Good Afternoon, Colleagues
Good Afternoon, Colleagues

Are there any questions?
Logistics

- Questions about the syllabus?
Logistics

• Questions about the syllabus?
• Class registration and waitlist
Logistics

- Questions about the syllabus?
- Class registration and waitlist
- Problems with the assignment?
Logistics

• Questions about the syllabus?
• Class registration and waitlist
• Problems with the assignment?
• Piazza vs. mailing list
Logistics

- Questions about the syllabus?
- Class registration and waitlist
- Problems with the assignment?
- Piazza vs. mailing list
 - CC Elad, Patrick, and me on everything
Logistics

• Questions about the syllabus?
• Class registration and waitlist
• Problems with the assignment?
• Piazza vs. mailing list
 – CC Elad, Patrick, and me on everything
• Last week’s slides are up
Logistics

- Questions about the syllabus?
- Class registration and waitlist
- Problems with the assignment?
- Piazza vs. mailing list
 - CC Elad, Patrick, and me on everything
- Last week’s slides are up
- Next week’s readings are up:
 - Brooks’ reactive robots
 - A more deliberative architecture
 - RoboCup challenge paper
Logistics

- Questions about the syllabus?
- Class registration and waitlist
- Problems with the assignment?
- Piazza vs. mailing list
 - CC Elad, Patrick, and me on everything
- Last week’s slides are up
- Next week’s readings are up:
 - Brooks’ reactive robots
 - A more deliberative architecture
 - RoboCup challenge paper
- Overlap with Intro to AI
Logistics

- Questions about the syllabus?
- Class registration and waitlist
- Problems with the assignment?
- Piazza vs. mailing list
 - CC Elad, Patrick, and me on everything
- Last week’s slides are up
- Next week’s readings are up:
 - Brooks’ reactive robots
 - A more deliberative architecture
 - RoboCup challenge paper
- Overlap with Intro to AI
- C/C++ issues
Logistics

• Questions about the syllabus?
• Class registration and waitlist
• Problems with the assignment?
• Piazza vs. mailing list
 – CC Elad, Patrick, and me on everything
• Last week’s slides are up
• Next week’s readings are up:
 – Brooks’ reactive robots
 – A more deliberative architecture
 – RoboCup challenge paper
• Overlap with Intro to AI
• C/C++ issues
Words without (accepted) definitions

- Intelligence
- Agent
Words without (accepted) definitions

- Intelligence
- Agent

All proposed definitions include too much or leave gaps.
Words without (accepted) definitions

- Intelligence
- Agent

All proposed definitions include too much or leave gaps.

But there are examples...
Thermostats

- Are they agents or not?

- How does Wooldridge resolve this?
Intelligent (autonomous) Agents

• Autonomous robot
Intelligent (autonomous) Agents

- Autonomous robot
- Information gathering agent
 - Find me the cheapest?
Intelligent (autonomous) Agents

- Autonomous robot

- Information gathering agent
 - Find me the cheapest?

- E-commerce agents
 - Decides what to buy/sell and does it
Intelligent (autonomous) Agents

- Autonomous robot
- Information gathering agent
 - Find me the cheapest?
- E-commerce agents
 - Decides what to buy/sell and does it
- Air-traffic controller
Intelligent (autonomous) Agents

- Autonomous robot
- Information gathering agent
 - Find me the cheapest?
- E-commerce agents
 - Decides what to buy/sell and does it
- Air-traffic controller
- Meeting scheduler
Intelligent (autonomous) Agents

- Autonomous robot
- Information gathering agent
 - Find me the cheapest?
- E-commerce agents
 - Decides what to buy/sell and does it
- Air-traffic controller
- Meeting scheduler
- Computer-game-playing agent
Not Intelligent Agents

- Thermostat
- Telephone
- Answering machine
- Pencil
- Java object
Your Agent Examples
Your Agent Examples

- **Automotive**: Stop light, Autonomous Car

- **Physical Control**: Roomba, Automatic sliding door

- **Software**: antivirus software, Google Now, Laptop battery management, Macbook light intensity controller, Parasolid

