CS344M
Autonomous Multiagent Systems

Todd Hester

Department of Computer Science
The University of Texas at Austin
Good Afternoon, Colleagues

Are there any questions?
Logistics

- Project proposal questions?
Logistics

- Project proposal questions?
- Readings posted
Logistics

- Project proposal questions?
- Readings posted
- AAMAS
Logistics

- Project proposal questions?
- Readings posted
- AAMAS
- Class midterm evaluation survey due next Thursday
Principles

• Try to avoid functional decomposition
• Simple agents (small, forgetful, local)
• Decentralized control
• System performance from interactions of many
• Diversity important: randomness, repulsion
• Embrace risk (expendability) and redundancy
• Agents should be able to share information
• Mix planning with execution
• Provide an “entropy leak”
Propose an ant-based algorithm to
Propose an ant-based algorithm to

Sort a dynamic set of items

- Each item has a key and a rank
- Goal: keep the ranks in ascending order of the keys
Propose an ant-based algorithm to

Sort a dynamic set of items
- Each item has a key and a rank
- Goal: keep the ranks in ascending order of the keys

Create ant cemeteries
- Goal: dead ants should all be piled in the same place
- (it doesn’t matter where)
Other ant-based research

- AntNet – Network routing solution
 - Randomized algorithm (packets sent probabilistically)
Other ant-based research

- **AntNet** – Network routing solution
 - Randomized algorithm (packets sent probabilistically)

- **Holland** – picking up pucks
 - Goal: robot putting pucks in a pile
 - Rules: move randomly, drop if you have 3
 - Analogy: ant burial
Other ant-based research

- **AntNet** – Network routing solution
 - Randomized algorithm (packets sent probabilistically)

- **Holland** – picking up pucks
 - Goal: robot putting pucks in a pile
 - Rules: move randomly, drop if you have 3
 - Analogy: ant burial

- **Balch** – ant tracking
 - Computer vision success
Other ant-based research

- **AntNet** – Network routing solution
 - Randomized algorithm (packets sent probabilistically)

- **Holland** – picking up pucks
 - Goal: robot putting pucks in a pile
 - Rules: move randomly, drop if you have 3
 - Analogy: ant burial

- **Balch** – ant tracking
 - Computer vision success

- **Missionaries and Cannibals** – An optimization problem
Other ant-based research

- AntNet – Network routing solution
 - Randomized algorithm (packets sent probabilistically)

- Holland – picking up pucks
 - Goal: robot putting pucks in a pile
 - Rules: move randomly, drop if you have 3
 - Analogy: ant burial

- Balch – ant tracking
 - Computer vision success

- Missionaries and Cannibals – An optimization problem

- Character animation (Reynolds, Star Wars)
What evolves?

- In nature, is it the individual, the colony, or the gene?
What evolves?

- In nature, is it the individual, the colony, or the gene?
- How does “altruism” arise?
What evolves?

- In nature, is it the individual, the colony, or the gene?
- How does “altruism” arise?
- What does this mean about agent-based systems?
What evolves?

- In nature, is it the individual, the colony, or the gene?
- How does “altruism” arise?
- What does this mean about agent-based systems?
 - Should we create self-interested ants?
 - Or do we need to give them a global objective function?