Basic Concepts in Control

393R: Autonomous Robots
Peter Stone

Slides Courtesy of Benjamin Kuipers
Good Afternoon Colleagues

- Are there any questions?
Logistics

• Reading responses
• Next week’s readings - due Monday night
 – Braitenberg vehicles
 – Forward/inverse kinematics
 – Aibo joint modeling
• Next class: lab intro (start here)
Controlling a Simple System

- Consider a simple system: \(\dot{x} = F(x,u) \)
 - Scalar variables \(x \) and \(u \), not vectors \(\mathbf{x} \) and \(\mathbf{u} \).
 - Assume \(x \) is observable: \(y = G(x) = x \)
 - Assume effect of motor command \(u \): \(\frac{\partial F}{\partial u} > 0 \)

- The setpoint \(x_{\text{set}} \) is the desired value.
 - The controller responds to error: \(e = x - x_{\text{set}} \)

- The goal is to set \(u \) to reach \(e = 0 \).
The intuition behind control

- Use action u to push back toward error $e = 0$
 - error e depends on state x (via sensors y)
- What does pushing back do?
 - Depends on the structure of the system
 - Velocity versus acceleration control
- How much should we push back?
 - What does the magnitude of u depend on?

Car on a slope example
Velocity or acceleration control?

- If error reflects x, does u affect x' or x''?

- Velocity control: $u \rightarrow x'$ (valve fills tank)
 - let $x = (x)$
 $$\dot{x} = (\dot{x}) = F(x, u) = (u)$$

- Acceleration control: $u \rightarrow x''$ (rocket)
 - let $x = (x \ v)^T$
 $$\begin{pmatrix} \dot{x} \\ \dot{v} \end{pmatrix} = F(x, u) = \begin{pmatrix} \dot{v} \\ u \end{pmatrix}$$
 $$\dot{v} = \ddot{x} = u$$
The Bang-Bang Controller

• Push back, against the direction of the error
 – with constant action u

• Error is $e = x - x_{set}$

 $e < 0 \Rightarrow u := on \Rightarrow \dot{x} = F(x, on) > 0$

 $e > 0 \Rightarrow u := off \Rightarrow \dot{x} = F(x, off) < 0$

• To prevent chatter around $e = 0$,

 $e < -\varepsilon \Rightarrow u := on$

 $e > +\varepsilon \Rightarrow u := off$

• Household thermostat. Not very subtle.
Bang-Bang Control in Action

- Optimal for reaching the setpoint
- Not very good for staying near it
Hysteresis

• Does a thermostat work exactly that way?
 – Car demonstration

• Why not?

• How can you prevent such frequent motor action?

• Aibo turning to ball example
Proportional Control

- Push back, *proportional* to the error.

\[u = -ke + u_b \]

- set \(u_b \) so that \(\dot{x} = F(x_{set}, u_b) = 0 \)

- For a linear system, we get exponential convergence.

\[x(t) = Ce^{-\alpha t} + x_{set} \]

- The controller gain \(k \) determines how quickly the system responds to error.
Velocity Control

• You want to drive your car at velocity v_{set}.
• You issue the motor command $u = pos_{accel}$.
• You observe velocity v_{obs}.

• Define a first-order controller:

$$u = -k(v_{obs} - v_{set}) + u_b$$

– k is the controller gain.
Proportional Control in Action

- Increasing gain approaches setpoint faster
- Can leads to overshoot, and even instability
- Steady-state offset
Steady-State Offset

• Suppose we have continuing disturbances:
 \[\dot{x} = F(x,u) + d \]

• The P-controller cannot stabilize at \(e = 0 \).
 – Why not?
Steady-State Offset

• Suppose we have continuing disturbances:
 \[
 \dot{x} = F(x,u) + d
 \]

• The P-controller cannot stabilize at \(e = 0 \).
 – if \(u_b \) is defined so \(F(x_{set},u_b) = 0 \)
 – then \(F(x_{set},u_b) + d \neq 0 \), so the system changes

