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Tutorial Outline

•  Part I: Overview
– Introduction (Doug Burger/Steve Keckler)

– EDGE architectures and the TRIPS ISA (Doug Burger)

– TRIPS microarchitecture and prototype overview (Steve Keckler)

– TRIPS code examples (Robert McDonald)

• Part II: TRIPS Front End
– Global control (Ramdas Nagarajan)

– Control-flow prediction (Nitya Ranganathan)

– Instruction fetch (Haiming Liu)

– Register accesses and operand routing (Karu Sankaralingam)

• Part III: TRIPS Execution Core & Memory System
– Issue logic and execution (Premkishore Shivakumar)

– Primary memory system (Simha Sethumadhavan)

– Secondary memory system (Changkyu Kim)

– Chip- and system-level networks and I/O (Paul Gratz)

• Part IV: TRIPS Compiler
– Compiler overview (Kathryn McKinley)

– Forming TRIPS Blocks (Aaron Smith)

– Code optimization (Kathryn McKinley)

•  Part V: Conclusions

Names in italics refer to both the presenters at ISCA-32 and the main

developers of each section’s slide deck.
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Copyright Information

• The material in this tutorial is Copyright © 2005-2006 by The University of Texas at
Austin.  All rights reserved.

• This material was developed as a part of the TRIPS project in the Computer Architecture
and Technology Laboratory, Department of Computer Sciences, at The University of
Texas at Austin. Please contact Doug Burger (dburger@cs.utexas.edu) or Steve Keckler
(skeckler@cs.utexas.edu) for information about redistribution or usage of these materials
in other presentations.

• Portions of the TRIPS technology described in this tutorial are patent pending.
Commercial parties interested in licensing or using TRIPS technology for profit should
contact the project principal investigators listed above.
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• Bill Yoder
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– Chief engineer of the Scale compiler

• Nick Nethercote
– TRIPS compiler performance leader

Research Scientists Graduate Students

• Xia Chen
– PowerPC to TRIPS translation and emulation

• Raj Desikan
– Initial data tile design

• Saurabh Drolia
– Prototype DMA controller, system simulator, parallel

software

• Madhu Sibi Govindan
– Prototype external bus and clock controller

• Divya Gulati
– Execution tile design, processor core verification

• Heather Hanson
– Operand router design

• Sundeep Kushwaha
– Back-end instruction placement

• Bert Maher
– Hyperblock construction and formation

• Suriya Narayanan
– Compiler/memory system optimization

• Sadia Sharif
– TRIPS system software
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Relevant TRIPS/EDGE Publications

• “The Design and Implementation of the TRIPS Prototype Chip”

– HotChips 17, 2005.

– Contains details about the prototype ASIC.

• “Dynamic Placement, Static Issue (SPDI) Scheduling for EDGE Architectures”

– Intl. Conference on Parallel Architectures and Compilation Techniques (PACT), 2004.

– Specifies compiler algorithm for scheduling instructions on the TRIPS architecture.

• “Scaling to the End of Silicon with EDGE Architectures”

– IEEE Computer, July, 2004

– Provides an overview of EDGE architectures using the TRIPS architecture as a case study.

• “Exploiting ILP, TLP, and DLP with the Polymorphous TRIPS Architecture”

– Intl. Symposium on Computer Architecture (ISCA-30), 2003.

– Details the flexibility of the TRIPS architecture for exploiting different types of parallelism.

• “An Adaptive, Non-Uniform Cache Structure for Wire-Dominated On-Chip Caches”

– Intl. Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS-
X), 2002.

– The first paper describing NUCA caches and their design tradeoffs.

• “A Design Space Evaluation of Grid Processor Architectures”

– Intl. Symposium on Microarchitecture (MICRO-34), 2001.

– An early study that formed the basis for the TRIPS architecture.
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Principal Related Work

• Transport-Triggered Architectures [Supercomputing 1991]

– Hans Mulder and Henk Corporaal

– MOVE Architecture had direct instruction-to-instruction communication bypassing registers

• WaveScalar [Micro 2003]

– Mark Oskin, Steve Swanson, Ken Michelson, and Andrew Schwerin

– Imperative/dataflow EDGE ISA

– 3 most significant differences with TRIPS:

• Dynamic instruction placement

• All-path execution

• Two-level microarchitectural execution hierarchy

• ASH/CASH/Pegasus IR [CGO-03, ASPLOS-04, ISPASS-05]
– Mihai Budiu and Seth Goldstein

– Similar goals and related compiler techniques

– More of a focus on compiling to ASICs or reconfigurable substrates

• RAW [IEEE Computer-97, ISCA-04]

– Pioneering tiled architecture tackling concurrency and wire delays

– Leading work on Scalar Operand Networks

– Direct instruction-to-instruction communication through network switch I-stream
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Key Trends

• Power

– Now a budget, just like area

– What performance can you get for a given power and area budget?

– Transferring work from the HW to the SW (compiler, programmer, etc.) is power efficient

– Leakage trends must be addressed (not underlying goal of TRIPS)

• Slowing (stopping?) frequency increases

– Pipelining has reached depth limits

– Device speed scaling may stop tracking feature size reduction

– May result in decreasing main memory latencies

– Must exploit more concurrency

– Key issue: how to expose this concurrency?  Force the programmer?

• Wire Delays

– Will force growing partitioning of future chips

– Works against reduced power and improved concurrency

• Reliability

– Do everything twice (or thrice) at some level of abstraction

– Works against power limits and exploitation of concurrency

90 nm

65 nm

35 nm

130 nm

20 mm
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Performance Scaling and Technology Challenges

Single-processor Performance Scaling

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

1
9
8
4

1
9
8
6

1
9
8
8

1
9
9
0

1
9
9
2

1
9
9
4

1
9
9
6

1
9
9
8

2
0
0
0

2
0
0
2

2
0
0
4

2
0
0
6

2
0
0
8

2
0
1
0

2
0
1
2

2
0
1
4

2
0
1
6

2
0
1
8

2
0
2
0

L
o

g
2

 S
p

e
e
d

u
p

New programming
models needed?

Frequency wall

Architectural frequency wall

RISC ILP wall

55%/year improvement

65 nm 45 nm 35nm 25nm90 nm

Pipelining

RISC/CISC CPI

Device speed

EDGE CPI
Concurrency only
solution for higher
performance

Conventional architectures
cannot improve performance

Industry shifts to frequency
dominated strategy
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EDGE Architectures: Can New ISAs Help?

CISC

'60s, '70s

Complex, few instructions

Discrete components

Minimize storage

Small numbers in flight

Pipelining difficult

EDGE?

late '00s, '10s

Blocks amortize per-inst overhead

Hundreds to thousands in flight

Inter-inst. communication explicit

Exploits more concurrency

Leakage not yet addressed

Reliability not yet addressed

RISC1

'80s, '90s, early '00s

More numerous, simple instructions

Reliance on compiler ordering

Optimized for pipelining

Tens of instructions in flight

Wide issue inefficient

1RISC concepts implemented

in both ISA and H/W
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The TRIPS EDGE ISA

Doug Burger

ISCA-32 Tutorial

Department of Computer Sciences

The University of Texas at Austin
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What is an EDGE Architecture?

• Explicit Data Graph Execution

– Defined by two key features

1. Program graph is broken into sequences of blocks

– Basic blocks, hyperblocks, or something else

– Blocks commit atomically or not - a block never partially executes

2. Within a block, ISA support for direct producer-to-consumer communication

– No shared named registers within a block (point-to-point dataflow edges only)

– Caveat: memory is still a shared namespace

– The block’s dataflow graph (DFG) is explicit in the architecture

• What are design alternatives for different architectures?

– Single path through program block graph (TRIPS)

– All paths through program block graph (WaveScalar)

– Mechanism for specifying instruction-to-instruction links in the ISA

– Block constraints (composition, fixed size vs. variable size, etc.)
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Architectural Structure of a TRIPS Block

1 - 128

instruction

DFG

Reg. banks

Reg. banks
M

em
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ry
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em
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ry

PC

PC

32 read instructions

32 write instructions

32 loads
32 stores

PC read

terminating

branch

Block characteristics:

• Fixed size:

– 128 instructions max

– L1 and core expands empty
32-inst chunks to NOPs

• Load/store IDs:

– Maximum of 32
loads+stores may be
emitted, but blocks can hold
more than 32

• Registers:

– 8 read insts. max to reg.
bank (4 banks = max of 32)

– 8 write insts. max to reg
bank (4 banks = max of 32)

• Control flow:

– Exactly one branch emitted

– Blocks may hold more

Address+targets sent to 

memory, data returned

to target
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TRIPS Block Contents

Normal

instruction

DFG

Read

instructions

Write

instructions

S
to

re
 m

as
k

PC

buffer

Blocks encoded in object file include:

• Read/Write instructions

• Computation instructions

• 32-bit store mask for tracking store
completion

Two major considerations

• Every possible execution of a given
block must emit a consistent number of
outputs (register writes, stores, PC)

– Outputs may be actual or null

– Different blocks may have different
#s of outputs

• No block state may be written until
block is committed

– Bulk commit is logically atomic

– Similar to an architectural checkpoint
in some respects
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[R1] $g1  [2]
[R2] $g2  [1] [4]
[1] ld L[1] 4
[2] add [3] [4]
[3] mov [5] [6]
[4] st S[2] 4
[5] addi 2 [W1]
[6] teqz [7] [8]
[7] b_t block3
[8] b_f block2
[W1] $g5

[R1] $g1  [2]
[R2] $g2  [1] [4]
[1] ld L[1] 4
[2] add [3] [4]
[3] mov [5] [6]
[4] st S[2] 4
[5] addi 2 [W1]
[6] teqz [7] [8]
[7] b_t block3
[8] b_f block2
[W1] $g5

•  Read target format

•  Predicated instructions

[R1] $g1  [2]
[R2] $g2  [1] [4]
[1] ld L[1] 4 [2]
[2] add [3] [4]
[3] mov [5] [6]
[4] st S[2] 4
[5] addi 2 [W1]
[6] teqz [7] [8]
[7] b_t block3
[8] b_f block2
[W1] $g5

[R1] $g1  [2]
[R2] $g2  [1] [4]
[1] ld L[1] 4 [2]
[2] add [3] [4]
[3] mov [5] [6]
[4] st S[2] 4
[5] addi 2 [W1]
[6] teqz [7] [8]
[7] b_t block3
[8] b_f block2
[W1] $g5

•  LD/ST sequence numbers

[R1] $g1  [2]
[R2] $g2  [1] [4]
[1] ld L[1] 4 [2]
[2] add [3] [4]
[3] mov [5] [6]
[4] st S[2] 4
[5] addi 2 [W1]
[6] teqz [7] [8]
[7] b_t block3
[8] b_f block2
[W1] $g5

•  Target fanout with movs

[R1] $g1  [2]
[R2] $g2  [1] [4]
[1] ld   L[1] 4 [2]
[2] add [3] [4]
[3] mov [5] [6]
[4] st S[2] 4
[5] addi 2 [W1]
[6] teqz [7] [8]
[7] b_t block3
[8] b_f block2
[W1] $g5

•  Block outputs fixed

      (3 in this example)

TRIPS Block Example

RISC code TIL (operand format) TASL (target format)

.bbegin block1
read $t1, $g1
read $t2, $g2
ld $t3, 4($t2)
add $t4, $t1, $t3
st $t4, 4($t2)
addi $t5, $t4, 2
teqz $t6, $t4
b_t<$t6> block3
b_f<$t6> block2
write $g5, $t5
.bend block1

.bbegin block2 ...

ld R3, 4(R2)
add R4, R1, R3
st R4, 4(R2)
addi R5, R4, #2
beqz R4, Block3
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Key Features of TRIPS ISA

• Fixed instruction lengths - all instructions 32 bits

• Read and write instructions

– Contained in block header for managing DFG/register file communication

• Target format (T0, T1)
– Output destinations specified with 9-bit targets

• Predication (PR)
– Nearly every instruction has a predicate field, encoded for efficient

dataflow predication

• Load/store IDs (LSID)
– Used to maintain sequential memory semantics despite EDGE ISA

• Exit bits (EXIT)
– Used to improve block exit control prediction
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TRIPS Instruction Formats

INSTRUCTION FIELDS

OPCODE = Primary Opcode

XOP = Extended Opcode

PR = Predicate Field

IMM = Signed Immediate

T0 = Target 0 Specifier

T1 = Target 1 Specifier

LSID = Load/Store ID

EXIT = Exit Number

OFFSET = Branch Offset

CONST = 16-bit Constant

V = Valid Bit

GR = General Register Index

RT0 = Read Target 0
Specifier

RT1 = Read Target 1
Specifier

OPCODE T1 T0 XOP PR 

OPCODE IMM T0 

OPCODE OFFSET 

Branch Instruction Format 

Load and Store Instruction Formats 

General Instruction Formats 

Constant Instruction Format  

L 

B 

G 

I 

OPCODE CONST C 

LSID PR 

31 25 24 23 22 8 18 17 9 0 

PR 

31 25 24 23 22 8 18 17 9 0 

OPCODE IMM T0 XOP PR 

T0 

31 25 24 0 8 9 

EXIT 

31 25 24 23 0 22 20 19 

OPCODE IMM 0 S LSID PR 

Read Instruction Format 

V GR R RT0 

21 16 20 0 7 8 

RT1 

15 

Not shown: M3, M4 formats
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IMM

TRIPS G and L formats

opcode pr xop T0T1

7 2 5 9 9

Target field

00: unpredicated

01: reserved

10: predicated on false

11: predicated on true

PredG:

opcode pr T0

7 2 5 9 9

L: IMM

9-bit address index for

calculating effective address

LSIDLSID

5-bit sequence number

for ordering loads/stores
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Target (Operand) Formats

Target field

9 bits

2 bits 7 bits

•  00: No target (or write inst.)

