CS344M
Autonomous Multiagent Systems

Todd Hester

Department or Computer Science
The University of Texas at Austin
Good Afternoon, Colleagues

Are there any questions?
Logistics

• Readings
Logistics

• Readings
 – Specify which papers you read!
Logistics

- Readings
 - Specify which papers you read!
 - 2 case studies and 1 TDP
Logistics

• Readings
 – Specify which papers you read!
 – 2 case studies and 1 TDP

• How to read a research paper

Todd Hester
Logistics

- Readings
 - Specify which papers you read!
 - 2 case studies and 1 TDP

- How to read a research paper
 - Some have too few details...
Logistics

● Readings
 – Specify which papers you read!
 – 2 case studies and 1 TDP

● How to read a research paper
 – Some have too few details...
 – Others have too many.
Logistics

• Readings
 – Specify which papers you read!
 – 2 case studies and 1 TDP

• How to read a research paper
 – Some have too few details...
 – Others have too many.

• Next week’s readings posted
Logistics

- Readings
 - Specify which papers you read!
 - 2 case studies and 1 TDP

- How to read a research paper
 - Some have too few details...
 - Others have too many.

- Next week’s readings posted

- Use the undergrad writing center!
 - Friday afternoon workshops (3 p.m.)
Overview of the Readings

- *Darwin: genetic programming approach*
Overview of the Readings

- *Darwin*: genetic programming approach
- *Stone and McAllester*: Architecture for action selection
Overview of the Readings

- *Darwin*: genetic programming approach
- *Stone and McAllester*: Architecture for action selection
- *Riley et al*: Coach competition, extracting models
Overview of the Readings

- *Darwin*: genetic programming approach
- *Stone and McAllester*: Architecture for action selection
- *Riley et al*: Coach competition, extracting models
- *Kuhlmann et al*: Learning for coaching
Overview of the Readings

- *Darwin*: genetic programming approach
- *Stone and Mc Allester*: Architecture for action selection
- *Riley et al*: Coach competition, extracting models
- *Kuhlmann et al*: Learning for coaching
- *Withopf and Riedmiller*: Reinforcement learning
Overview of the Readings

• *Darwin*: genetic programming approach

• *Stone and McAllester*: Architecture for action selection

• *Riley et al*: Coach competition, extracting models

• *Kuhlmann et al*: Learning for coaching

• *Withopf and Riedmiller*: Reinforcement learning

• *MacAlpine et al*: UT Austin Villa 2011
Overview of the Readings

- *Darwin*: genetic programming approach
- *Stone and McAllester*: Architecture for action selection
- *Riley et al*: Coach competition, extracting models
- *Kuhlmann et al*: Learning for coaching
- *Withopf and Riedmiller*: Reinforcement learning
- *MacAlpine et al*: UT Austin Villa 2011
- *Barrett et al*: SPL Kicking strategy
Evolutionary Computation

- Motivated by biological evolution: GA, GP
Evolutionary Computation

- Motivated by biological evolution: GA, GP
- Search through a space
Evolutionary Computation

- Motivated by biological evolution: GA, GP

- Search through a space
 - Need a representation, fitness function
 - Probabilistically apply search operators to set of points in search space
Evolutionary Computation

- Motivated by biological evolution: GA, GP

- Search through a space
 - Need a representation, fitness function
 - Probabilistically apply search operators to set of points in search space

- Randomized, parallel hill-climbing through space
Evolutionary Computation

- Motivated by biological evolution: GA, GP

- Search through a space
 - Need a representation, fitness function
 - Probabilistically apply search operators to set of points in search space

- Randomized, parallel hill-climbing through space

- Learning is an optimization problem (fitness)
Evolutionary Computation

- Motivated by biological evolution: GA, GP
- Search through a space
 - Need a **representation, fitness function**
 - Probabilistically apply search operators to set of points in search space
- Randomized, parallel hill-climbing through space
- Learning is an optimization problem (fitness)

Some slides from *Machine Learning* (Mitchell, 1997)
Darwin United

- More ambitious follow-up to Luke, 97 (made 2nd round)
Darwin United

- More ambitious follow-up to Luke, 97 (made 2nd round)
- Motivated in part by Peter’s detailed team construction
Darwin United