• Must adapt \(u_b \) to different disturbances \(d \).
Adaptive Control

• Sometimes one controller isn’t enough.
• We need controllers at different time scales.
 \[u = -k_p e + u_b \]
 \[\dot{u}_b = -k_I e \quad \text{where} \quad k_I << k_p \]
• This can eliminate steady-state offset.
 – Why?
Adaptive Control

• Sometimes one controller isn’t enough.
• We need controllers at different time scales.

\[u = -k_p e + u_b \]
\[\dot{u}_b = -k_I e \quad \text{where} \quad k_I << k_P \]

• This can eliminate steady-state offset.
 – Because the slower controller adapts \(u_b \).
Integral Control

- The adaptive controller

\[\dot{u}_b = -k_p e \] means

\[u_b(t) = -k_I \int_0^t e \, dt + u_b \]

- Therefore

\[u(t) = -k_p e(t) - k_I \int_0^t e \, dt + u_b \]

- The Proportional-Integral (PI) Controller.
Nonlinear P-control

• Generalize proportional control to
 \[u = -f(e) + u_b \quad \text{where} \quad f \in M_0^+ \]

• Nonlinear control laws have advantages
 – \(f \) has vertical asymptote: bounded error \(e \)
 – \(f \) has horizontal asymptote: bounded effort \(u \)
 – Possible to converge in finite time.
 – Nonlinearity allows more kinds of composition.
Stopping Controller

• Desired stopping point: \(x=0 \).
 – Current position: \(x \)
 – Distance to obstacle: \(d = |x| + \varepsilon \)

• Simple P-controller: \(v = \dot{x} = -f(x) \)

• Finite stopping time for \(f(x) = k \sqrt{|x|} \sgn(x) \)
Derivative Control

- Damping friction is a force opposing motion, proportional to velocity.
- Try to prevent overshoot by damping controller response.
 \[u = -k_p e - k_D \dot{e} \]
- Estimating a derivative from measurements is fragile, and amplifies noise.
Derivative Control in Action

- Damping fights oscillation and overshoot
- But it’s vulnerable to noise
Effect of Derivative Control

- Different amounts of damping (without noise)
Derivatives Amplify Noise

- This is a problem if control output (CO) depends on slope (with a high gain).
The PID Controller

- A weighted combination of Proportional, Integral, and Derivative terms.
 \[u(t) = -k_p e(t) - k_i \int_0^t e \, dt - k_d \dot{e}(t) \]

- The PID controller is the workhorse of the control industry. Tuning is non-trivial.
 - Next lecture includes some tuning methods.
But, good behavior depends on good tuning!
Aibo joints use PID control
Exploring PI Control Tuning

Impact of K_c and T_i on Performance for PI Controller Form: $C_O = C_{O_{bias}} + K_c e(t) + \frac{K_c}{T_i} \int e(t) dt$
Habituation

- Integral control adapts the bias term u_b.
- Habituation adapts the setpoint x_{set}.
 - It prevents situations where too much control action would be dangerous.
- Both adaptations reduce steady-state error.

\[
\begin{align*}
 u &= -k_p e + u_b \\
 \dot{x}_{set} &= +k_h e & \text{where} & \quad k_h << k_p
\end{align*}
\]
Types of Controllers

- **Open-loop control**
 - No sensing

- **Feedback control** (closed-loop)
 - Sense error, determine control response.

- **Feedforward control** (closed-loop)
 - Sense disturbance, predict resulting error, respond to predicted error before it happens.

- **Model-predictive control** (closed-loop)
 - Plan trajectory to reach goal.
 - Take first step.
 - Repeat.