•  01: Targets predicate field

•  10: Targets left operand

•  11: Targets right operand 

• Names one of 128 target instructions

• Location of instruction is

        microarchitecture dependent

 01        5 bits

• Names one of 32 write instructions
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Object Code Example

[R1] $g1  [2]

[R2] $g2  [1] [4]

[1] ld L[1] 4

[2] add [3] [4]

[3] mov [5] [6]

[4] st S[2] 4

[5] addi 2 [W1]

[6] teqz [7] [8]

[7] b_t block3

[8] b_f block2

[W1] $g5

opcode pr LSID T0imm

opcode pr xop T0T1

opcode pr xop T0T1

opcode pr LSID 0imm

opcode pr xop T0imm

opcode pr xop T0T1

opcode pr exit offset

opcode pr exit offset

v reg

T0T1v reg

T0T1v reg

TASL (target format) Object Code
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Object Code Example

[R1] $g1  [2]

[R2] $g2  [1] [4]

[1] ld L[1] 4

[2] add [3] [4]

[3] mov [5] [6]

[4] st S[2] 4

[5] addi 2 [W1]

[6] teqz [7] [8]

[7] b_t block3

[8] b_f block2

[W1] $g5

TASL (target format)

ld 00 00001 [2]4

add 00 --- [4][3]

mov 00 --- [6][5]

st 00 00010 ---4

addi 00 --- [W1]2

teqz 00 --- [8][7]

b 11 (t) E0 block3 - PC

b 10 (f) E1 block2 - PC

1 00101

----[2]1 00001

[4][1]1 00010

Store mask: 0000000000000000000000000000100

Object Code
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TRIPS Block Format

• Each block is formed from two to five

128-byte program“chunks”

• Blocks with fewer than five chunks are

expanded to five chunks in the L1 I-cache

• The header chunk includes a block

header (execution flags plus a store

mask) and register read/write instructions

• Each instruction chunk holds 32 4-byte

instructions (including NOPs)

• A maximally sized block contains 128

regular instructions, 32 read instructions,

and 32 write instructions

Header

Chunk

Instruction

Chunk 0

PC

128 Bytes

128 Bytes

128 Bytes

128 Bytes

128 Bytes

Instruction

Chunk 1

Instruction

Chunk 2

Instruction

Chunk 3
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Example of Predicate Operation

• Test instructions output low-order

bit of 1 or 0 (T or F)

• Predicated instructions either

match the arriving predicate or not

– An ADD with PR=10 is predicated

on false, an arriving 0 predicate

will match and enable the ADD

– Predicated instructions must

receive all operands and a

matching predicate before firing

– Instructions may receive multiple

predicate operands but at most one

matching predicate

– Despite predicates, blocks must

produce fixed # of outputs.

if (p==0)
  z = a * 2 + 3;
else
  z = b * 3 + 4;

teqz

muli

addi

st(1)

muli

addi

st(1)

mov3

mov3

a
b

p

t

f
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Predicate Optimization and Fanout Reduction

• Predicate dependence heads
– Reduce instructions executed

– Reduces dynamic energy by using
less speculation

• Predicate dependence tails
– Tolerate predicate latencies with

speculatively executed insts.

– Cannot speculate on block outputs

p

teqz

muli

addi

st(1)

muli

addi

st(1)

a b
teqz

muli

addi

st(1)

muli

addi

st(1)

a b

p
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Instruction (Store) Merging

• Old: two copies of stores

down distinct predicate paths

• New: merge redundant insts.
– Speculative copies unneeded

– Only one data source will fire
p

teqz

muli

addi

st(1)

muli

addi

st(1)

a b

p

teqz

muli

addi

muli

addi

st(1)

a b
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Nullified Outputs

• Each transmitted operand tagged with “null” and

“exception” tokens.

– Nullified operands arriving at insts. produce nullified outputs

– Nulls used to indicate that a block won’t produce a certain

output (writes and stores)

Block with store down

one conditional path:
...
if (p==0)
  z = a * 2 + 3;
...

teqzmuli

addi

st(1)

null

a p
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Exception Handling

• TRIPS exception types:

–  fetch, breakpoint, timeout, execute, store,
system call, reset, interrupt

• TRIPS exception model demands

– Must not raise exceptions for speculative instructions

• Key concept: propagate exception tokens within dataflow graph

– Instructions with exception-set operands do not execute, but propagate

exception token to their targets

– Exceptions are detected at commit time if one or more block output

(write, store, branch) has exception bit set

– Exceptions serviced between blocks

• “Block-precise” exception model
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Other Architecturally Supported Features

• Execution mode via Thread Control Register

– Types of speculation (load, branch)

– Number of blocks in flight

– Breakpoints before/after blocks execute

• T-Morph via Processor Control Register

– Can place processors into single or 4-threaded SMT modes

• Per-bank cache/scratchpad configurations

• TLBs managed by software

• On-chip network routing tables programmed by software

• 40-bit global system memory address space

– Divided into SRF, cached memory, configuration quadrants
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TRIPS Microarchitecture and Implementation

Steve Keckler

ISCA-32 Tutorial

Department of Computer Sciences

The University of Texas at Austin
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TRIPS Microarchitecture Principles

• Limit wire lengths

– Architecture is partitioned and distributed

• Microarchitecture composed of different types of tiles

– No centralized resources

– Local wires are short

• Tiles are small (2-5 mm2 per tile is typical)

– No global wires

– Networks connect only nearest neighbors

• Design for scalability

– Design productivity by replicating tiles (design reuse)

– Tiles interact through well-defined control and data networks

• Networks are extensible, even late in the design cycle

• Opportunity for asynchronous interfaces

– Prototype: employs communication latencies of 35nm technology, even though
prototype is implemented in 130nm
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TRIPS Chip Block Diagram

TRIPS 
Proc 0 
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DMA  
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TRIPS Tile-level Microarchitecture

TRIPS Tiles

G: Processor control - TLB w/ variable size pages, dispatch,
next block predict, commit

R: Register file - 32 registers x 4 threads, register forwarding

 I: Instruction cache - 16KB storage per tile

D: Data cache - 8KB per tile, 256-entry load/store queue, TLB

E: Execution unit - Int/FP ALUs, 64 reservation stations

M: Memory - 64KB, configurable as L2 cache or scratchpad

N: OCN network interface - router, translation tables

DMA: Direct memory access controller

SDC: DDR SDRAM controller

EBC: External bus controller - interface to external PowerPC

C2C: Chip-to-chip network controller - 4 links to XY neighbors
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• GSN: global status network

• GDN: global dispatch network

• OPN: operand network

• GDN: global dispatch network• GDN: global dispatch network

• GSN: global status network

• GCN: global control network

• OPN: operand network

G R R RRI

D E E EEI

D E E EEI

D E E EEI

D E E EEI

• GCN: global control network

• GDN: global dispatch network

• GSN: global status network

• OPN: operand network• OPN: operand network

• GDN: global dispatch network

Grid Processor Tiles and Interfaces
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Mapping TRIPS Blocks to the Microarchitecture
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D-tile[3]

Architecture 

Register Files

Read/Write Queues

Frame0 1 2 3 4 5 6 7

Thread0 1 2 3 R-tile[3]
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I OP1 OP2

Instruction reservation stations

Frame0 1 2 3 4 5 6
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0
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E-tile[3,3]
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Mapping TRIPS Blocks to the Microarchitecture
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0
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D-tile[3]

Architecture 

Register Files

Read/Write Queues

Frame0 1 2 3 4 5 6 7

Thread0 1 2 3 R-tile[3]

R
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I OP1 OP2

Instruction reservation stations

Frame0 1 2 3 4 5 6

7

0

7

S
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t
E-tile[3,3]

Header

Chunk

Inst.

Chunk 0

Inst.

Chunk 3

Block i mapped into Frame 0
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Mapping TRIPS Blocks to the Microarchitecture

Header

Chunk

Inst.

Chunk 0

Inst.

Chunk 3

Block i+1 mapped into Frame 1

I OP1 OP2

Instruction reservation stations

Frame0 1 2 3 4 5 6
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Architecture 

Register Files

Read/Write Queues
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W
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100 10 10110 11

Target = 87, OP1

Frame 4

Mapping Target Identifiers to Reservation Stations

Type

(2 bits)

Y

(2 bits)

X

(2 bits)

Slot

(3 bits)
Frame

(3 bits)

ISA Target Identifier

Frame

(assigned by GT

at runtime)

G R R RRI

D E E EEI

D E E EEI

D E E EEI

D E E EEI

[10,11]

10 11100 10 101

Frame: 100

Slot: 101

OP: 10 = OP1
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Processor Core Tiles and Interfaces

G R R RRI

D E E EEI

D E E EEI

D E E EEI

D E E EEI

• Fetch

– G-tile examines I$ tags

– Sends dispatch
command to I-tiles

– I-tiles fetch
instructions, distribute
to R-tiles, E-tiles
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G R R RRI

D E E EEI

D E E EEI

D E E EEI

D E E EEI

Processor Core Tiles and Interfaces

• Execute

– R-tiles inject register
values

– E-tiles execute block
instructions

• compute, load/store

– E-tiles delivers outputs

• Results to
R-tiles/D-tiles

• Branch to G-tile
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G R R RRI

D E E EEI

D E E EEI

D E E EEI

D E E EEI

• Commit

– R-tiles/D-tiles
accumulate outputs

• Send completion
messages to G-tile

– G-tile sends commit
message

– R-tiles/D-tiles respond
with commit
acknowledge

• R-tiles commit state to
register files

• D-tiles commit state to
data cache

Processor Core Tiles and Interfaces
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Block Execution Timeline

COMMITFETCH EXECUTE

5 10 30 400

Frame 2 Bi

(variable execution time)

Time (cycles)

Frame 4

Frame 5 

Frame 6

Frame 7

Frame 0

Frame 1

Bi+2 

Bi+3 

Bi+4 

Bi+5 

Bi+6 

Bi+7 

Frame 3 Bi+1

• Execute/commit overlapped across multiple blocks

Bi+8 

• G-tile manages frames as a circular buffer

– D-morph: 1 thread, 8 frames

– T-morph: up to 4 threads, 2 frames each
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• Flexible/fast on-chip network fabric

– Programmable translation tables

– Configurable 1 MB memory system

– 128-bit wide, 533 MHz

– 6.8GB/sec per link

• M-tile (on-chip memory)

– 64 KB SRAM capacity

– Configurable tag array (on/off)

• N-tile with translation tables

– System address ⇒ OCN address

• EBC - external bus controller

– Connection to master control processor

• SDC - DDR1 SDRAM controller

– 1.1 GB/sec per controller

• DMA controller

– Linear, scatter-gather, chaining

On-Chip Network

DMA

DMA

SDC

SDC EBC

C2C

GP0

GP1

N M NM

N M NM

N M NM

N M NM

N M NM

N M NM

N M NM

N M NM

N N NN

N N NN
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Chip-to-Chip (C2C) Network

• Glueless interchip network

– Extension of OCN

– 2D mesh router

– 64-bits wide

– 266MHz,1.7GB/sec per link
N

S

W EC2C

OCN
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Chip Implementation

• Chip Specs

– 130 nm 7LM IBM ASIC process

– 18.3mm x 18.3mm die

– 853 signal I/Os

• 568 for C2C

• 216 for SDCs

• ~70 misc I/Os

• Schedule

– 5/99: Seed of TRIPS ideas

– 12/01: Publish TRIPS concept architecture

– 10/02: Publish NUCA concept architecture

– 6/03: Start high-level prototype design

– 10/03: Start RTL design

– 2/05: RTL 90% complete

– 7/05: Design 100% complete

– 9/05: Tapeout

– 12/05: Start system evaluation  in lab TRIPS Working Floorplan (to scale)

1
8

.3
m

m
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Prototype Simplifications

• Architecture simplifications
– No hardware cache coherence mechanisms

– No floating-point divider

– No native exception handling

– Simplified exception reporting

– Limited support for variable-sized blocks

• Microarchitecture simplifications
– No I-cache prefetching or block predict for I-cache refill

– No variable resource allocation (for smaller blocks)

– One cycle per hop on every network

– No clock-gating

– Direct-mapped and replicated LSQ (non-associative, oversized)

– No selective re-execution

– No fast block refetch
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TRIPS Prototype System Board

C2C

Connector

Serial

FPGA

Connector

C2C

Connector

C2C

Connector

C2C

Connector

Ethernet

HOST PC

TRIPS BOARD

FPGA

Connector

SDRAM

SDRAM

SDRAM

SDRAM

IBM
PPC440GP

Flash

TRIPS
0

TRIPS
2

EBI

TRIPS
1

TRIPS
3

Virtex-II Pro
FPGA

Clock
Gen

140

140 140

140

C2C

SDRAM

SDRAM SDRAM

SDRAM

SDRAM

SDRAM

Flash

• TRIPS chip network
– 4 TRIPS chips (8 processors) per board

– Connected using a 2x2 chip-to-chip
network

– Each chip provides local and remote
access to 2GB SDRAM

• PPC440GP
– Configures and controls the TRIPS

chips

– Connects to a Host PC for user
interface (via serial port or ethernet)

– Runs an embedded Linux OS

– Includes a variety of integrated
peripherals

• SDRAM DIMMs
– 8 slots for up to 8 GB TRIPS memory

– 2 slots for up to 1 GB PPC memory

• FPGA - usage TBD but may include
– Protocol translator for high-speed I/O

devices

– Programmable acceleration engine



June 4, 2005 UT-Austin TRIPS Tutorial 47

Maximum Size TRIPS System

Board 1 Board 2 Board 7

HOST PC
Ethernet Switch

SDRAM

SDRAM

SDRAM

SDRAM

IBM
PPC440GP

Flash

TRIPS
1

TRIPS
3

EBI

TRIPS
0

TRIPS
2

Virtex-II Pro
FPGA

Clock
Gen

TBD

140

140 140

140

C2C

SDRAM

SDRAM SDRAM

SDRAM

SDRAM

SDRAM

TBD

Flash

Board 0
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TRIPS Prototype System Capabilities

• Clock speeds

– 533MHz internal clock

– 266MHz C2C clock

– 133/266 SDRAM clock

• Single chip

– 2 processors per chip each with

• 64 KB L1-I$, 32KB L1-D$

• 8.5 Gops or GFlops/processor

– 17 Gops or Gflops/chip peak

– Up to 8 threads

– 1 MB on-chip memory

• L2 cache or scratchpad

– 2 GB SDRAM

– 2.2 GB/sec DRAM bandwidth

• Full system (8 boards)

