CS344M
Autonomous Multiagent Systems

Todd Hester

Department of Computer Science
The University of Texas at Austin
Good Afternoon, Colleagues

Are there any questions?
Logistics

- Reading responses getting better
Logistics

- Reading responses getting better
 - Be specific about where in article you’re referring to
Logistics

- Reading responses getting better
 - Be specific about where in article you’re referring to
 - Show me you’ve read all the articles
Logistics

• Reading responses getting better
 – Be specific about where in article you’re referring to
 – Show me you’ve read all the articles
 – If no response, full credit (other than lateness)
Logistics

- Reading responses getting better
 - Be specific about where in article you’re referring to
 - Show me you’ve read all the articles
 - If no response, full credit (other than lateness)

- Programming assignment 3 — any questions?
Logistics

• Reading responses getting better
 – Be specific about where in article you’re referring to
 – Show me you’ve read all the articles
 – If no response, full credit (other than lateness)

• Programming assignment 3 — any questions?

• Speak in class
Logistics

• Reading responses getting better
 – Be specific about where in article you’re referring to
 – Show me you’ve read all the articles
 – If no response, full credit (other than lateness)

• Programming assignment 3 — any questions?

• Speak in class

• Talks in the department:
Logistics

• Reading responses getting better
 – Be specific about where in article you’re referring to
 – Show me you’ve read all the articles
 – If no response, full credit (other than lateness)

• Programming assignment 3 — any questions?

• Speak in class

• Talks in the department:
 – Warren Powell, Friday at 11am (PAI 3.14)
 – Princeton University
 – “Unifying the Jungle of Stochastic Optimization”

• Role of a survey article
Logistics

- Reading responses getting better
 - Be specific about where in article you’re referring to
 - Show me you’ve read all the articles
 - If no response, full credit (other than lateness)

- Programming assignment 3 — any questions?

- Speak in class

- Talks in the department:
 - Warren Powell, Friday at 11am (PAI 3.14)
 - Princeton University
 - “Unifying the Jungle of Stochastic Optimization”

- Role of a survey article

- NYT Rodney Brooks article
Some Definitions

- Distributed Computing:
Some Definitions

- **Distributed Computing**: Processors share data, but not control. Focus on low-level parallelization, synchronization.
Some Definitions

- **Distributed Computing**: Processors share data, but not control. Focus on low-level parallelization, synchronization.

- **Distributed AI**:

 Todd Hester
Some Definitions

- **Distributed Computing**: Processors share data, but not control. Focus on low-level parallelization, synchronization.

- **Distributed AI**: Control as well as data is distributed. Focus on problem solving, communication, and coordination.
Some Definitions

- **Distributed Computing**: Processors share data, but not control. Focus on low-level parallelization, synchronization.

- **Distributed AI**: Control as well as data is distributed. Focus on problem solving, communication, and coordination.

- **Distributed Problem Solving**:
Some Definitions

• **Distributed Computing**: Processors share data, but not control. Focus on low-level parallelization, synchronization.

• **Distributed AI**: Control as well as data is distributed. Focus on problem solving, communication, and coordination.

• **Distributed Problem Solving**: Task decomposition and/or solution synthesis.
Some Definitions

• **Distributed Computing**: Processors share data, but not control. Focus on low-level parallelization, synchronization.

• **Distributed AI**: Control as well as data is distributed. Focus on problem solving, communication, and coordination.

• **Distributed Problem Solving**: Task decomposition and/or solution synthesis.

• **Multiagent Systems**:
Some Definitions

- **Distributed Computing**: Processors share data, but not control. Focus on low-level parallelization, synchronization.

- **Distributed AI**: Control as well as data is distributed. Focus on problem solving, communication, and coordination.

- **Distributed Problem Solving**: Task decomposition and/or solution synthesis.

- **Multiagent Systems**: Behavior coordination or behavior management.
Some Definitions

• **Distributed Computing** : Processors share data, but not control. Focus on low-level parallelization, synchronization.