Design open and closed-loop controllers for me to get out of the room.
Dynamical Systems

• A dynamical system changes continuously (almost always) according to
 \[\dot{x} = F(x) \quad \text{where} \quad x \in \mathbb{R}^n \]

• A controller is defined to change the coupled robot and environment into a desired dynamical system.
 \[\dot{x} = F(x,u) \]
 \[y = G(x) \]
 \[u = H_i(y) \]
 \[\dot{x} = \Phi(x) \]
Two views of dynamic behavior

- Time plot \((t, x)\)
- Phase portrait \((x, v)\)
Phase Portrait: \((x,v)\) space

- Shows the trajectory \((x(t),v(t))\) of the system
 - Stable attractor here
In One Dimension

- Simple linear system
 \[\dot{x} = kx \]
- Fixed point
 \[x = 0 \implies \dot{x} = 0 \]
- Solution
 \[x(t) = x_0 e^{kt} \]
 - Stable if \(k < 0 \)
 - Unstable if \(k > 0 \)
In Two Dimensions

• Often, we have position and velocity:
\[\mathbf{x} = (x, \nu)^T \quad \text{where} \quad \nu = \dot{x} \]

• If we model actions as forces, which cause acceleration, then we get:
\[
\begin{pmatrix}
\dot{x} \\
\dot{\nu} \\
\end{pmatrix} = \begin{pmatrix}
\ddot{x} \\
\ddot{\nu} \\
\end{pmatrix} = \begin{pmatrix}
\nu \\
\text{forces} \\
\end{pmatrix}
\]
The Damped Spring

• The spring is defined by Hooke’s Law:
 \[F = ma = m\ddot{x} = -k_1 x \]

• Include damping friction
 \[m\ddot{x} = -k_1 x - k_2 \dot{x} \]

• Rearrange and redefine constants
 \[\ddot{x} + b\dot{x} + cx = 0 \]

\[
\begin{pmatrix}
\dot{x} \\
\dot{v}
\end{pmatrix} =
\begin{pmatrix}
\ddot{x} \\
\dddot{v}
\end{pmatrix} =
\begin{pmatrix}
v \\
-b\dot{x} - cx
\end{pmatrix}
\]
Node Behavior

FIG. C. Node: $B = \begin{bmatrix} \lambda & 0 \\ 0 & \mu \end{bmatrix}$, $\lambda < \mu < 0$.
Focus Behavior

FIG. B. Focus: $B = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}$, $\lambda < 0$.
Saddle Behavior

FIG. A. Saddle: $B = \begin{bmatrix} \lambda & 0 \\ 0 & \mu \end{bmatrix}$, $\lambda < 0 < \mu$.
Spiral Behavior

(Stable attractor)

FIG. E. Spiral sink: $B = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$, $b > 0 > a$.
Center Behavior
(undamped oscillator)

FIG. F. Center: $B = \begin{bmatrix} 0 & -b \\ b & 0 \end{bmatrix}, b > 0.$
The Wall Follower

\[(x, y)\]

\[\theta\]
The Wall Follower

• Our robot model:

\[
\begin{bmatrix}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{bmatrix} = F(x, u) =
\begin{bmatrix}
v \cos \theta \\
v \sin \theta \\
\omega
\end{bmatrix}
\]

\[
u = (v \ \omega)^T \quad y = (y \ \theta)^T \quad \theta \approx 0.
\]

• We set the control law \(u = (v \ \omega)^T = H_i(y) \)
The Wall Follower

• Assume constant forward velocity $v = v_0$
 – approximately parallel to the wall: $\theta \approx 0$.

• Desired distance from wall defines error:

 $e = y - y_{set}$ so $\dot{e} = \dot{y}$ and $\ddot{e} = \ddot{y}$

• We set the control law $u = (v \quad \omega)^T = H_i(y)$
 – We want e to act like a “damped spring”

 $\ddot{e} + k_1 \dot{e} + k_2 e = 0$
The Wall Follower

- We want a damped spring: $\ddot{e} + k_1 \dot{e} + k_2 e = 0$
- For small values of θ

 \[
 \dot{e} = \dot{y} = v \sin \theta \approx v \theta \\
 \ddot{e} = \ddot{y} = v \cos \theta \dot{\theta} \approx v \omega
 \]
- Substitute, and assume $v = v_0$ is constant.

 \[
 v_0 \omega + k_1 v_0 \theta + k_2 e = 0
 \]
- Solve for ω
The Wall Follower

• To get the damped spring \(\ddot{e} + k_1 \dot{e} + k_2 e = 0 \)

• We get the constraint

\[v_0 \omega + k_1 v_0 \theta + k_2 e = 0 \]

• Solve for \(\omega \). Plug into \(u \).

\[
\begin{pmatrix} v \\ \omega \end{pmatrix} = \begin{pmatrix} v_0 \\ -k_1 \theta - \frac{k_2 e}{v_0} \end{pmatrix} = H_i(e, \theta)
\]

– This makes the wall-follower a **PD** controller.