– 32 chips, 64 processors

– 1024 64-bit FPUs

– 545 Gops/Gflops

– Up to 256 threads

– 64GB SDRAM

– 70 GB/s aggregate DRAM

bandwidth

– 6.8 GB/sec C2C bisection

bandwidth
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Code Examples

Robert McDonald

ISCA-32 Tutorial

Department of Computer Sciences

The University of Texas at Austin
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Two Examples

• Vector Add Example

– A simple for loop

– Basic unrolling

– TRIPS Intermediate Language (TIL)

– Block Dataflow Graph

– Placed Instructions

– TRIPS Assembly Language (TASL)

– Sample Execution

• Linked List Example

– A while loop with pointers

– TRIPS predication

– Predicated loop unrolling
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Vector Add – C Code

• Consider this simple C routine

• The routine does an add and

accumulate for fixed-size

vectors

• An initial control flow graph is

shown

#define VSIZE 1024

void vadd(double* A, double* B,

double* C)

{

  int i;

  for (i = 0; i < VSIZE; i++)

  {

    C[i] += (A[i] + B[i]);
  }

}

C[i] += A[i] + B[i]

i++
i < 1024

i = 0

return

TF

enter
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Vector Add – Unrolled

• This loop wants to be unrolled

• Unrolling reduces the

overhead per loop iteration

• It reduces the number of

conditional branches that must

be executed

C[i]   += A[i]   + B[i]

C[i+1] += A[i+1] + B[i+1]

C[i+2] += A[i+2] + B[i+2]
C[i+3] += A[i+3] + B[i+3]

C[i+4] += A[i+4] + B[i+4]

C[i+5] += A[i+5] + B[i+5]

C[i+6] += A[i+6] + B[i+6]

C[i+7] += A[i+7] + B[i+7]

i+=8

i < 1024

i = 0

return

TF

enter
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Vector Add – TIL Code

• The compiler produces TRIPS

Intermediate Language (TIL) files

• Each file defines one or more

program blocks

• Each block includes instructions,

normally listed in program order

• Instructions are defined using a

familiar syntax (name, target, sources)

• Read and write instructions access

registers

• All other instructions deal with

temporaries

• Notice the Load/Store IDs

• Notice the predicated branches

.bbegin vadd$1
  read  $t0, $g70
  read  $t1, $g71
  read  $t2, $g72
  read  $t3, $g73
  ld    $t4, ($t1) L[0]

  ld    $t5, ($t2) L[1]

  ld    $t6, ($t3) L[2]

  fadd  $t7, $t5, $t6

  fadd  $t8, $t4, $t7

  sd    ($t1), $t8 S[3]

  ld    $t9, 8($t1) L[4]
  ld    $t10, 8($t2) L[5]
  ld    $t11, 8($t3) L[6]
  fadd  $t12, $t10, $t11
  fadd  $t13, $t9, $t12
  sd    8($t1), $t13 S[7]
  ld    $t14, 16($t1) L[8]
  ld    $t15, 16($t2) L[9]
  ld    $t16, 16($t3) L[10]
  fadd  $t17, $t15, $t16
  fadd  $t18, $t14, $t17
  sd    16($t1), $t18 S[11]
  ld    $t19, 24($t1) L[12]
  ld    $t20, 24($t2) L[13]
  ld    $t21, 24($t3) L[14]
  fadd  $t22, $t20, $t21
  fadd  $t23, $t19, $t22
  sd    24($t1), $t23 S[15]
  ld    $t24, 32($t1) L[16]
  ld    $t25, 32($t2) L[17]
  ld    $t26, 32($t3) L[18]
  fadd  $t27, $t25, $t26
  fadd  $t28, $t24, $t27
  sd    32($t1), $t28 S[19]
  (continued)

  ld    $t29, 40($t1) L[20]
  ld    $t30, 40($t2) L[21]
  ld    $t31, 40($t3) L[22]
  fadd  $t32, $t30, $t31
  fadd  $t33, $t29, $t32
  sd    40($t1), $t33 S[23]
  ld    $t34, 48($t1) L[24]
  ld    $t35, 48($t2) L[25]
  ld    $t36, 48($t3) L[26]
  fadd  $t37, $t35, $t36
  fadd  $t38, $t34, $t37
  sd    48($t1), $t38 S[27]
  ld    $t39, 56($t1) L[28]
  ld    $t40, 56($t2) L[29]
  ld    $t41, 56($t3) L[30]
  fadd  $t42, $t40, $t41
  fadd  $t43, $t39, $t42
  sd    56($t1), $t43 S[31]
  addi  $t45, $t0, 8
  addi  $t47, $t1, 64
  addi  $t49, $t2, 64
  addi  $t51, $t3, 64
  genu  $t52, 1024
  tlt   $t54, $t45, $t52
  bro_t<$t54> vadd$1
  bro_f<$t54> vadd$2
  write $g70, $t45
  write $g71, $t47
  write $g72, $t49
  write $g73, $t51
.bend
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Vector Add – Block Dataflow Graph

read
C

read
A

read
B

read
i

fanout
2:17

fanout
2:9

fanout
2:9

addi
64

write
C

addi
8

mov

write
i

tlt

genu
1024

addi
64

write
A

addi
64

write
B

bro_t
#

bro_f
#

ld #ld #ld #

fadd

fadd

st #

x8

(abbreviated graph)

• Read and load
instructions gather
block inputs

• Write, store, and
branch instructions
produce block
outputs

• Address fanout can
present an
interesting challenge
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Vector Add – Placed Instructions

• The scheduler
analyzes each block
dataflow graph

• It inserts fanout
instructions, as
needed

• It places the
instructions within
the block (they
don’t have to be in
program order)

• It produces
assembly language
files

• An instruction fires
when its operands
become available
(regardless of
position)

ET0:

ld, mov3,

mov3, mov,

mov, mov

ET4:

ld, ld, ld,

mov3, addi

ET1:

mov3, ld,

mov, mov,

mov, mov

ET5:

ld, mov3,

mov3, fadd, sd

ET2:

mov, mov3,

ld, addi, addi,

mov

ET3:

mov, mov,

mov, mov3, ld

ET6:

ld, fadd, ld, ld,

ld

ET7:

ld, genu, addi

ET8:

ld, ld, ld,

mov3, fadd, sd

ET9:

ld, ld, ld, ld,

fadd

ET10:

ld, fadd, fadd,

sd

ET11:

fadd, fadd, sd,

tlt, bro_t

ET12:

ld, fadd, fadd,

sd

ET13:

ld, fadd, fadd,

sd

ET14:

fadd, fadd, sd,

ld

ET15:

fadd, fadd, sd,

bro_f
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Vector Add – TASL Code

.bbegin vadd$1
R[2]   read G[70] N[14,0]
R[3]   read G[71] N[43,0] N[3,0]
R[0]   read G[72] N[48,0] N[12,0]
R[1]   read G[73] N[18,0] N[13,0]

N[3]   mov N[7,0] N[9,0]
N[7]   mov N[11,0] N[2,0]
N[9]   mov N[4,0] N[37,0]
N[11]  mov N[15,0] N[6,0]
N[2]   mov N[1,0] N[75,0]
N[4]   mov3 N[32,0] N[78,0] N[64,0]
N[37]  mov3 N[49,0] N[65,0] N[84,0]
N[15]  mov3 N[19,0] N[109,0] N[10,0]
N[6]   mov3 N[108,0] N[5,0] N[106,0]
N[1]   mov3 N[0,0] N[107,0] N[33,0]
N[12]  mov N[16,0] N[76,0]
N[16]  mov N[44,0] N[21,0]
N[76]  mov3 N[66,0] N[77,0] N[110,0]
N[44]  mov3 N[72,0] N[96,0] N[73,0]
N[21]  mov N[35,0] N[42,0]
N[13]  mov N[17,0] N[41,0]
N[17]  mov N[8,0] N[20,0]
N[41]  mov3 N[69,0] N[97,0] N[34,0]
N[8]   mov3 N[36,0] N[68,0] N[40,0]
N[20]  mov N[46,0] N[50,0]
N[32]  ld L[0]  N[74,0]
N[66]  ld L[1]  N[70,0]
N[69]  ld L[2]  N[70,1]
N[70]  fadd N[74,1]
N[74]  fadd N[78,1]
N[78]  sd S[3]
N[64]  ld L[4] 8 N[45,0]
N[77]  ld L[5] 8 N[38,0]
(cont)

N[97]  ld L[6] 8 N[38,1]
N[38]  fadd N[45,1]
N[45]  fadd N[49,1]
N[49]  sd S[7] 8
N[65]  ld L[8] 16 N[80,0]
N[110] ld L[9] 16 N[81,0]
N[34]  ld L[10] 16 N[81,1]
N[81]  fadd N[80,1]
N[80]  fadd N[84,1]
N[84]  sd S[11] 16
N[19]  ld L[12] 24 N[105,0]
N[72]  ld L[13] 24 N[101,0]
N[36]  ld L[14] 24 N[101,1]
N[101] fadd N[105,1]
N[105] fadd N[109,1]
N[109] sd S[15] 24
N[10]  ld L[16] 32 N[104,0]
N[96]  ld L[17] 32 N[100,0]
N[68]  ld L[18] 32 N[100,1]
N[100] fadd N[104,1]
N[104] fadd N[108,1]
N[108] sd S[19] 32
N[5]   ld L[20] 40 N[102,0]
N[73]  ld L[21] 40 N[98,0]
N[40]  ld L[22] 40 N[98,1]
N[98]  fadd N[102,1]
N[102] fadd N[106,1]
N[106] sd S[23] 40
N[0]   ld L[24] 48 N[103,0]
N[35]  ld L[25] 48 N[99,0]
N[46]  ld L[26] 48 N[99,1]
N[99]  fadd N[103,1]
N[103] fadd N[107,1]
N[107] sd S[27] 48
(cont)

N[33]  ld L[28] 56 N[71,0]
N[42]  ld L[29] 56 N[67,0]
N[50]  ld L[30] 56 N[67,1]
N[67]  fadd N[71,1]
N[71]  fadd N[75,1]
N[75]  sd S[31] 56
N[14]  addi 8 N[22,0]
N[22]  mov N[79,0] W[2]
N[43]  addi 64 W[3]
N[48]  addi 64 W[0]
N[18]  addi 64 W[1]
N[39]  genu 1017 N[79,1]
N[79]  tlt N[83,p] N[111,p]
N[83]  bro_t vadd$1
N[111] bro_f vadd$2

W[2]   write G[70]
W[3]   write G[71]
W[0]   write G[72]
W[1]   write G[73]
.bend

• TRIPS Assembly
Language (TASL) files
are fed to the assembler

• Instructions are
described using a
dataflow notation
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Vector Add – Block-Level Execution

• The TRIPS processor can execute up to 8 blocks concurrently

• This diagram shows block latency and throughput for an optimal vector add loop

• It achieves ~7.4 IPC, ~3.2 loads & stores per cycle

0 10 20 50 100 15030 40 60 70 80 90 110 120 130 140 160 170
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Linked List – C Code

• For a second example, let’s

examine something more

complex

• We’ll be focusing upon the

code in red

• A linked list operation is

performed using a while loop

and search pointer

• The number of while loop

iterations can vary

// type info

struct foo

{

  long tag;

  long value;

  struct foo * next;

};

struct foo * head;

void list_add( long key )

{

  struct foo * p = head;

  // search list and increment node

  while (p)

  {

    if (p->tag == key)

    {

      p->value++;
      break;

    }

    p = p->next;

  }

  // ...

}
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Linked List – CFG

• The while loop’s control flow

graph is shown here

• It consists of four rather small

basic blocks

• Its hard to get anywhere fast

with all of those branches

• We’d like to use predication

to form a larger program

block (or hyperblock)

p == 0

(...)

F

T

p->tag == key

p->value++ p = p->next

T F

Hyperblock

BB0

BB1

BB2 BB3
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Linked List – Hyperblock #1

• Here is a TIL representation of the hyperblock

• Predicate p0 represents the test to determine
whether p is null

• Predicate p1 represents the test to determine
whether the tag matches the key

• The test instruction that produces p1 is itself
predicated upon p0 being false

• That means that there are only three possible
predicate outcomes:

– p0 true, p1 unresolved

– p0 false, p1 false

– p0 false, p1 true

• This example demonstrates “predicate-oring”,
which allows multiple exclusive predicates to
be OR’d at the target instruction

• This example demonstrates write and store
nullification, which allows block outputs to be
cancelled

• Loads are allowed to execute speculatively
because exceptions will be predicated
downstream

.bbegin block1
  read $t0, $g70            ; key

  read $t1, $g71            ; p

  ; BB0

  teqi $p0, $t1, 0

  ; BB1

  ld $t3, ($t1)             ; p->tag

  teq_f <$p0> $p1, $t3, $t0

  ld $t4, 16($t1)          ; p->next

  ; BB2

  ld $t10, 8($t1)           ; p->data
  null_t <$p0> $t11

  addi_t <$p1> $t11, $t10, 1

  null_f <$p1> $t11

  sd 8($t1), $t11           ; p->data

  ; BB3

  null_t <$p0,$p1> $t99

  mov_f <$p1> $t99, $t4

  write $g71, $t99          ; p

  ; branches
  bro_t <$p0,$p1> block2

  bro_f <$p1> block1

.bend
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Linked List – Predicated Loop Unrolling

• With predication, it’s also possible

(and helpful) to unroll this loop

• Many variations are possible

• This diagram shows just two

iterations within the hyperblock

• There number of block exits and

block outputs remains the same as

before

• The compiler can use static

heuristics or profile data to choose

an unrolling factor

• Can sometimes use instruction

merging to combine multiple

statements into one (in yellow)

p == 0

(...)