- More ambitious follow-up to Luke, 97 (made 2nd round)
- Motivated in part by Peter’s detailed team construction
- Evolves whole teams — lexicographic fitness function
Darwin United

- More ambitious follow-up to Luke, 97 (made 2nd round)
- Motivated in part by Peter’s detailed team construction
- Evolves whole teams — lexicographic fitness function
- Evolved on huge (at the time) hypercube
Darwin United

- More ambitious follow-up to Luke, 97 (made 2nd round)
- Motivated in part by Peter’s detailed team construction
- Evolves whole teams — lexicographic fitness function
- Evolved on huge (at the time) hypercube
- Lots of spinning, but figured out dribbling, offsides
Darwin United

- More ambitious follow-up to Luke, 97 (made 2nd round)
- Motivated in part by Peter’s detailed team construction
- Evolves whole teams — lexicographic fitness function
- Evolved on huge (at the time) hypercube
- Lots of spinning, but figured out dribbling, offsides
- 1-1-1 record. Tied a good team, but didn’t advance
Darwin United

- More ambitious follow-up to Luke, 97 (made 2nd round)
- Motivated in part by Peter’s detailed team construction
- Evolves whole teams — lexicographic fitness function
- Evolved on huge (at the time) hypercube
- Lots of spinning, but figured out dribbling, offsides
- 1-1-1 record. Tied a good team, but didn’t advance
- Success of the method, but not pursued
Architecture for Action Selection

- (other slides, video)
Architecture for Action Selection

- (other slides, video)
- downsides
Architecture for Action Selection

- (other slides, video)
- downsides
- Keepaway
Coaching

• Learn best strategy to play a fixed team
Coaching

• Learn best strategy to play a fixed team

• Give high level advice to players at low frequency
Coaching

• Learn best strategy to play a fixed team
• Give high level advice to players at low frequency
• Focus on learning formations
Coaching

- Learn best strategy to play a fixed team
- Give high level advice to players at low frequency
- Focus on learning formations
- Learn when successful teams passed/kicked
Coaching

• Learn best strategy to play a fixed team
• Give high level advice to players at low frequency
• Focus on learning formations
• Learn when successful teams passed/kicked
• Learn when opponent will pass and try to block
Coaching

• Learn best strategy to play a fixed team
• Give high level advice to players at low frequency
• Focus on learning formations
• Learn when successful teams passed/kicked
• Learn when opponent will pass and try to block
• What if players switch roles?
Coaching

- Learn best strategy to play a fixed team
- Give high level advice to players at low frequency
- Focus on learning formations
- Learn when successful teams passed/kicked
- Learn when opponent will pass and try to block
- What if players switch roles?
- Why just imitate another team?
Coaching

- Learn best strategy to play a fixed team
- Give high level advice to players at low frequency
- Focus on learning formations
- Learn when successful teams passed/kicked
- Learn when opponent will pass and try to block
- What if players switch roles?
- Why just imitate another team?
- Other slides
Reinforcement Learning

- RL Slides
Reinforcement Learning

- RL Slides
- Extend to grid soccer
Reinforcement Learning

- RL Slides
- Extend to grid soccer
- Large state space, joint actions
Reinforcement Learning

- RL Slides
- Extend to grid soccer
- Large state space, joint actions
• Other slides
- Other slides
- Why not use CMA-ES on role positions as well?
• Other slides

• Why not use CMA-ES on role positions as well?