– Because:
Tuning the Wall Follower

- The system is $\ddot{e} + k_1 \dot{e} + k_2 e = 0$
- Critical damping requires $k_1^2 - 4k_2 = 0$
 \[k_1 = \sqrt{4k_2} \]
- Slightly underdamped performs better.
 - Set k_2 by experience.
 - Set k_1 a bit less than $\sqrt{4k_2}$
An Observer for Distance to Wall

- Short sonar returns are reliable.
 - They are likely to be perpendicular reflections.
Alternatives

• The wall follower is a PD control law.
• A target seeker should probably be a PI control law, to adapt to motion.

• Can try different tuning values for parameters.
 – This is a simple model.
 – Unmodeled effects might be significant.
Ziegler-Nichols Tuning

- Open-loop response to a unit step increase.
 - d is deadtime. T is the process time constant.
 - K is the process gain.
Tuning the PID Controller

• We have described it as:

\[u(t) = -k_p e(t) - k_i \int_0^t e \, dt - k_d \dot{e}(t) \]

• Another standard form is:

\[u(t) = -P \left[e(t) + T_i \int_0^t e \, dt + T_d \dot{e}(t) \right] \]

• Ziegler-Nichols says:

\[P = \frac{1.5 \cdot T}{K \cdot d} \quad T_i = 2.5 \cdot d \quad T_D = 0.4 \cdot d \]
Ziegler-Nichols Closed Loop

1. Disable D and I action (pure P control).
2. Make a step change to the setpoint.
3. Repeat, adjusting controller gain until achieving a stable oscillation.
 • This gain is the “ultimate gain” K_u.
 • The period is the “ultimate period” P_u.
Closed-Loop Z-N PID Tuning

- A standard form of PID is:

\[u(t) = -P \left[e(t) + T_I \int_0^t e \, dt + T_D \dot{e}(t) \right] \]

- For a PI controller:

\[P = 0.45 \cdot K_u \quad T_I = \frac{P_u}{1.2} \]

- For a PID controller:

\[P = 0.6 \cdot K_u \quad T_I = \frac{P_u}{2} \quad T_D = \frac{P_u}{8} \]
Summary of Concepts

• Dynamical systems and phase portraits
• Qualitative types of behavior
 – Stable vs unstable; nodal vs saddle vs spiral
 – Boundary values of parameters
• Designing the wall-following control law
• Tuning the PI, PD, or PID controller
 – Ziegler-Nichols tuning rules
 – For more, Google: controller tuning
Followers

• A follower is a control law where the robot moves forward while keeping some error term small.
 – Open-space follower
 – Wall follower
 – Coastal navigator
 – Color follower
Control Laws Have Conditions

• Each control law includes:
 – A trigger: Is this law applicable?
 – The law itself: $u = H_i(y)$
 – A termination condition: Should the law stop?
Open-Space Follower

- Move in the direction of large amounts of open space.
- Wiggle as needed to avoid specular reflections.
- Turn away from obstacles.
- Turn or back out of blind alleys.
Wall Follower

- Detect and follow right or left wall.
- PD control law.
- Tune to avoid large oscillations.
- Terminate on obstacle or wall vanishing.
Coastal Navigator

• Join wall-followers to follow a complex “coastline”
• When a wall-follower terminates, make the appropriate turn, detect a new wall, and continue.
• Inside and outside corners, 90 and 180 deg.
• Orbit a box, a simple room, or the desks.
Color Follower

• Move to keep a desired color centered in the camera image.
• Train a color region from a given image.
• Follow an orange ball on a string, or a brightly-colored T-shirt.
Problems and Solutions

- Time delay
- Static friction
- Pulse-width modulation
- Integrator wind-up
- Chattering
- Saturation, dead-zones, backlash
- Parameter drift
Unmodeled Effects

• Every controller depends on its simplified model of the world.
 – Every model omits almost everything.