F

T

p->tag == key

p = p->next

T F

Hyperblock

p == 0

F

p->tag == key

p->value++
p = p->next

T F

T
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Linked List – Hyperblock #2

• Here is some TIL for the unrolled

while loop

• The changes from the first version

are highlighted (in red)

• Notice the use of predicate-ORing,

which allows the block to finish

executing early in some cases

• There are now four predicates and

five possible outcomes

.bbegin block1
  read $t0, $g70            ; key

  read $t1, $g71            ; p

  teqi $p0, $t1, 0

  ld $t3, ($t1)             ; p->tag

  teq_f <$p0> $p1, $t3, $t0

  ld $t4, 16($t1)           ; p->next

  teqi_f <$p1> $p2, $t4, 0

  ld $t5, ($t4)             ; p->next->tag

  teq_f <$p2> $p3, $t5, $t0

  ld $t6, 16($t4)           ; p->next->next
  ; conditional p update

  null_t <$p0,$p1> $t99

  mov_t <$p2,$p3> $t99, $t4

  mov_f <$p3> $t99, $t6

  write $g71, $t99          ; p

  ; conditional p->data update

  ld_t <$p1> $t10, 8($t1)

  ld_f <$p1> $t10, 8($t4)

  null_t <$p0,$p2> $t11
  addi_t <$p1,$p3> $t11, $t10, 1

  null_f <$p3> $t11

  sd 8($t1), $t11           ; p->data

  ; branches

  bro_t <$p0,$p1,$p2,$p3> block2

  bro_f <$p3> block1

.bend

TFFF

FFFF

-TFF

--TF

---T

p3p2p1p0
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Conclusion

• The EDGE ISA allows instructions to be both fetched and

executed out-of-order with minimal book-keeping

• It’s possible to use loop unrolling and predication to form large

blocks

• The TRIPS predication model allows control flow to be

converted into an efficient dataflow representation

• Operand fanout is more explicit in an EDGE ISA and costs extra

instructions
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Global Control

Ramadass Nagarajan

ISCA-32 Tutorial

Department of Computer Sciences

The University of Texas at Austin
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G-Tile Location and Connections

G-Tile R-Tile

D-Tile

I-Tile

ESN

GDN

GRN

OCN

GSN

GDN

GSN

GCN

GCN

OPN

GSN

OPN

HALT_GP

(to EBC)

GP_HALTED

(from EBC)
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Major G-Tile Responsibilities

• Orchestrates global control for the core
– Maps blocks to execution resources

• Instruction fetch control
– Determines I-cache hits/misses, ITLB hits/misses

– Initiates I-cache refills

– Initiates block fetches

• Next-block prediction
– Generates speculative block addresses

• Block completion detection and commit initiation

• Flush detection and initiation
– Branch mispredictions, Ld/St dependence violations, exceptions

• Exception reporting
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Networks Used by G-Tile

• OPN - Operand Network

– Receive and send branch addresses from/to E-tiles

• OCN - On-Chip Network

– Receive block header from adjacent I-tile

• GDN - Global Dispatch Network

– Send inst. fetch commands to I-tiles and read/write instructions to R-tiles

• GCN - Global Control Network

– Send commit and flush commands to D-tiles, R-tiles and E-tiles

• GRN - Global Refill Network

– Send I-cache refill commands to I-tile slave cache banks

• GSN - Global Status Network

– Receive refill, store, and register write completion status and commit acknowledgements

from I-tiles, D-tiles, and R-tiles

• ESN - External Store Network

– Receive external store pending and error status from D-tiles
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Global Dispatch Network (GDN)

G R R RRI

D E E EEI

D E E EEI

D E E EEI

D E E EEI

• Delivers instruction fetch commands to I-tiles

• Dispatches instructions from I-Tiles to R-Tiles/E-Tiles

CMD:   None/Fetch/Dispatch

ADDR:  Address of block

SMASK: Store mask in block

FLAGS: Block execution flags

ID:    Frame identifier

INST:  Instruction bits

Interface Ports
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G

Global Refill Network (GRN)

R R RRI

D E E EEI

D E E EEI

D E E EEI

D E E EEI

Delivers refill commands to I-Tiles

CMD:  None/Refill

RID:  Refill buffer identifier

ADDR: Address of block to refill

Interface Ports
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G

Global Control Network (GCN)

R R RRI

D E E EEI

D E E EEI

D E E EEI

D E E EEI

Delivers commit and flush commands to R-Tiles, D-Tiles and E-Tiles

CMD:   None/Commit/Flush

MASK:  Mask of frames for commit/flush

Interface Ports
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Global Status Network (GSN)

G R R RRI

D E E EEI

D E E EEI

D E E EEI

D E E EEI

I-tiles:  Completion status for pending refills

R-tiles: Completion status register writes, acknowledgement of register commits

D-tiles: Completion status for stores, acknowledgement of store commits

CMD:    None/Completed/Committed

ID:     Frame/Refill buffer identifier

STATUS: Exception Status

Interface Ports
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G

D E E EEI

External Store Network (ESN)

R R RRI

D E E EEI

D E E EEI

D E E EEI

Delivers external store pending and error status from D-tiles

PENDING: Pending status of

external store requests and

spills in each thread

ERROR:   Errors encountered for

external store requests and

spills in each thread

Interface Ports
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Completions

Refill

Overview of Block Execution

Start
Ready in

I-cache

Ready for

Fetch

Dispatch

Execute
Completed

Flushed
Committing

Deallocated

Allocate Fetch

Flush Commit

Acks

Different states in the execution of a block

(GRN)

(GDN) (GSN)

(GCN) (GCN)

(GSN)
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Major G-Tile Structures

Retire Unit
Commit/Flush Ctrl

Fetch Unit
ITLB

I-cache dir.

Refill Unit
I-cache

MSHRs

Exit
Predictor

Control
Registers

OPN

OCN

OPN GCN GSN

ESN

GSN

GDN/GRN
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Oldest

Youngest

0

1

2

3

4

5

6

7

After a new fetch

Oldest

Youngest

0

1

2

3

4

5

6

7

After a commit

Oldest

Youngest
0

1

2

3

4

5

6

7

Frames in use

Frame Management

Frames allocated from a circular queue

Speculative blocks

Non-speculative block

Control Speculation
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Speculative blocks

Non-speculative block

Control Speculation

Oldest

Youngest

0

1

2

3

4

5

6

7

After a new fetch

Frame Management

Frames allocated from a circular queue
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Oldest

Youngest

0

1

2

3

4

5

6

7

After a commit

Frame Management

Frames allocated from a circular queue

Speculative blocks

Non-speculative block

Control Speculation
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Fetch Unit

• Instruction TLB

• 16 entries

• 64KB - 1TB supported page size

• I-cache directory

• 128 entries

• Each entry corresponds to one cached block

• Entry Fields

• Physical tag for the block

• Store mask for the block

• Execution flags for the block

• 2-way set associative

• LRU replacement

• Virtually indexed, physically tagged
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Fetch Pipeline

Block B

Block A

Fetch

SLOT 3

Fetch

SLOT 2

Fetch

SLOT 1

Fetch

SLOT 0

Hit/Miss
detection

Frame
allocation

TLB
lookup

I-cache
lookup

Predict

(Stage 2)

Address
Select

Predict

(Stage 1)

Predict

(Stage 0)

Cycle 0 Cycle 1 Cycle 2 Cycle 3 Cycle 4

Predict

(Stage 0)

Cycle 5

Predict

(Stage 1)

Cycle 6

Predict

(Stage 2)

Cycle 7

Stall

Cycle 8

Predict cycle Fetch cycle

Stall

Fetch

SLOT 4

Cycle 9

Fetch
SLOT 7

Fetch
SLOT 6

Fetch
SLOT 5

Address
Select

Cycle 10

TLB
lookup

I-cache
lookup

Cycle 11

Hit/Miss
detection

Frame
allocation

Cycle 12

Fetch

SLOT 0

Cycle

13

Fetch

SLOT 1

Cycle 14

Fetch

SLOT 2

Cycle 15

Fetch

SLOT 3

Cycle 16

Fetch

SLOT 4

Cycle 17

Control cycle
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Refill Pipeline

Block A

Fetch

SLOT 0

Refill

Complet
e

Frame
allocatio

n

…….

Stall

RefillHit/Miss
detection

CACHE

MISS

TLB
lookup

I-cache
lookup

Predict

(Stage 2)

Address
Select

Predict

(Stage 1)

Predict

(Stage 0)

Cycle 0 Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle X Cycle X+1

Predict cycle Fetch cycleControl cycle

• Refills stall fetches for the same thread 

• Support for up to four outstanding refills – one per thread
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Per-Frame State

ValidV

YoungestY

OldestO

Branch misprediction detectedM

Next block addressNADDR

Next block address state (predicted or resolved)NSTATE

Prediction completedPC

Repair completedRC

Update completedUC

Block addressBADDR

Load violation reportedL

Branch completedBC

Exception reportedE

Registers completedRC

Stores completedSC

Block execution status

Block commit status

Branch prediction status

Registers committedRCT

Commit sentCS

Stores committedSCT

Frame status

Commit   V & O & RC & SC & BC 

    & ~E & ~L & ~CS

Dealloc  V & O & CS 

           & RCT & SCT & UC
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Block Completion Detection

• Block completed execution if:

– All register writes received

– All stores received

– Branch target received

• Register completion tracked locally at each R-Tile

– Expected writes at each R-Tile known statically

– Completion status forwarded from farthest R-Tile to the G-Tile on the GSN

• Store completion reported by D-tile 0

– All D-Tiles communicate with each other to determine completion

– Completion status delivered on the GSN by D-tile 0
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Commit Pipeline

• Block ready for commit if:

– Oldest in the thread

– Completed with no exceptions

– No load/store dependence violations detected

• Commit operation

– G-Tile sends commit message for a block on the GCN

– R-Tiles and D-Tiles perform local commit operations

– R-Tiles and D-Tiles acknowledge commit using GSN

– G-Tile updates predictor history for the block

Register/Branch/

Store

Completion
received

(GSN/OPN)

Cycle 0

Commit detect

Cycle 1

Commit send
(GCN)

Predictor
Commit

Cycle 2

…… Commit acks
received (GSN)

Cycle X

Frame
deallocation

Cycle X+1
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T-Morph Support

• Up to four threads supported in T-morph

mode

– Threads mapped to fixed set of frames

• Per-thread architected registers in the G-tile

– Thread Control and Status Registers

– Program Counter (PC)

• Other T-morph support state/logic

– Per-thread frame management

– Round-robin thread prioritization for block

fetch/commit/flush

Thread 3

Thread 3

Thread 2

Thread 2

Thread 1

Thread 1

Thread 0

Thread 0

….

GR 128

GR1

GR0

PC

TSR

TCR

PC

TSR

TCR

PC

TSR

TCR

PC

TSR

TCR
….

GR 128

GR1

GR0

….

GR 128

GR1

GR0

….

GR127

GR1

GR0

Frame Allocation

Per-thread Registers
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Exception Reporting

• Exceptions reported to the G-tile

– GSN: refill exceptions, execute exceptions delivered to

stores, register outputs

– OPN: execute exceptions delivered to branch targets

– ESN: errors in external stores

• G-tile halts processor whenever exception occurs

– Speculative blocks in all threads flushed

– Oldest blocks in all threads completed and committed

– All outstanding refills, stores and spills completed

– Signals EBC to cause external interrupt

• Exception type reported in PSR and TSRs

– Multiple exceptions may be reported
Fetch

Store

Execute

Fetch

Reset

Interrupt

System Call

Timeout

Breakpoint

Exceptions detected at G-tile

Exceptions detected at other tiles
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Control Flow Prediction

Nitya Ranganathan

ISCA-32 Tutorial

Department of Computer Sciences

The University of Texas at Austin
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Predictor Responsibilities

• Predict next block address for fetch
– Predict block exit and exit branch type (branches not seen by predictor)

– Predict target of exit based on predicted branch type

– Predictions amortized over each large block
• Maximum necessary prediction rate is one every 8 cycles

• Speculative update for most-recent histories
– Keep safe copies around to recover from mispredictions

• Repair predictor state upon a misprediction

• Update the predictor upon block commit
– Update exits, targets and branch types with retired block state
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Example Hyperblock from Linked List Code

• Each hyperblock may have
several predicated exit
branches

– Exit e0  block H2

– Exit e1  block H1

• Only one branch will fire

• Predictor uses exit IDs to
make prediction

– 8 exit IDs supported

– e0  “000”

– e1  “001”

• Predictor predicts the ID of
the exit that will fire

– implicitly predict several
predicates in a path

• Exit history formed by
concatenating sequence of
exit IDs

p == 0

(...)

F

T

p->tag == key

p = p->next

T F

Hyperblock H1

p == 0

F

p->tag == key

p->value++
p = p->next

T F

T

Hyperblock H2

bro H1

bro H2

Exit e0 Exit e1
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High-level Predictor Design

• Index exit predictor with current block address

• Use exit history to predict 1 of 8 exits

• Predict branch type (call/return/branch) for chosen exit

• Index multiple target predictors with block address and predicted exit

• Choose target address based on branch type

Exit
Predictor

Branch
Type

Predictor

Target
Predictor

block address

predicted

next-

block

address

predicted

exit
predicted

branch type



June 4, 2005 UT-Austin TRIPS Tutorial 90

Predictor Components

2-level
Local

Predictor
(9 K)

2-level
Global

Predictor
(16 K)

2-level
Choice

Predictor
(12 K)

Sequential
predictor

Branch
Target
Buffer
(20 K)

Call
Target
Buffer
(6 K)

Return
Address

Stack
(7 K)

Branch
Type

Predictor
(12 K)

block

address

predicted exit

predicted

next-block

address

Exit Predictor (37 Kbits) Target Predictor (45 Kbits)
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Prediction using Exit History (linked list example)

• Dynamic block sequence                         H1  H1  H1  H2  H1  H1  H1  H2

• Local exit history for block H1                e1   e1   e1   e0   e1   e1   e1   e0

• Local exit history encoding (2 bits)          01   01  01   00   01   01   01  00

– Use only 2 bits from each 3-bit exit to permit longer histories

• History table entry holds 5 exit IDs

• Prediction table contains exit IDs and hysteresis bits

Predict “001”

Update history

Predict “000”

Exit history register Predictor action

01   01   01   00   01   01   01   00

01   01   01   00   01   01   01   00

01   01   01   00   01   01   01   00

01   01   01   00   01   01   01   00 Update history

Prediction table entry

001

000

000

001

Exit branch history
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Prediction Timing

Cycle 1 Cycle 2 Cycle 3

Local

Global

Choice

Btype

BTB

CTB

RAS

Read call, return
targets for all exits

Read global exit predictor              (contd.)

Read choice predictor                    (contd.)

Read branch types for all exits       (contd.)

