
CS 378: Autonomous 
Intelligent Robotics (FRI)

Dr. Todd Hester



Are there any questions?



Logistics
● CS mentoring in Kinsolving and Jester dining halls

● First homework assignment (due class time Thursday)

● Talks Friday
○ Dr. Mohan Sridharan 
○ Towards Autonomy in Human-Robot Collaboration

■ 11 am, ACES 2.402
○ Integrating Answer Set Programming and 

Probabilistic Planning on Robots
■ 3 pm, ACES 2.402



Dr. Xiaofeng Ren's talk

● Summary
● Can we apply it to our project?
● What won't will apply to our project?

 



Today
Robot Operating System (ROS)

Readings
● High level overview
● Advantages of using ROS?
● Disadvantages of using ROS?

 



ROS

(adapted from slides by Prof. Chad Jenkins and 
Piyush Khandelwal)



[slide by Manuela Veloso]



Example: iRobot Create based robot

+ +

iRobot Create

[adapted from slide by Chad Jenkins]



Software Architecture

● From wikipedia: "The software architecture of a system is 
the set of structures needed to reason about the system, 
which comprise software elements, relations among them, 
and properties of both."

● Software architecture is important for
○ creating reusable code
○ ensuring portability between different devices and 

platform
● Important for robotics because

○ Large code-bases
○ Integration of many different and a dynamic set of 

devices
○ Many different options for a single component

 



Controlling robots using code

[adapted from slide by Chad Jenkins]



Straightforward approach

● Just write and compile a program to perform robot's 
"cognitive" functions

● This program will include
○ Code to interface with the camera and the iRobot 

Create
○ Code to understand the images and the 

environment and control the Create
● Once implemented, the system works well and 

efficiently

[adapted from slide by Chad Jenkins]



Straightforward approach

● However this approach suffers from a problem. Any 
ideas? [adapted from slide by Chad Jenkins]

HARDWARE

SOFTWARE

USB USB-Serial

specific 
camera driver

serial programming 
specific to create



An example problem...

● After implementing my program, I realized the create 
is too slow (0.5 m/s).

● How easy it is to use a segway robot instead (1.7 
m/s)?

Could I have implemented my code differently to make 
this transition easier?

+ +

Segway RMP50



Enter robot middleware
● Provide an abstraction layer and drivers between 

computation and embodiment.

● This is the similar to how hardware abstraction allows 
your program to work independent of the actual 
hardware.
○ i.e. the hardware abstraction layer in the operating 

system.

● Using a middleware package might seem a subtle 
difference right now, but it is a fundamentally different 
approach to developing robot applications. Lets look 
at an example. [adapted from slide by Chad Jenkins]



HARDWARE

SOFTWARE

USB USB-Serial

middleware 
(gstreamer)

middleware 
(control)

Using robot middleware

● Looks about the same. So whats the advantage?
[adapted from slide by Chad Jenkins]



HARDWARE

SOFTWARE

USB USB-Serial

middleware 
(gstreamer)

middleware 
(control)

DOES NOT 
NEED TO 
CHANGE!

Using robot middleware

[adapted from slide by Chad Jenkins]



The advantages

● Reusability
○ Reuse existing drivers and code written for other 

robots, platforms and research projects.

● Portability
○ Easier to switch to another robotic platform.

● Easier to expand functionality

[adapted from slide by Chad Jenkins]



ROS (Robot Operating System)

● A very popular robot middleware package
● Peer-to-peer architecture among nodes over a network
● Robot functionality split over multiple nodes 

(processes)
● Nodes subscribe to and publish messages on "topics"

○ ROS Master runs topic registry
● Topics are named channels over which messages are 

exchanged
[adapted from slide by Chad Jenkins] 
[image from http://www.ros.org/wiki/ROS/Concepts]

http://www.ros.org/wiki/ROS/Concepts


Robot Example

Let's say we have a camera, a laptop, and a 
create, and we want to move the robot based 
on detected objects in the camera image. 
● What nodes might we use?
● What messages would they send?



How it works - Create example

[adapted from slide by Chad Jenkins]

● Lets say we split up the code into 4 functional 
components
○ Camera Driver - produces images from the camera
○ Create Driver - accepts forward and angular velocity 

and makes the Create move
○ Blobfinder node (cmvision) - takes an image and 

returns the positions of different colored blobs on the 
screen

○ Control node - takes the position of the orange blob 
and calculates the velocities required to reach it.