• If unmodeled effects become significant, the controller’s model is wrong,
 – so its actions could be seriously wrong.

• Most controllers need special case checks.
 – Sometimes it needs a more sophisticated model.
Time Delay

- At time t,
 - Sensor data tells us about the world at $t_1 < t$.
 - Motor commands take effect at time $t_2 > t$.
 - The lag is $dt = t_2 - t_1$.

- To compensate for lag time,
 - Predict future sensor value at t_2.
 - Specify motor command for time t_2.

\[t_1 \quad t \quad t_2 \]

now
Predicting Future Sensor Values

• Later, observers will help us make better predictions.
• Now, use a simple prediction method:
 – If sensor s is changing at rate ds/dt,
 – At time t, we get $s(t_1)$, where $t_1 < t$,
 – Estimate $s(t_2) = s(t_1) + ds/dt \cdot (t_2 - t_1)$.
• Use $s(t_2)$ to determine motor signal $u(t)$ that will take effect at t_2.
Static Friction ("Stiction")

• Friction forces oppose the direction of motion.
• We’ve seen damping friction: $F_d = -f(v)$
• Coulomb ("sliding") friction is a constant F_c depending on force against the surface.
 – When there is motion, $F_c = \eta$
 – When there is no motion, $F_c = \eta + \varepsilon$
• Extra force is needed to unstick an object and get motion started.
Why is Stiction Bad?

• Non-zero steady-state error.
• Stalled motors draw high current.
 – Running motor converts current to motion.
 – Stalled motor converts *more* current to heat.
• Whining from pulse-width modulation.
 – Mechanical parts bending at pulse frequency.
Pulse-Width Modulation

• A digital system works at 0 and 5 volts.
 – Analog systems want to output control signals over a continuous range.
 – How can we do it?

• Switch very fast between 0 and 5 volts.
 – Control the average voltage over time.

• Pulse-width ratio = \(t_{on} / t_{period} \). (30-50 µsec)
Pulse-Code Modulated Signal

- Some devices are controlled by the length of a pulse-code signal.
 - Position servo-motors, for example.
Integrator Wind-Up

• Suppose we have a PI controller

\[u(t) = -k_p e(t) - k_i \int_{0}^{t} e \, dt + u_b \]

• Motion might be blocked, but the integral is winding up more and more control action.

\[u(t) = -k_p e(t) + u_b \]

\[\dot{u}_b(t) = -k_i e(t) \]

• Reset the integrator on significant events.
Chattering

• Changing modes rapidly and continually.
 – Bang-Bang controller with thresholds set too close to each other.
 – Integrator wind-up due to stiction near the setpoint, causing jerk, overshoot, and repeat.
Dead Zone

• A region where controller output does not affect the state of the system.
 – A system caught by static friction.
 – Cart-pole system when the pendulum is horizontal.
 – Cruise control when the car is stopped.

• Integral control and dead zones can combine to cause integrator wind-up problems.
Saturation

• Control actions cannot grow indefinitely.
 – There is a maximum possible output.
 – Physical systems are necessarily nonlinear.

• It might be nice to have bounded error by having infinite response.
 – But it doesn’t happen in the real world.
Backlash

• Real gears are not perfect connections.
 – There is space between the teeth.

• On reversing direction, there is a short time when the input gear is turning, but the output gear is not.
Parameter Drift

- Hidden parameters can change the behavior of the robot, for no obvious reason.
 - Performance depends on battery voltage.
 - Repeated discharge/charge cycles age the battery.

- A controller may compensate for small parameter drift until it passes a threshold.
 - Then a problem suddenly appears.
 - Controlled systems make problems harder to find.
Unmodeled Effects

• Every controller depends on its simplified model of the world.
 – Every model omits almost everything.

• If unmodeled effects become significant, the controller’s model is wrong,
 – so its actions could be seriously wrong.

• Most controllers need special case checks.
 – Sometimes it needs a more sophisticated model.