Read branch targets for all exits     (contd.)

Choose
final
target

Read return address from stack     (contd.)

Read local history Read local exit
predictor

Push return address

Choose
final exit

Get
chosen
exit’s
type,
targets

Read local history Read local exit
predictor

Push return address

Choose
final exit

Get
chosen
exit’s
type,
targets
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More Predictor Features

• Speculative state buffering

– Latest global histories in global and choice history registers

• Old snapshots of histories stored in history file for repair

– Latest local history maintained in future file

• Local exit history table holds committed block history

– Return address stack state buffering

• Save top of stack pointer and value before every prediction

• Repair stack on address and branch type mispredictions

• Call-return

– Call/return instructions enforce proper control flow

– Predictor learns to predict return addresses using call-return link stack

• Update stores return address in link stack corresponding to call stored in CTB
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Learning Call-Return Relationships

Call Target Buffer (CTB)

RAS Address Stack

RAS Link Stack

Return Address Stack (RAS)

Call Target Address Return Address
CTB index

TOS

TOS

When a call commits:

• Update Call Target Address in CTB

• Push CTB index onto Link Stack

When a return commits:

• Pop CTB index from Link Stack

• Update Return Address in CTB

During prediction:

• Call  push return address from CTB onto Address Stack

• Return  pop address from Address Stack

push address pop return address

pop CTB index

Return Addr

CTB Index

update return addressupdate call target

push CTB index
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Prediction and Speculative Update Timing

Cycle 1 Cycle 2 Cycle 3

Local

Global

Choice

Btype

BTB

CTB

RAS

Read call, return
targets for all exits

Read local exit
predictor

Push return address
Backup top of stack

Update local future
file history

Update speculative
choice history

Update speculative
global history

Read local history
Read local future file

Read global exit predictor              (contd.)
Backup global history

Read choice predictor                    (contd.)
Backup choice history

Read branch types for all exits       (contd.)

Read branch targets for all exits     (contd.)

Choose
final exit

Get
chosen
exit’s
type,
targets

Choose
final
target

Read return address from stack     (contd.)
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Optimizations for Better Prediction

• Exit prediction more difficult than branch prediction

– 1 of 8   vs.  1 of 2

• Fewer exits in block  better predictability

     
…

…
bro h3

…
bro h2

… …

H1

bro h2
…

bro h2
…

bro h3
…

bro h2

… …

H1

H3 H2

B1

B2 B3

B6B4 B5

B8B7

Predicating control
flow merges (B8)Exit merging

Hyperblock

H3 H2
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Instruction Fetch
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I-Tile Location and Connections

I-Tile
G-Tile/

D-Tile

I-Tile

N-Tile

GSN

OCN

GRN

GDN

GDN

OCN

G-Tile

GSNGRNGDN
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I-Tile Major Responsibilities

• Instruction Fetch
– Cache instructions for one row of R-Tiles/E-Tiles

– Dispatch instructions to R-Tiles/E-Tiles through GDN

• Instruction Refill
– Receive refill commands from G-Tile on GRN

– Submit memory read requests to the N-Tile on OCN

– Keep track of completion status of each ongoing refill

– Report completion status to G-Tile on the GSN when refill
completes

• OCN Access Control
– Share N-Tile connection between I-Tile and D-Tile/G-Tile

– Forward OCN transactions between GT/NT or DT/NT
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Major I-Tile Structures

I-$ array
(128bit x1024

SRAM, 1 R/W port)

Refill buffer
(128bit x 32, 1 read
port, 1 write port)

CTRL
logic

OCN
control

OCN

m
u

x

GDN
GRN

GSN

GDN
GRN

GSN

GDN
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Instruction Layout in a Maximal Block

Header 
Chunk

Word 0

Word 1

Word 30

Word 31

Write 0

Write 1

....

Write 30

Write 31

Read 0

Read 1

....

Read 30

Read 31

H0

H1

....

H30

H31

128 bytes

PC

128 bytes

128 bytes

128 bytes

128 bytes

Instruction 

 Chunk1

Instruction 

 Chunk2

Instruction 

 Chunk3

Instruction 

 Chunk0

Inst. 124 Inst. 125 Inst. 126 Inst. 127

    …    …    …     …

Inst. 96 Inst. 97 Inst. 98 Inst. 99

0127

031

Column 0 Column 1 Column 2 Column 3



June 4, 2005 UT-Austin TRIPS Tutorial 102

Instruction Fetch Pipeline

ITLB
lookup

I-$ Tag
lookup

Cycle 0

Hit/Miss
detection

Frame
allocation

Cycle 1

Fetch slot 0

Cycle 2

Fetch slot 1

Cycle 3

Fetch slot 2

Cycle 4

……

Fetch slot 7

Cycle 9

R/W slot 7

Fetch slot 7

Dispatch
slot 6

Cycle 10

R/W slot 0

 Fetch slot
0

Cycle 3

R/W slot 1

Fetch slot 1

Dispatch
slot 0

Cycle 4

…….

R/W slot 6

Fetch slot 6

Dispatch
slot 5

Cycle 9

R/W slot 0

 Fetch slot
0

Cycle 4

…….

R/W slot 5

Fetch slot 5

Dispatch
slot 4

Cycle 9

…….

GT

IT0

IT1
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Instruction Dispatch Timing Diagram

GT

Issue fetch on
cycle x

Dispatch
cycle x+2

RT0 RT1 RT2 RT3IT0
Receives
inst 0
cycle x+3

Receives
inst 0
cycle x+4

Receives
inst 0
cycle x+5

Receives
inst 0
cycle x+6

Forwards
fetch
cycle x+1

DT0
Dispatch
cycle x+3

ET0 ET1 ET2 ET3IT0
Receives
inst 0
cycle x+4

Receives
inst 0
cycle x+5

Receives
inst 0
cycle x+6

Receives
inst 0
cycle x+7

Forwards
fetch
cycle x+2

DT1
Dispatch
cycle x+4

ET4 ET5 ET6 ET7IT0
Receives
inst 0
cycle x+5

Receives
inst 0
cycle x+6

Receives
inst 0
cycle x+7

Receives
inst 0
cycle x+8

Forwards
fetch
cycle x+3

DT2
Dispatch
cycle x+5

ET8 ET9 ET10 ET11IT0
Receives
inst 0
cycle x+6

Receives
inst 0
cycle x+7

Receives
inst 0
cycle x+8

Receives
inst 0
cycle x+9

Forwards
fetch
cycle x+4

DT3
Dispatch
cycle x+6

ET12 ET13 ET14 ET15IT0
Receives
inst 0
cycle x+7

Receives
inst 0
cycle x+8

Receives
inst 0
cycle x+9

Receives
inst 0
cycle x+10



June 4, 2005 UT-Austin TRIPS Tutorial 104

Instruction Dispatch Timing Diagram

GT

Issue fetch on
cycle x

RT0 RT1 RT2 RT3IT0
Receives
inst 1
cycle x+4

Receives
inst 1
cycle x+5

Receives
inst 1
cycle x+6

Receives
inst 1
cycle x+7

DT0 ET0 ET1 ET2 ET3IT0
Receives
inst 1
cycle x+5

Receives
inst 1
cycle x+6

Receives
inst 1
cycle x+7

Receives
inst 1
cycle x+8

DT1 ET4 ET5 ET6 ET7IT0
Receives
inst 1
cycle x+6

Receives
inst 1
cycle x+7

Receives
inst 1
cycle x+8

Receives
inst 1
cycle x+9

DT2 ET8 ET9 ET10 ET11IT0
Receives
inst 1
cycle x+7

Receives
inst 1
cycle x+8

Receives
inst 1
cycle x+9

Receives
inst 1
cycle x+10

DT3 ET12 ET13 ET14 ET15IT0
Receives
inst 1
cycle x+8

Receives
inst 1
cycle x+9

Receives
inst 1
cycle x+10

Receives
inst 1
cycle x+11
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Instruction Dispatch Timing Diagram

GT RT0 RT1 RT2 RT3IT0
Receives
inst 7
cycle x+10

Receives
inst 7
cycle x+11

Receives
inst 7
cycle x+12

Receives
inst 7
cycle x+13

DT0 ET0 ET1 ET2 ET3IT0
Receives
inst 7
cycle x+11

Receives
inst 7
cycle x+12

Receives
inst 7
cycle x+13

Receives
inst 7
cycle x+14

DT1 ET4 ET5 ET6 ET7IT0
Receives
inst 7
cycle x+12

Receives
inst 7
cycle x+13

Receives
inst 7
cycle x+14

Receives
inst 7
cycle x+15

DT2 ET8 ET9 ET10 ET11IT0
Receives
inst 7
cycle x+13

Receives
inst 7
cycle x+14

Receives
inst 7
cycle x+15

Receives
inst 7
cycle x+16

DT3 ET12 ET13 ET14 ET15IT0
Receives
inst 7
cycle x+14

Receives
inst 7
cycle x+15

Receives
inst 7
cycle x+16

Receives
inst 7
cycle x+17
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Instruction Refill

• Receive refill id and block physical address from GRN input

• Request 128 bytes of inst. from memory hierarchy

– Send out 2 OCN read requests

• Buffer received inst. in refill buffer

• Report refill completion on GSN output when

– 128 bytes of inst. have been received

– Completion has been received on GSN input

• Write inst. into SRAM when dispatched from refill buffer

I-$ array
(128bit x1024 SRAM, 1

R/W port)

Refill buffer
(128bit x 32, 1 read
port, 1 write port)

CTRL
logic

OCN controlOCN

m
u

x

GDN
GRN

GSN

GDN
GRN

GSN

GDN
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Register Accesses and Operand Routing
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R-Tile and OPN Location and Connections

R-Tile R-Tile

E-Tile

G-Tile

GDN

GCN

GSN

OPN

GDN

OPN

GCN

GSN

OPNOPN

Router
OPN

Router

OPN

Router

OPN

Router



June 4, 2005 UT-Austin TRIPS Tutorial 109

Major R-Tile Responsibilities

• Maintain architecture state, commit register writes

– 512 registers total

– 128 registers per thread, interleaved across 4 tiles

– 32 registers/thread * 4 threads = 128 registers per tile

• Process read/write instructions for each block

– 64 entry Read Queue (RQ), 8 blocks, 8 reads in each

– 64 entry Write Queue (WQ), 8 blocks, 8 writes in each

• Forward inter-block register values

• Detect per-block and per-tile register write completion

• Detect exceptions that flow to register writes
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Major Structures in the R-tile

Write Queue

Read Queue

Committed

Register File

D
eco

d
e

Commit

OPN Router EW

S
GSN

GSN

GCN,

GDN

GCN, GDN
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Pipeline diagrams: Register Read and Write

Read

dispatch
Read Queue Read issue

Read

wakeup

(WQ

search)

OPN

inject

Write

update Write Queue Write issue

Write

forward

(RQ

search)

Cycle 0

Read dispatch

Write forward

G
D

N
O

P
N OPN

inject

Write Queue
Commit

wakeup

Arch.

Register

File

Write commit

Block

selectG
C

N

Cycle 1 Cycle 2 Cycle 3
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Register Forwarding: RQ and WQ contents

Read Queue

Write Queue

 0    1   2    3    4    5    6    7 

 0    1   2    3    4    5    6    7 

WQ waitReg # WQ pointerTarget 1 Target 2Valid Status

 1  8 5  8  1  6 3

Reg # ValueValid Status

 1  64 5 8
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             B0                              B1

        B0                              B1

Read Queues

Write Queues

                                                                                                

                                                                                                

                                                                

                                                                

Reg T1 T2 WQ Ptr Reg T1 T2 WQ Ptr

RegStatus Value RegStatus Value

.bbegin B0
R[0] read G[4] N[0]
N[0] addi 45 W[0]
W[0] write G[16]
.bend

.bbegin B1
R[0] read G[16] N[0]
R[4] read G[4] N[1] N[3]
N[0] addi 45 N[2,0]
N[1] addi 90 N[2,1]
N[2] add N[3,1]
N[3] add W[0]
W[0] write G[8]
.bend

.bbegin B0
R[0] read G[4] N[0]
N[0] addi 45 W[0]
W[0] write G[16]
.bend

.bbegin B1
R[0] read G[16] N[0]
R[4] read G[4] N[1] N[3]
N[0] addi 45 N[2,0]
N[1] addi 90 N[2,1]
N[2] add N[3,1]
N[3] add W[0]
W[0] write G[8]
.bend

V 4 N[0] - 0 -

V 0 16 -

B0:
R[0],W[0]: dispatch

R[0]: search WQ, read
from CRF.bbegin B0

R[0] read G[4] N[0]
N[0] addi 45 W[0]
W[0] write G[16]
.bend

.bbegin B1
R[0] read G[16] N[0]
R[4] read G[4] N[1] N[3]
N[0] addi 45 N[2,0]
N[1] addi 90 N[2,1]
N[2] add N[3,1]
N[3] add W[0]
W[0] write G[8]
.bend

V 0 8 -

V 16 N[0] - 1 0

V 4 N[1]N[3] 0 -

B1:
R[0],R[4],W[0]: dispatch

R[0]: search WQ, wait

R[4]: search WQ, read
from CRF

.bbegin B0
R[0] read G[4] N[0]
N[0] addi 45 W[0]
W[0] write G[16]
.bend

.bbegin B1
R[0] read G[16] N[0]
R[4] read G[4] N[1] N[3]
N[0] addi 45 N[2,0]
N[1] addi 90 N[2,1]
N[2] add N[3,1]
N[3] add W[0]
W[0] write G[8]
.bend

V 1 16 45
B0:

W[0] receives value at WQ

Wakes up R[0] in B1

Forwards 45 to N[0]

V 1 8 180

.bbegin B0
R[0] read G[4] N[0]
N[0] addi 45 W[0]
W[0] write G[16]
.bend

.bbegin B1
R[0] read G[16] N[0]
R[4] read G[4] N[1] N[3]
N[0] addi 45 N[2,0]
N[1] addi 90 N[2,1]
N[2] add N[3,1]
N[3] add W[0]
W[0] write G[8]
.bend