- **Game/entertainment**: StarCraft SCV, Counterstrike

- **Service**: Stock trading agent
An Example
An Example

- You, as a class, act as a learning agent
An Example

- You, as a class, act as a learning agent
- **Actions**: Wave, Stand, Clap
An Example

- You, as a class, act as a learning agent
- **Actions**: Wave, Stand, Clap
- **Observations**: colors, reward
An Example

• You, as a class, act as a learning agent
• **Actions**: Wave, Stand, Clap
• **Observations**: colors, reward
• **Goal**: Find an optimal *policy*
An Example

- You, as a class, act as a learning agent
- **Actions**: Wave, Stand, Clap
- **Observations**: colors, reward
- **Goal**: Find an optimal *policy*
 - Way of selecting actions that gets you the most reward
How did you do it?
How did you do it?

- What is your policy?
- What does the world look like?
Formalizing My Example

Knowns:
Formalizing My Example

Knowns:

- $\mathcal{O} = \{\text{Blue, Red, Green, Black, \ldots}\}$
- Rewards in \mathbb{R}
- $A = \{\text{Wave, Clap, Stand}\}$

\begin{align*}
o_0, a_0, r_0, o_1, a_1, r_1, o_2, \ldots
\end{align*}
Formalizing My Example

Knowns:

- $O = \{ \text{Blue, Red, Green, Black}, \ldots \}$
- Rewards in \mathbb{R}
- $A = \{ \text{Wave, Clap, Stand} \}$

\[
\begin{array}{c}
o_0, a_0, r_0, o_1, a_1, r_1, o_2, \ldots \\
\end{array}
\]

Unknowns:
Formalizing My Example

Knowns:
- $\mathcal{O} = \{\text{Blue, Red, Green, Black, \ldots }\}$
- Rewards in \mathbb{R}
- $A = \{\text{Wave, Clap, Stand}\}$
- $o_0, a_0, r_0, o_1, a_1, r_1, o_2, \ldots$

Unknowns:
- $S = 4 \times 3$ grid
- $\mathcal{R} : S \times A \mapsto \mathbb{R}$
- $P = S \mapsto \mathcal{O}$
- $T : S \times A \mapsto S$
Formalizing My Example

Knowns:
- \(\mathcal{O} = \{ \text{Blue, Red, Green, Black, \ldots} \} \)
- Rewards in \(\mathbb{R} \)
- \(\mathcal{A} = \{ \text{Wave, Clap, Stand} \} \)
- \(o_0, a_0, r_0, o_1, a_1, r_1, o_2, \ldots \)

Unknowns:
- \(S = 4 \times 3 \) grid
- \(\mathcal{R} : S \times \mathcal{A} \mapsto \mathbb{R} \)
- \(\mathcal{P} = S \mapsto \mathcal{O} \)
- \(\mathcal{T} : S \times \mathcal{A} \mapsto S \)
- \(o_i = \mathcal{P}(s_i) \)
Formalizing My Example

Knowns:
- \(\mathcal{O} = \{\text{Blue, Red, Green, Black, } \ldots\} \)
- Rewards in \(\mathbb{R} \)
- \(\mathcal{A} = \{\text{Wave, Clap, Stand}\} \)

Unknowns:
- \(\mathcal{S} = 4 \times 3 \) grid
- \(\mathcal{R} : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R} \)
- \(\mathcal{P} = \mathcal{S} \rightarrow \mathcal{O} \)
- \(\mathcal{T} : \mathcal{S} \times \mathcal{A} \rightarrow \mathcal{S} \)

\[
o_i = \mathcal{P}(s_i) \quad r_i = \mathcal{R}(s_i, a_i)\]
Formalizing My Example

Knowns:
- $O = \{\text{Blue, Red, Green, Black,} \ldots\}$
- Rewards in \mathbb{R}
- $A = \{\text{Wave, Clap, Stand}\}$

Unknowns:
- $S = 4 \times 3$ grid
- $R : S \times A \mapsto \mathbb{R}$
- $P = S \mapsto O$
- $T : S \times A \mapsto S$

$$o_i = P(s_i) \quad r_i = R(s_i, a_i) \quad s_{i+1} = T(s_i, a_i)$$