (Amazon and eBay)

• Finding: more late-bidding on eBay,
 – even more on antiques rather than computers

Small design-difference matters
Late Bidding as Best Response

- Good vs. incremental bidders
 - They start bidding low, plan to respond
 - Doesn’t give them time to respond

- Good vs. other snipers
 - Implicit collusion
 - Both bid low, chance that one bid doesn’t get in

- Good in common-value case
 - protects information

Overall, the analysis of multiple bids supports the hypothesis that last-minute bidding arises at least in part as a response by sophisticated bidders to unsophisticated incremental bidding.