B1: 
N[0]…N[3] execute

W[0] receives value at WQ

Register Forwarding Example



June 4, 2005 UT-Austin TRIPS Tutorial 114

Block completion: Commit unit

0

1

2

3

4

5

6

7 Valid
All writes

received

Right neighbor

completed

Completion

sent

RT0 RT1 RT2 RT3

1 1 1 0 1 1 1 11 0 0 01 1 0 0Cycle 0

GSN
1 1 1 1 1 1 1 11 0 1 01 1 0 0Cycle 1

1 1 1 1 1 1 1 11 1 1 01 1 0 0Cycle 5

1 1 1 1 1 1 1 11 1 1 11 1 1 0
GSNCycle 6

1 1 1 1 1 1 1 11 1 1 11 1 1 1Cycle 7

   …

Block Status

State change
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Major OPN Responsibilities and Attributes

• Wormhole-routed network connecting 25 tiles

• 4 entry FIFO flit buffers in each direction

• Fixed packet length; 2 flits

• On-off flow control: 1-bit hold signal

• Dimension order routing (Y-X)

RT core

OPN

Router
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 OPN Packet Format

• One control packet followed by one data packet in next cycle

• Dedicated wires for control/data

• Control packet

– Contains routing information

– Enables early wakeup and fast bypass in ET

Control Packet Types
0 - Generic transfer or reply
1 - Load
2 - Store
4 - PC read
5 - PC write
14 - Special register read
15 - Special register write

 Data packet

Normal, Null, Exception

lb, lh, lw, ld

sb, sh, sw, sd

   1      2      64      40          3

valid operationaddressvaluetype

 Control packet

XXX.YYY XXX.YYY

   1     4         3            6              5             6            5

valid src. nodedst. indexdst. nodeframe idtype src. index
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OPN Router Schematic

North         South       East        West      Local

Arbiter Arbiter Arbiter Arbiter Arbiter

4-1 MUX 4-1 MUX 4-1 MUX 4-1 MUX 4-1 MUX

North      South       East          West         Local

140

140 x 42



June 4, 2005 UT-Austin TRIPS Tutorial 118

Operand Network Properties

• Directly integrated into processor pipeline

– Hold signal stalls tile pipelines (back pressure flow control)

– FIFOs flushed with processor flush wave

• Deadlock avoidance

– On-off flow control

– Dimension order routing

– Guaranteed buffer location for every packet

• Tailored for operands

– [Taylor et al. 2003, Sankaralingam et al. 2003]
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Issue Logic and Execution

Premkishore Shivakumar

ISCA-32 Tutorial

Department of Computer Sciences

The University of Texas at Austin
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E-Tile Location and Connections

E-Tile E-Tile

E-Tile

E/D-Tile
GDN

GCN

E/R-Tile

OPN

GDN

GCN

OPN

OPN

OPN
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Networks Used by E-Tile

• OPN - Operand Network

– Transmit register values from/to R-tiles

– Transmit operands from/to other E-tiles

– Transmit load/store packets from/to D-tiles

• GDN - Global Dispatch Network

– Receive instructions from I-tile, and the dispatch commands from G-tile

• Through a D-tile or a neighboring E-tile

• GCN - Global Control Network

– Receive commit, flush commands originating at G-tile

• From a D-tile or a neighboring E-tile
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Major E-Tile Responsibilities

• Buffer Instructions and Operands
– Local reservation stations for instruction and operand management

• Instruction Wakeup and Select

• Operand Bypass
– Local operand bypass to enable back-to-back local dependent instruction execution

– Remote operand bypass with one extra cycle of OPN forwarding latency per hop

• Instruction Target Delivery
– Instructions with multiple local and/or remote targets

– Successive local or remote targets in consecutive cycles

– Concurrently deliver a remote and a local target

• Predication Support
– Predicate-based conditional execution

– Hardware predicate OR-ing

• Exception and Null
– Exception generation: divide by zero exception, NULL instruction

– Exception and null tokens propagated in dataflow manner to register writes, stores

• Flush and Commit
– Clear block state (pipeline registers, status buffer etc.)
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E-Tile High Level Block Diagram

Router

OP2INSTRUCTION OP1

ALU

OPN

OPN

Router

EXECUTION UNITS

INT ALU

INT  MULT

INT  DIV

FP ADD/SUB

FP MULT

FP CMP

FP CVT (DtoS ,StoD,

ItoD, DtoI)

   V   INST OPA  OPB   PR     FUTYPE

GDN

Instruction Buffer

Status Buffer

Router

Operand Buffer

(64 entries,

8 frames,

8 slots per frame)

I0

I1

I63

..

I0

I1

I63

..
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Functional Unit Latencies in the E-Tile

Synopsys IP2 (Pipelined)FP DtoI Convert

Synopsys IP3 (Pipelined)FP ItoD Convert

Synopsys IP4 (Pipelined)FP Add / Sub

Synopsys IP4 (Pipelined)FP Multiplier

Synopsys IP2 (Pipelined)FP Comparator

UT TRIPS IP2 (Pipelined)FP StoD Convert

UT TRIPS IP3 (Pipelined)FP DtoS Convert

Synopsys IP24 (Iterative)Integer Divider

Synopsys IP3 (Pipelined)Integer Multiplier

Synopsys IP1Integer ALU

ImplementationLatencyFunctional Unit
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Issue Prioritization Among Ready Instructions

 B2 (spec)

B1 (spec)

 B0 (non-spec)

B7 (spec)D-MORPH

B7

B0

B1

B2

B3 (spec)

B3

Reservation stations at one E-Tile

• Instructions can execute out-of-order

• Issue prioritization among ready instructions

• Scheduler assigns slots for block instructions

• Slot based instruction priority within a block
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Issue Prioritization Among Ready Instructions

 B2 (spec)

B1 (spec)

 B0 (non-spec)

B7 (spec)D-MORPH

B7

B0

B1

B2

 Older Block First

    B1 before B2

Smaller Instruction

Slot First

B3.I0 before B3.I2

B3 (spec)

B3

Reservation stations at one E-Tile

 T2

T1

 T0

T3

T-MORPH

T3

T0

T1

T2 • Round robin priority across

threads

• Older block first priority in a

thread

• Smaller instruction slot first

within a block

Three-level Select Priority:

 B0
 B1
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Two Phase Instruction Selection

Two
Phase

Instruction
Selection

Cy cle 1

   V   INST  OPA  OPB   PR   FUTYPE

Status Buffer

                    Definite Selection

..

I0

I1

I63

Priority
Encoder

Definite Ready Instruction

Local Crtl Pkt Index

                       Late SelectionCy cle 2

   V   INST  OPA  OPB   PR   FUTYPE

OPN Remote Crtl Pkt Index

Local Bypass

Instruction

OPN Remote Bypass

Instuction

Priority
Encoder

Final Selection

• Priority Encoder uses Issue Prioritization Policy

• Wakeup: Back-to-back operand delivery, and two bypassed operands in the same cycle

WAKEUP WAKEUP
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Basic Operand Local & Remote Bypass

mov

sub

add

Sample Dependence Graph

Local Bypass

mov     sub

Remote
Bypass

sub    add

Cy cle 1

• Execute mov

• Send mov Local

   Bypass Ctrl Pkt

• Wakeup, Select

  sub

Cy cle 4

• Receive sub OPN

  Data Pkt

• Execute add

Cy cle 2

• Receive mov Local

   Bypass Data Pkt

• Execute sub

• Send sub OPN

  Ctrl Pkt from ET0

  to ET1

Local Bypass

Cy cle 3

• Send sub OPN

  Data Pkt from ET0

  to ET1

• Wakeup, Select

  add

Remote Bypass (extra OPN cycle)

ET0:

          mov

          sub

ET1:

          add

Instruction Physical Placement
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Bypass: Sources of Pipeline Bubbles

OPN Stall

• OPN stall due to network congestion

Local Bypass

mov    sub

Remote
Bypass

sub    add

Cy cle 1

• Execute mov

• Send mov Local

   Bypass Ctrl Pkt

• Wakeup, Select

  sub

Cy cle 2

• Receive mov Local

   Bypass Data Pkt

• Execute sub

• Send sub OPN

  Ctrl Pkt from ET0

  to ET1

Cy cle X

• Send sub OPN

  Data Pkt from ET0

  to ET1

• Wakeup, Select

  add

Cy cle X+1

• Receive sub OPN

  Data Pkt

• Execute add

Local Bypass

teq    muli

Cy cle 1

• Execute teq

• Send teq Local

   Bypass Ctrl Pkt

• Wakeup, Select

  muli

Cy cle 2

• Receive teq Local

   Bypass Data Pkt

•  Data is an

   Non-enabling

   Predicate Pkt

• Issue slot wasted

muli

teq ET0:

          teq

          muli

•   Bypassed operand data is a non-enabling predicate

–Detected in execute stage after receiving bypassed data => Issue slot wasted

–Similar pipeline bubble due to invalid bypassed OPN data packet
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 Target Delivery: Multiple Local Targets

Local Bypass

mov    sub

Local Bypass

mov    add

Cy cle 1

• Execute mov

• Send mov Local

   Bypass Ctrl Pkt1

• Wakeup, Select

  sub

Cy cle 2

• Receive mov Local

   Bypass Data Pkt1

• Execute sub

• Send mov Local

  Bypass Ctrl Pkt2

• Wakeup, Select add

Cy cle 3

• Receive mov Local

   Bypass Data Pkt2

• Execute add

mov

subadd

ET0:

    mov

    sub

    add

• Successive local targets delivered in consecutive cycles

• Successive remote targets also delivered in consecutive cycles (extra OPN forward cycle)
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Concurrent Local & Remote Target Delivery

Local Bypass

mov    sub

Remote
Bypass

mov    add

Cy cle 1

• Execute mov

• Send mov Local

   Bypass Ctrl Pkt

• Wakeup, Select

  sub

• Send mov OPN

  Ctrl Pkt from ET0

  to ET1

Cy cle 2

• Receive mov Local

   Bypass Data Pkt1

• Execute sub

• Send mov OPN

  Data Pkt2 from ET0

  to ET1

• Wakeup, Select

  add

Cy cle 3

• Receive mov OPN

  Data Pkt2

• Execute add

mov

subadd

ET0:

          mov

          sub

ET1:

          add

• Instruction local and remote target can be sent concurrently

• mov3, mov4 instructions have 3 and 4 targets respectively, used to fanout

operands to multiple children
4RRRR

3LRRR

2LLRR

3LLLR

4LLLL

3RRR

2LRR

2LLR

3LLL

2RR

1LR

2LL

# cycles to emit targets 

(Local/Remote)
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Primary Memory System

Simha Sethumadhavan

ISCA-32 Tutorial

Department of Computer Sciences

The University of Texas at Austin
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D-Tile Location and Connections

D-Tile E-Tile

D-Tile

I-Tile

ESN

GDN

OCN

GSN

GDN

GCN

GCN

OPN

G-Tile

ESNGSNGCN

DSN
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Major D-Tile Responsibilities

• Provide D-cache access for arriving loads and stores

• Perform address translation with DTLB

• Handle cache misses with MSHRs

• Perform dynamic memory disambiguation with load/store queues

• Perform dependence prediction for aggressive load/store issue

• Detect per-block store completion

• Write stores to caches/memory upon commit

• Store merging on L1 cache misses
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Primary Memory Latencies

• Data cache is interleaved on a cache line basis
(64 bytes)

• Instruction placement affects load latency

– Best case load-to-use latency:  5 cycles

– Worst case load-to-use latency: 17 cycles

– Loads favored in E-tile column adjacent to the
D-tiles

– Deciding row placement is difficult

• Memory access latency: Three components

– From E-Tile (load) to D-Tile

– D-Tile access (this talk)

– From D-Tile back to E-Tile (load target)

D EEEE

D EEEE

D EEEE

D EEEEa

c

c

b

b

a
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Major Structures and Sizes in the D-Tile

• Caches

– 8KB, 2-way, 1R and 1W port

– 64 byte lines, LRU, Virtually indexed,
physically tagged,

– Write-back, Write-no-allocate

• DTLB

– 16 entries, 64KB to 1TB pages

• Dependence Predictor

– 1024 bits, PC based hash function

• Load Store Queues

– 256 entries, 32 loads/stores per block,
single ported

• Miss Handling

– 16 outstanding load misses to 4 cache
lines

– Support for merging stores up to one
full cache line

Main

Control

Cache subunit

DTLB subunit

Dependence
Predictor
 subunit

LSQ subunit

Miss Handling
subunit

DSN

DSN

OCN

GCN

GDN

OPN

GSN

ESN
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Load Execution Scenarios

Forward data from L1 CacheHitMissMissHit

Forward data from L2 Cache (or memory)

Issue cache fill request (if cacheable)
MissMissMissHit

Forward data from LSQ

Issue cache fill request (if cacheable)
MissHitMissHit

Forward data from LSQHitHitMissHit

-

-

LSQ

Defer load until all prior stores are

received. Non deterministic latency
-

Wait

(Hit)
Hit

Report TLB Exception--Miss

ResponseCacheDep. PrTLB
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Load Pipeline

• Common case: 2 cycle load hit latency

• For LSQ hits, load latency varies between 4 to n+3 cycles, where n is size of the load

in bytes

– Stalls all pipelines except forwarding stages (cycles 2 and 3)

TLB Hit

DP Miss

Cache Hit

LSQ Miss

Cycle 1

Access

Cache,

TLB, DP,

and LSQ

Cycle 2

Load Reply

TLB Hit

DP miss

Cache

Hit/Miss

LSQ Hit

Cycle 1

Access

Cache,

TLB, DP,

and LSQ

Cycle 2

Identify

Store in

the LSQ

Cycle 3

Read

Store Data

Cycle 4

Load Reply

Stall Pipe Stall Pipe
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Dependence Prediction

• Prediction at memory side (not at issue)
– New invention because of distributed execution

• Properties
– PC-based, updated on violation

– Only loads access the predictor, loads predicted dependent are deferred

– Deferred loads are woken up when all previous stores have arrived

– Reset periodically (flash clear) based on number of blocks committed

– Dependence speculation is configurable: Override, Serial, Regular

Block

Address

Table

(8 entries)

Hash

Predictor

Array

(1024 x

1bit)

Load

Frame ID

Load

LSID

Violation

Reset

AND

Override

OR

Serialize

Prediction
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Deferred Load Pipeline