How it works

[adapted from slide by Chad Jenkins]

camera node

cmvision 
node control node

create node

USB USB-
Serial



camera node

cmvision 
node control node

create node

USB USB-
Serial

ROS Master

I will publish 
images on 

topic "image"

I will receive 
images on topic 

"image" and 
publish blobs on 

topic "blobs"

I will receive blobs 
on topic "blobs" 

and publish 
velocities on topic 

"cmd_vel"

I will receive 
velocities on 

topic "cmd_vel"

[adapted from slide by Chad Jenkins]

How it works



How it works

[adapted from slide by Chad Jenkins]

camera node

cmvision 
node control node

create node

USB USB-
Serial

ROS Master

SETS UP 
COMMUNICATION

images 
on 

"image"

blobs on 
"blobs"

velocities 
on 

"cmd_vel"



How it works

[adapted from slide by Chad Jenkins]

● These message formats for inter-node 
communication are well defined. We'll see more of 
these in upcoming weeks

● All this communication is done over TCP or UDP. 
This allows one of your nodes to be in China if you 
want.

● In many cases, all these nodes are running on a 
single machine



ROS Nodes

● A node is a process that performs some computation.
● Typically we try to divide the entire software 

functionality into different modules - each one is run 
over a single or multiple nodes.

● Nodes are combined together into a graph and 
communicate with one another using streaming topics, 
RPC services, and the Parameter Server

● These nodes are meant to operate at a fine-grained 
scale; a robot control system will usually comprise 
many nodes

[http://www.ros.org/wiki/Nodes]

http://www.ros.org/wiki/Nodes


ROS Topics

● Topics are named buses over which nodes exchange 
messages

● Topics have anonymous publish/subscribe semantics - 
A node does not care which node published the data it 
receives or which one subscribes to the data it 
publishes

● There can be multiple publishers and subscribers to a 
topic
○ It is easy to understand multiple subscribers
○ Can't think of a reason for multiple publishers 

● Each topic is strongly typed by the ROS message it 
transports

● Transport is done using TCP or UDP

[http://www.ros.org/wiki/Topics]

http://www.ros.org/wiki/Topics


ROS Messages
● Nodes communicate with each other by publishing 

messages to topics.
● A message is a simple data structure, comprising 

typed fields. You can take a look at some basic types 
here
○ std_msgs/Bool
○ std_msgs/Int32
○ std_msgs/String
○ std_msgs/Empty (huh?)

● Messages may also contain a special field called 
header which gives a timestamp and frame of 
reference

[http://www.ros.org/wiki/Messages]

http://www.ros.org/wiki/std_msgs
http://www.ros.org/wiki/std_msgs
http://www.ros.org/doc/api/std_msgs/html/msg/Bool.html
http://www.ros.org/doc/api/std_msgs/html/msg/Bool.html
http://www.ros.org/doc/api/std_msgs/html/msg/Int32.html
http://www.ros.org/doc/api/std_msgs/html/msg/Int32.html
http://www.ros.org/doc/api/std_msgs/html/msg/String.html
http://www.ros.org/doc/api/std_msgs/html/msg/String.html
http://www.ros.org/doc/api/std_msgs/html/msg/Empty.html
http://www.ros.org/doc/api/std_msgs/html/msg/Empty.html
http://www.ros.org/wiki/Messages


ROS Naming

● Subscription is to particular named topic 
● No knowledge of actual node you are 

connecting to

● Also compiling or running packages
○ rosmake
○ rosrun
○ roscd
○ roslaunch

● name of the Package that the resource is in plus 
the name of the resource

● rosrun segbot_gazebo segbot_mobile_base.launch

http://www.ros.org/wiki/Packages
http://www.ros.org/wiki/Packages


Open-Source Code / Collaboration

http://www.ros.org/wiki/Repositories



ROS code hierarchy

● Repository: Contains all the code from a particular 
development group (We have 3 repositories from utexas)

● Stack: Groups all code on a particular subject / device
● Packages: Separate modules that provide different services
● Nodes: Executables that exist in each model (You have seen 

this already)

Repository

Stacks

Packages

Nodes



ROS command line tools

● The best way to review the command line tools is 
through the ROS CheatSheet

http://mirror.umd.edu/roswiki/attachments/Documentation/ROScheatsheet.pdf


ROS: Goals

Main goals of ROS
● Provide a robotics platform designed for code reuse
● Provide a code and file structure for easier 

collaborative development
● Provide a number of tools for visualization and 

monitoring
● Encourage modularization of drivers and different 

functional units.

These goals and their benefits will become clearer as this 
semester progresses



Example 1 - Publisher and Chatter

● The first example is directly from ROS Tutorials
○ http://www.ros.org/wiki/ROS/Tutorials

● I highly recommend going through these tutorials on 
your own time

● We'll take a look at C++ tutorial today (Tutorial 11)
● If you are interested in using ROS in Python go 

through the Python tutorial (Tutorial 12). The tutorials 
are fairly similar

http://www.ros.org/wiki/ROS/Tutorials
http://www.ros.org/wiki/ROS/Tutorials


First Assignment Due Thursday!