• **Distributed AI** : Control as well as data is distributed. Focus on problem solving, communication, and coordination.

• **Distributed Problem Solving** : Task decomposition and/or solution synthesis.

• **Multiagent Systems** : Behavior coordination or behavior management.
 – No necessary guarantees about other agents.
 – Individual behaviors typically simple relative to interaction issues.
Some Definitions

- **Distributed Computing**: Processors share data, but not control. Focus on low-level parallelization, synchronization.

- **Distributed AI**: Control as well as data is distributed. Focus on problem solving, communication, and coordination.

- **Distributed Problem Solving**: Task decomposition and/or solution synthesis.

- **Multiagent Systems**: Behavior coordination or behavior management.
 - No necessary guarantees about other agents.
 - Individual behaviors typically simple relative to interaction issues.

(pic from pursuit slides)
Multiagent Systems

- Study, behavior, construction of possibly preexisting autonomous agents that interact with each other.
 - incomplete information for agents
 - no global control
 - decentralized data
 - asynchronous computation
Why Multiagent Systems?
Why Multiagent Systems?

(7)

- Some domains require it. (Hospital scheduling)
- Interoperation of legacy systems
- Parallelism.
- Robustness.
- Scalability
- Simpler programming.

“Intelligence is deeply and inevitably coupled with interaction.” – Gerhard Weiss
Organizations

- Hierarchy:
Organizations

- **Hierarchy**: authority from above
Organizations

• **Hierarchy:** authority from above

• **Community of Experts:**
Organizations

- **Hierarchy**: authority from above

- **Community of Experts**: specialists, mutual adjustment
Organizations

- **Hierarchy**: authority from above

- **Community of Experts**: specialists, mutual adjustment

- **Market**:
Organizations

- **Hierarchy**: authority from above
- **Community of Experts**: specialists, mutual adjustment
- **Market**: bid for tasks and resources; contracts
Organizations

- **Hierarchy**: authority from above

- **Community of Experts**: specialists, mutual adjustment

- **Market**: bid for tasks and resources; contracts

- **Scientific community**:

 Todd Hester
Organizations

- **Hierarchy**: authority from above

- **Community of Experts**: specialists, mutual adjustment

- **Market**: bid for tasks and resources; contracts

- **Scientific community**: full solutions (perhaps with varying information) combined
Discussion

When would you use market vs. hierarchy?
Issues and Challenges

• How to break down and resynthesize the problem among agents
Issues and Challenges

• How to break down and resynthesize the problem among agents

• Communication/interaction protocols
Issues and Challenges

• How to break down and resynthesize the problem among agents

• Communication/interaction protocols

• Maintain coherence, stability: guarantees?
 – Coherence is a global property
Issues and Challenges

- How to break down and resynthesize the problem among agents

- Communication/interaction protocols

- Maintain coherence, stability: guarantees?
 - Coherence is a global property

- Representation by agents of each other and interactions
Issues and Challenges

- How to break down and resynthesize the problem among agents
- Communication/interaction protocols
- Maintain coherence, stability: guarantees?
 - Coherence is a global property
- Representation by agents of each other and interactions
- Reconciling different points of view
Issues and Challenges

- How to break down and resynthesize the problem among agents
- Communication/interaction protocols
- Maintain coherence, stability: guarantees?
 - Coherence is a global property
- Representation by agents of each other and interactions
- Reconciling different points of view
- Engineering
Dimensions and issues

- cooperative vs. competitive
- communication
- trust
- recursive modeling
- coalitions
- game theory
Dimensions and issues

- cooperative vs. competitive
- communication
- trust
- recursive modeling
- coalitions
- game theory
Pursuit Activity

Group 1: homogeneous, non-communicating

Group 2: homogeneous, communicating

Group 3: heterogeneous, non-communicating

Group 4: heterogeneous, communicating