Deferred Load Processing (a.k.a. Replay

pipe)

Cycle X+1

Prepare

Load for

Replay

Cycle X+2

Re-execute

as if new

load

Dependence Predictor Hit

Cycle 1

Access

Cache,

TLB, DP,

and LSQ

Cycle 2

Mark Load

Waiting

Cycle X

All Prior

Stores

Arrived

Stall PipeStall Pipe

• Deferred loads are woken up when all prior stores have arrived at D-tiles

– Loads between two consecutive stores can be woken up out-of-order

• Deferred loads are re-injected into the main pipeline, as if they were new load

– During this phase, loads get the value from dependent stores, if any

• Pipeline stall

– When deferred load in cycle X+2 cannot be re-injected into the main pipeline

– Load cannot be prepared in cycle X+1 because of resource conflicts in the LSQ
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Store Counting

Store arrival
(Frame id 5,

LSID 15)

DT3

DT2

DT1

DT0

Store

count

counter

At block dispatch, each

 DT receives and records

information on stores in

the dispatched block

DT3

DT2

DT1

DT0

GDN

DT3

DT2

DT1

DT0

CMD: Dispatch
Frame Id 5
Num stores: 3
Store Mask: 32
bits  0x00011001

Each DT records store counts and

store mask (in the LSQ). Store 

mask (32 bits) identifies the store 

instructions in a block 

7 storesFrame ID: 4

3 storesFrame ID: 5

Store Count Table

On store arrival, the received

store count is updated at local

tile and store arrival is passed

on to other tiles (next slide)

7 storesFrame ID: 4

3 stores,

1 received

Frame ID: 5

Store Count Table
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Block Store Completion Detection

• Need to share store arrival information
between D-tiles
– Block completion

– Waking up deferred loads

• Data Status Network (DSN) is used to
communicate store arrival information
– Multi-hop broadcast network

– Each link carries store FrameID and store LSID

• DSN Operation
– Store arrival initiates transfer on DSN

– All tiles know about the store arrival after 3
cycles

• GSN Operation
– Completion can be detected at any D-tile but

special processing in done in D-tile0 before
sending it to G-tile

– Messages sent on GSN

Store arrival

DT3

CYCLE 0

CYCLE 1

CYCLE 1

CYCLE 2

Block Completion
Signal

DT2

DT1

DT0

Store count 

counter

GSN

Inactive DSN

Active DSN
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 Store Commit Pipeline

• Stores are committed in LSID and block order at each D-tile

– Written into L1 cache or bypassed on a cache miss

– One store committed per D-tile per cycle

• Up to four stores total can be committed every cycle, possibly out-of-order

– T-morph: Store commits from different threads are not interleaved

• On a cache miss, stores are inserted into the merge buffer

• Commit pipe stalls when cache ports are busy

– Fills from missed loads take up cache write ports

Store

Commit

Cycle 1

Pick

Store

to commit

Cycle 2

Read

Store

data from

LSQ

Cycle 3

Access

cache

tags

Cycle 4

Check for

hit

or miss

Stall Pipe

Cycle 5

Write to

Cache or

Merge

buffer

Stall Pipe
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Load and Store Miss Handling

• Load Miss Operation

– Cycle 1: Miss determination

– Cycle 2: MSHR allocation and merging

– Cycle 3: Requests sent out on OCN, if available

• Load Miss Return

– Cycle 1: Wake up all loads waiting on incoming data

– Cycle 2: Select one load; data for the load miss starts arriving

– Cycle 3: Prepare load and re-inject into main pipeline, if unblocked

• Store Merging

– Attempts to merge consecutive writes to same line

– Snoops on all incoming load misses for coherency

• Resources are shared across threads
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Coherence checks

e.g. Load and

store misses to
same cache line

CC

D-Tile Pipelines Block Diagram

Cache

Store Port

arb

Missed load pipeline Spill Mgmt

Line fill pipeline

Store commit pipeline

Replay load pipeline

Cache + LSQ 

Load Port

S
T
 X

LD X

BYPASSESUnfinished store bypassing

to load in previous stage.

Bypassing=> fewer stalls
=> higher throughput

Miss handling

L
2

 R
e
q

.

C
h

a
n

n
e
l

arb

arb

Load input from

E-Tile
Load output to

E-Tile

Store miss pipe

Store hit

Costly resources are shared

e.g. cache and LSQ ports,

L2 bandwidth
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Memory System Design Challenges

• Optimizing and reducing the size of the LSQ
– Prototype LSQ size exceeds data cache array size

• Further optimization of memory-side dependence prediction
– Prior state of the art is done at instruction dispatch/issue time

• Scaling and decentralizing the Data Status Network (DSN)

CACHE

LSQ
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D-Tile Roadmap 
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Secondary Memory System

Changkyu Kim

ISCA-32 Tutorial

Department of Computer Sciences

The University of Texas at Austin



June 4, 2005 UT-Austin TRIPS Tutorial 149

M-Tile Location and Connections

M-Tile

N-Tile

M-Tile
Or

N-Tile

M-Tile
Or

N-Tile

M-Tile
Or

OCN OCN

OCN

N-Tile

M-Tile
Or

OCN
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M-Tile Network Attributes

• Total 1MB on-chip memory capacity

– Array of 16  64KB M-Tiles

– Connected by specialized on-chip network (OCN)

• High bandwidth

– A peak of 16 cache accesses per cycle

– 68 GB/sec to the two processor cores

• Low latency for future technologies

– Non-uniform (NUCA) level-2 cache

• Configuration

– Scratchpad / Level-2 cache modes on a per-bank basis

– Configurable address mapping

• Shared L2 cache / Private L2 cache
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Non-Uniform Level-2 Cache (NUCA)

EBCSDCDMA

C2CSDCDMA

PROC0

PROC1

• Non-uniform access latency

– Closer bank can be accessed

faster

• Designed for wire-dominated

future technologies

– No global interconnect

• Connected by switched network

– Can fit large number of banks

with small area overhead

• Allows thousands of in-flight

transactions

– Network capacity = 2100 flits

– Maximize throughput

9 cycles

25 cycles
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Multiple Modes in TRIPS Secondary Memory

L2 : M-Tile configured as a level-2 Cache
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Major Structures in the M-Tile

OCN ROUTER

OCN Incoming 

Interface

MT 

Decoder

Tag

Array

OCN Outgoing 

Interface

MT 

Encoder

Data

Array

MSHR

South

North

West East

Local

• 8-way set associative cache

• 64B Line size

• 1 MSHR entry (Total 16 entries in the whole cache)

• Configurability (tag on/off)

• 1B ~ 64B Read / Write / Swap transactions support

• Error checking and handling
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Back-to-Back Read Pipeline

Cycle9

Send
1st 16B
of reply

data

Second

Read

First

Read

Send 4th

16B of
reply data

Send 3rd

16B of
reply
data

Send 2nd

16B of
reply
data

Send 1st

16B of
reply data

Send
reply

header

Data
Access 2

Tag
Access

Data

Access 1

Request

Arrives
at Input

FIFO

Cycle 0

Request
Arrives at

Input
FIFO

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Tag
Access

Data
Access 1

Cycle 6

Data
Access 2

Cycle 7

Send
reply

header

Cycle 8

Seamless Data Transfer (6.8GB/sec)

4-cycle latency for sending a reply header

7-cycle latency for transferring all 64B data
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Read Miss Pipeline

Incoming

read

miss

request

Send
outgoing
read miss
request

MSHR
Allocation

Tag
Access

Request

Arrives
at Input

FIFO

Cycle 0 Cycle 1 Cycle 2 Cycle 3

Incoming

read

reply

Send 1st

reply
header

Generate

reply

header

MSHR
Access

Fill 1st

16B of
reply
data

Fill 1st

16B of
reply
data

Fill 1st

16B of
reply
data

Fill 1st

16B of
reply
data

Tag
Access

Reply

Arrives at
Input
FIFO

Cycle 0 Cycle 1 Cycle 2 Cycle

3

Cycle

4

Cycle 5 Cycle 6 Cycle 7 Cycle 8

Access the main

memory

9-cycle latency for filling 64B data and sending a reply header

4-cycle latency for sending a fill request to SDC
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Chip- and System-Level Networks and I/O

Paul Gratz

ISCA-32 Tutorial

Department of Computer Sciences

The University of Texas at Austin
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OCN Location and Connections

N-Tile
OCN OCN

Client I-Tile

OCN

OCN

N-Tile

N-Tile

M-Tile

N-Tile

OCN

OCN

OCN

OCN

OCN

Client I-Tile

OCN

Client I-Tile

OCN

OCN

OCN

M-Tile

OCN Client

OCNOCN

C2C
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Goals and Requirements of the OCN

• Fabric for interconnection of processors, memory and I/O

• Handle multiple types of traffic:

– Routing of L1 and L2 cache misses

– Memory requests

– Configuration and data register reads/writes by external host

– Inter-chip communication

• OCN Network Attributes

– Flexible mapping of resources

– Deadlock free operation

– Performance (16 Client Links – 6.8GB/sec per link)

– Guaranteed delivery of request and reply
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OCN Protocol

• Flexible mapping of resources
– System address mapping tables are

runtime re-configurable to allow for
runtime re-mapping between L2 cache
banks and scratchpad memory banks

• Deadlock Avoidance
– Dimension order routed network (Y-X)

– Four virtual channels used to avoid
deadlock

• Performance
– Links are 128 bit wide in each direction

– Credit-based flow control

– One cycle per hop plus cycle at network
insertion

– 68 GB/sec at processor interfaces

0

1

3

2

4

5

6

7

8

9

X

Y

0 1 2 3

Request

Reply
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N-Tile Design

• Goals

– Router for OCN packets

– System address to network address

translation

• Configurable L2 network addresses

– One cycle per hop latency

• Attributes

– Composed of OCN router with

translation tables on local input

– Portions of the system address index

into translation tables

– Translation tables configured

through memory mapped registers

– Error back on invalid addresses

North
Input

South
Input

East
Input

West
Input

Crossbar

Local
Input

Translation
Table

OCN Router

Network Tile

North
Output

South
Output

East
Output

West
Output

Local
Output
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I/O Tiles

• EBC Tile

– Provides interface between board-level

PowerPC 440 GP chip and the TRIPS chip

– Forwards interrupts to the 440 GP’s

service routines

• SDC Tile

– Contains IBM SDRAM Memory

Controller

– Error detection, swap support and address

remapping added

• DMA Tile

– Supports multi-block and scatter/gather

transfers

– Buffered to optimize traffic

• C2C Tile
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C2C Tile Design Considerations

• C2C Goals

– Extend OCN fabric across multiple
chips

– Provide flexible extensibility

• C2C Attributes

– C2C network protocol similar to
OCN except:

• 64 bit wide

• 2 virtual channels

– Operates at up to 266MHz

– Clock speed configurable at boot

– Source synchronous off-chip links

– Multiple clock domains with
resynchronization

North
Input

Cross Bar

Local
Input

C2C Tile

North
Output

South
Output

East
Output

West
Output

Local
Output

South
Input

East
Input

West
Input

OCN -> C2C

C2C -> OCN
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C2C Network

• Latencies:

– L2 Hit Latency: 9 – 27 cycles

– L2 Miss Latency: 26 – 44 cycles
(+ SDRAM Access time)

– L2 Hit Latency (adjacent chip):
33 – 63 cycles

– L2 Miss Latency (adjacent chip):
50 – 78 cycles (+SDRAM)

– Each additional C2C hop adds 8
cycles in each direction

• Bandwidth:

– OCN Link: 6.8 GB/sec

– One processor to OCN: 34 GB/sec

– Both processors to OCN: 68 GB/sec

– Both SDRAMs: 2.2 GB/sec

– C2C Link: 1.7 GB/sec

Y

X

0

1

0 1

OCN
CPU0

CPU1

OCN
CPU0

CPU1

OCN
CPU0

CPU1

OCN
CPU0

CPU1

SDRAM SDRAM

SDRAM SDRAM

SDRAM SDRAM

SDRAM SDRAM
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Compiler Overview

Kathryn McKinley

ISCA-32 Tutorial

Department of Computer Sciences

The University of Texas at Austin
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Compiler Challenges

   “Don’t put off to runtime what you can do at

compile time.” Norm Jouppi, May 2005.

• Block constraints & compiler scheduling

–  Makes the hardware simpler

–  Shifts work to compile time
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Generating Correct, High Performance Code

• TRIPS specific compiler challenges

–  EDGE execution model

–  What’s a TRIPS block?

• The compiler’s job

–  Correct code

• Satisfying TRIPS block constraints

–  Optimized code

• Filling up TRIPS blocks with useful instructions
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Block Execution

1 - 128

instruction

DFG

Reg. banks

Reg. banks

M
em

o
ry

M
em

o
ry

PC

PC

32 read instructions

32 write instructions

32 loads
32 stores

PC read

terminating

branch

Address+targets sent to 

memory, data returned

to target
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TRIPS Block Constraints

• Fixed size: 128 instructions

–  Padded with no-ops if needed

–  Simpler hardware: instruction size, I-cache design,
global control

• Registers: 8 reads and writes to each of 4 banks (in addition
to 128 instructions)

–  Reduced buffering

–  Read/write instruction overhead, register file size

• Block Termination: all stores and writes execute, one
branch

–  Simplifies hardware logic for detecting block completion

• Fixed output: 32 load or store queue IDs, one branch

–  LSQ size, instruction size
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Outline

• Overview of TRIPS compiler components

• How hard is it to meet TRIPS block constraints?
–  Compiler algorithms to enforce them

–  Evaluation

• Question: How often does the compiler under-fill a block to meet a
constraint?

• Answer: Almost never

• Optimization
– High quality TRIPS blocks

–  Scheduling for TRIPS

–  Cache bank optimization

• Preliminary evaluation
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Compiler Phases
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Compiler Phases (2)
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Forming TRIPS Blocks

Aaron Smith

ISCA-32 Tutorial

Department of Computer Sciences

The University of Texas at Austin
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High Quality TRIPS Blocks

• Full

• High ratio of committed to total instructions

– Dependence height is not an issue

• Minimize branch misprediction

• Meet correctness constraints
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TRIPS Block Constraints

• Fixed size: at most, 128 instructions

– Easy to satisfy by the compiler, but….