• Changes for 2012?
Kicking Under Uncertainty

- Used by our SPL team
Kicking Under Uncertainty

- Used by our SPL team
- Kick engine to kick at various distances/headings
Kicking Under Uncertainty

- Used by our SPL team
- Kick engine to kick at various distances/headings
- Adjust to seen ball location
Kicking Under Uncertainty

- Used by our SPL team
- Kick engine to kick at various distances/ headings
- Adjust to seen ball location
- Select first kick that moves ball up field
Kicking Under Uncertainty

- Used by our SPL team

- Kick engine to kick at various distances/headings

- Adjust to seen ball location

- Select first kick that moves ball up field

- Figure
Kicking Under Uncertainty

- Used by our SPL team
- Kick engine to kick at various distances/headings
- Adjust to seen ball location
- Select first kick that moves ball up field
- Figure
- Emphasis on quickness
Kicking Under Uncertainty

- Used by our SPL team
- Kick engine to kick at various distances/headings
- Adjust to seen ball location
- Select first kick that moves ball up field
- Figure
- Emphasis on quickness
- Now: Better model of opponents -> Know if we have more time
Kicking Under Uncertainty

- Used by our SPL team
- Kick engine to kick at various distances/headings
- Adjust to seen ball location
- Select first kick that moves ball up field
- Figure
- Emphasis on quickness
- Now: Better model of opponents -> Know if we have more time
Learning Commentary

• David Chen and Ray Mooney
Coordination Graphs

- n agents, each choose an action A_i
Coordination Graphs

- n agents, each choose an action A_i

- $A = A_1 \times \ldots \times A_n$
Coordination Graphs

- n agents, each choose an action A_i

- $A = A_1 \times \ldots \times A_n$

- $R_i(A) \mapsto \mathbb{R}$
Coordination Graphs

- \(n \) agents, each choose an action \(A_i \)
- \(A = A_1 \times \ldots \times A_n \)
- \(R_i(A) \mapsto \mathbb{R} \)
- Coordination problem: \(R_1 = \ldots = R_n = R \)
Coordination Graphs

- n agents, each choose an action A_i

- $A = A_1 \times \ldots \times A_n$

- $R_i(A) \mapsto \mathbb{R}$

- Coordination problem: $R_1 = \ldots = R_n = R$

- Nash equilibrium: no agent could do better given what others are doing.
Coordination Graphs

- n agents, each choose an action A_i
- $A = A_1 \times \ldots \times A_n$
- $R_i(A) \rightarrow \mathbb{R}$
- Coordination problem: $R_1 = \ldots = R_n = R$
- Nash equilibrium: no agent could do better given what others are doing.
- May be more than one (chicken)
Example from the paper

- Understand the rule syntax
Example from the paper

- Understand the rule syntax
- Form the coordination graph
Example from the paper

- Understand the rule syntax
- Form the coordination graph
- First eliminate rules based on context
Example from the paper

- Understand the rule syntax
- Form the coordination graph
- First eliminate rules based on context
- What does it mean for G_3 to collect all relevant rules?
Example from the paper

- Understand the rule syntax
- Form the coordination graph
- First eliminate rules based on context
- What does it mean for G_3 to collect all relevant rules?
- What does it mean for G_3 to maximize over all actions of a_1 and a_2?
Example from the paper

- Understand the rule syntax
- Form the coordination graph
- First eliminate rules based on context
- What does it mean for G_3 to collect all relevant rules?
- What does it mean for G_3 to maximize over all actions of a_1 and a_2?
- How are the results propagated back?
Example from the paper

- Understand the rule syntax
- Form the coordination graph
- First eliminate rules based on context
- What does it mean for G_3 to collect all relevant rules?
- What does it mean for G_3 to maximize over all actions of a_1 and a_2?
- How are the results propagated back?
- Let’s try again with G_1 eliminated first
Application to soccer

- Make the world discrete by assigning roles, using high-level predicates

Todd Hester
Application to soccer

- Make the world discrete by assigning roles, using high-level predicates
- Assume global state information
Application to soccer

- Make the world discrete by assigning roles, using high-level predicates
- Assume global state information
- Finds pass sequences and starts players moving ahead of time.
Application to soccer

• Make the world discrete by assigning roles, using high-level predicates

• Assume global state information

• Finds pass sequences and starts players moving ahead of time.

• Note the results: with and without coordination.
Reactive Deliberation

- A hybrid approach
- Executor: carry out reactive behaviors
- Deliberator: evaluate possible high-level schema with parameters; generate bids
- Deliberator takes time, but something keeps happening always.
- In effect: deliberator commits to schema for some time