– Good performance requires blocks full of

useful instructions

• Registers: 8 reads and writes to each of 4 banks (plus

128 instructions)

• Block Termination

• Fixed output: at most, 32 load or store queue IDs
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03: Basic Blocks as TRIPS Blocks

• O3: every basic block is a TRIPS block

• Simple, but not high performance
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Two possible hammock hyperblocks for this graph

O4: Hammock Hyperblocks as TRIPS Blocks
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Static TRIPS Block Instruction Counts

Static Averages

22

18

mean

67

42

max

816427SPEC2000

916317EEMBC

max minmeanmin

0403
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• 15% average reduction in number of TRIPS blocks between O3 and O4

• Results missing sixtrack, perl, and gcc

SPEC Total TRIPS Blocks
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Initial Hammock Hyperblock After Reverse If-Conversion

Enforcing Block Size

Too Big?

1. Unpredicated

- cut

2. Predicated

- Reverse if-conversion
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SPEC > 128 Instructions

• At O4 an average of 0.9% TRIPS blocks > 128 insts.  (max 6.6%)



June 4, 2005 UT-Austin TRIPS Tutorial 181

After Reverse If-Conversion After Tail Duplication

• Tail duplicate A

• Increases block size

• Hot long paths

In Progress: Tail Duplication
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while (*pp != '\0')
{
   if (*pp == '.') {
       break;
   }
   pp++;
}

• Add support for complex control flow  (i.e. breaks/continues)

• An example: the number of TRIPS blocks in ammp_1 microbenchmark

• 38 / 27 / 12  with O3 / 04 (current) / new

In Progress: More Aggressive Hyperblocks
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While Loop Unrolling

while (*pp != '\0')
{
   if (*pp == '.') {
       break;
   }
   pp++;
}

== ‘.’

break

!= ‘\0’

pp++

• Supported on architectures with predication

• Implemented, but needs improved hyperblock generation

== ‘.’

break

!= ‘\0’

pp++

== ‘.’

break
pp++

!= ‘\0’
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TRIPS Block Constraints

• Fixed size: at most, 128 instructions

• Registers: 8 reads and writes to each of 4 banks

(plus 128 instructions)

–  Simple linear scan priority order allocator

• Block Termination

• Fixed output: at most, 32 load or store queue IDs
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• 128 registers 32 per 4 banks

• Hyperblocks as large instructions

• Computes liveness over hyperblocks

• Memory savings vs. instructions

• Fewer hyperblocks than instructions

• Allocator ignores local variables

• Spills only 5 SPEC2000 vs 18 Alpha

• gcc:        4290 Alpha - 211 TRIPS
• sixtrack:3510 Alpha - 165 TRIPS
• mesa:     2048 Alpha - 207 TRIPS
• apsi:        920 Alpha  -  7 TRIPS
• applu:       14 Alpha  -  19 TRIPS

• Average spill: 1 store, 2-7 loads

• Spills are less than 0.5% of all dynamic

loads/stores

Linear Scan Register Allocation
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SPEC > 32 (8x4 banks) Registers

• At O4 an average of 0.3% TRIPS blocks have > 32 register reads

• At O4 an average of 0.2% TRIPS blocks have > 32 register writes
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SPEC > 8 Registers per Bank

• At O4 an average of 0.12% TRIPS blocks have > 8 read banks

• At O4 an average of 0.07% TRIPS blocks have > 8 write banks
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TRIPS Block Constraints

• Fixed size: at most, 128 instructions

• Control flow: 8 branches (soft)

• Registers: 8 reads and writes to each of 4 banks

(plus 128 instructions)

• Block Termination

• Fixed output: at most, 32 load or store queue IDs
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Block Termination

• One branch fires

• All writes complete

– Write nullification

• All stores complete

–  Store nullification
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Register Writes

def 4

write 4

def 6

read 4

Before SSA After SSA

phi 4,6

write 4

• How do we guarantee all paths

produce a value?

– Insert corresponding read

instructions for all write

instructions

– Transform into SSA form

– Out of SSA to add moves

• Could nullify writes

– Increases block size
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Store Nullification

• Dummy stores

– Wastes space

– Easier to schedule?

SD SD

NULL

SD
NULL

SD

How do you insert nulls for this?    Two possibilities.  Which is better?

•   Code motion  

–  Better resource

    utilization
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SPEC Store Nullification

• Nullification is 1.2% of instructions for 177.mesa (0.8% dummy stores)

• Is it significant?
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TRIPS Block Constraints

• Fixed size: at most, 128 instructions

• Control flow: 8 branches (soft)

• Registers: 8 reads and writes to each of 4 banks

(plus 128 instructions)

• Block Termination: each store issues once

• Fixed output: at most, 32 load or store queue

IDs
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Load/Store ID Assignment

LD

LD

SD

• Ensures Memory Consistency

• Simplifies Hardware

• Overlapping LSQ IDs

– Increases number of load/store

instructions in a TRIPS block

– But a load and store cannot share

the same ID

LD [0]

LD [0]

SD [1]

Before Assignment After Assignment
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SPEC > 32 LSQ IDs

• At O4 an average of 0.3% TRIPS blocks have > 32 LSQ IDs
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Correct Compilation of TRIPS Blocks

• Some new compiler challenges

• New, but straightforward algorithms

• Does not limit compiler effectiveness (so far!)
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Code Optimization

Kathryn McKinley

ISCA-32 Tutorial

Department of Computer Sciences

The University of Texas at Austin
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Outline

• Overview of TRIPS Compiler components

• Are TRIPS block constraints onerous?
–  Compiler algorithms that enforce them

–  Evaluation

• Question: How often does the compiler under-fill a block to meet a
constraint?

• Answer: almost never

• Towards optimized code

– TRIPS specific optimization policies

–  Scheduling for TRIPS

–  Cache bank optimization

• Preliminary evaluation
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Towards Optimized Code

• Filling TRIPS blocks with useful instructions
–  Better hyperblock formation

–  Loop unrolling for TRIPS blocks constraints

–  Aggressive inlining

–  Driving block formation with path and/or edge profiles

• Shortening the critical path in a block
– Tree-height reduction

– Redundant computation

• 64 bit machine optimizations

• etc.
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• Place instructions on 4x4x8 grid

• Encode placement in target form
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• VLIW

– Relies completely on compiler to schedule code

+ Eliminates need for dynamic dependence check hardware

+ Good match for partitioning

+ Can minimize communication latencies on critical paths

– Poor tolerance to unpredictable dynamic latencies

– These latencies continue to grow

• Superscalar approach

– Hardware dynamically schedules code

+ Can tolerate dynamic latencies

– Quadratic complexity of dependence check hardware

– Not a good match for partitioning

– Difficult to make good placement decisions

– ISA does not allow software to help with instruction placement

Contrast with Conventional Approaches



June 4, 2005 UT-Austin TRIPS Tutorial 202

Dissecting the Problem

• Scheduling is a two-part problem

– Placement: Where an instruction executes

– Issue:   When an instruction executes

• VLIW represents one extreme

– Static Placement and Static Issue (SPSI)

+ Static Placement works well for partitioned architectures

– Static Issue causes problems with unknown latencies

• Superscalars represent another extreme

– Dynamic Placement and Dynamic Issue (DPDI)

+ Dynamic Issue tolerates unknown latencies

– Dynamic Placement is difficult in the face of partitioning
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EDGE Architecture Solution

• EDGE: Explicit Dataflow Graph Execution

– Static Placement and Dynamic Issue (SPDI)

– Renegotiates the compiler/hardware binary interface

• An EDGE ISA explicitly encodes the dataflow graph
specifying targets

i1:  movi r1, #10

i2:  movi r2, #20

i3:  add r3, r2, r1

RISC

• Static Placement
Explicit DFG simplifies hardware       no HW dependency analysis!

Results are forwarded directly         no associative issue queues!

through point-to-point network       no global bypass network!

• Dynamic Instruction Issue
Instructions execute in original dataflow-order

ALU-1:  movi #10, ALU-3

ALU-2:  movi #20, ALU-3

ALU-3:  add ALU-4

EDGE
mov mov

add
ALU-3

ALU-1 ALU-2
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Scheduling Algorithms (1 & 2)

• CRBLO: list scheduler [PACT 2004]
–  greedy top down

–  C - prioritize critical path

–  R - reprioritize

–  B - load balance for issue contention

–  L - data cache locality

–  O - register bank locality

• BSP: Block Specific Policy
–  Characterizes blocks’ ILP and  load/stores

–  if  l/s > 50%, pre-place them and schedule bottom up

–  elseif  flt pt > 50% or int + flt pt > 90% use CRBLO

– else preplace l/s and schedule top down greedy
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Scheduling Algorithms (3)

• Physical path scheduling
– Top down, critical path focused

– Models network contention (N), in addition to issue

   contention based on instruction latencies (L)

– Cost function selects an instruction placement that

   minimizes maximum contention and latency

• min of max(N, L)

• PP - load/store pre-placement

• tried average, difference, etc.
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• Problem

– Load/store mapping to data L1 cache

bank unknown to compiler

• Example

for (i=0; i<1024; i++) {

// A[i], L[i], B[i] to all banks

  A[i] += L[i] + B[i];

}

Spatial L1 Bank D-Cache Load/Store Alignment
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• Solution:

–  Align arrays on bank alignment boundary
•  function of cache line size and number of  banks
•  alignment declaration &/or specialized malloc

–  Jump-and-fill new loop transformation
•  similar to unroll-and-jam

for (j=0; j<1024; j+=32) {

  for (i=j; i<j+8; i++) {

    C[i   ] += (A[i   ] + B[i   ]); // Bank 0

    C[i+ 8] += (A[i+ 8] + B[i+ 8]); // Bank 1

    C[i+16] += (A[i+16] + B[i+16]); // Bank 2

    C[i+24] += (A[i+24] + B[i+24]); // Bank 3

  }

}

Spatial Load/Store Alignment
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Unrolling for Larger Hyperblocks

• Vector Add Unrolled Continuously (tcc 03)

for (i=0; i<1024; j+=32) {

  C[i   ] += (A[i   ] + B[i   ]); // Bank 0

  C[i+ 1] += (A[i+ 1] + B[i+ 1]); // Bank 0

  C[i+ 2] += (A[i+ 2] + B[i+ 2]); // Bank 0

       . . .

  C[i+31] += (A[i+31] + B[i+31]); // Bank 3

}

•   Vector Add Unrolled with Jump-and-Fill (JF Unroll)

for (i=0; i<1024; j+=32) {

  C[i   ] += (A[i   ] + B[i   ]); // Bank 0

  C[i+ 8] += (A[i+ 8] + B[i+ 8]); // Bank 1

  C[i+16] += (A[i+16] + B[i+16]); // Bank 2

  C[i+24] += (A[i+24] + B[i+24]); // Bank 3

  C[i+ 1] += (A[i+ 1] + B[i+ 1]); // Bank 0

         . . .

  C[i+31] += (A[i+31] + B[i+31]); // Bank 3

}
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Spatial Load/Store Alignment Results
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Performance Goals

• Technology comparison points

–  Alpha

• Fairest comparison we can do

• High ILP, high frequency, low cycle count machine

• gcc

• Alpha compiler

–  Scale on Alpha

–  Scale on TRIPS

• Performance goal: 4x speed up over Alpha

• Benchmarks

–  Hand coded microbenchmarks

• Metric for measuring compiler success

–  Industry standards: EEMBC, SPEC
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Microbenchmark Speedup
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• SPEC 2000 C/Fortran-77 -- 03: basic blocks

– March 2004: 0/21

– November 2004: 6/21

– March 2005: 15/21

– May 2005: 19/21

• SPEC 2000 C/Fortran-77 -- 04: hammock hyperblocks

– May 2005: 8/21

• EEMBC -- 04

–  May 2005: 30/30

• GCC torture tests and NIST -- 04

–  May 2005: 30/30

• Plenty of work left to do!

Progress Towards Correct & Optimized Code
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Wrap-up and Discussion

TRIPS Team and Guests

ISCA-32 Tutorial

Department of Computer Sciences

The University of Texas at Austin
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Project Plans

• Tools release

– Hope to build academic/industrial collaborators

– Plan to release compilers, toolchain, and simulators sometime in the (hopefully early) fall

• Prototype system

– Plan to have it working December 2005/January 2006

– Software development effort increasing after tape-out

• Commercialization

– Actively looking for interested commercial partners

– Discussing best business models for transfer to industry

– Happy to listen to ideas

• Will EDGE architectures become widespread?

– Many questions remain unanswered (power, performance)

– Promising initial results, hope to have more concrete answers by next spring

– A key question is: how successful will universal parallal programming become?

• Perhaps room for parallel programming & EDGE architectures
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And finally ...

THANK YOU for your interest, questions and taking all of this time!

Subset of complete manuals and specifications available at:

http://www.cs.utexas.edu/users/cart/trips
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Appendix A - Supplemental Materials

• ISA Specification

• Bandwidth summary

• Additional Tile Details
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ISA: Header Chunk Format

• Includes 32 General Register

“read” instructions

• Includes 32 General Register

“write” instructions

• Up to 128 bits of header

information is encoded in the upper

nibbles

– Block Type

– Block Size

– Block Flags

– Store Mask

H00

4

8

12

112

116

120

124

16

20

104

108

Byte

Offsets

Bit Offsets

31 6 5 0

H1

H2

H3

H4

H5

…

H26

H27

H28

H29

H30

H31

24

28

H6

H7

96

100

H24

H25

Read 0.0

Read 1.0

Read 2.0

Read 3.0

Read 0.1

Read 1.1

Read 2.1

Read 3.1

…

Read 0.6

Read 1.6

Read 2.6

Read 3.6

Read 0.7

Read 1.7

Read 2.7

Read 3.7

Write 0.0

Write 1.0

Write 2.0

Write 3.0

Write 0.1

Write 1.1

Write 2.1

Write 3.1

…

Write 0.6

Write 1.6

Write 2.6

Write 3.6

Write 0.7

Write 1.7

Write 2.7

Write 3.7

27
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ISA: Read and Write Formats

• General Register access is controlled by special read and write instructions

• Read instructions will be executed from the Read Queue

• Write instructions will be executed from the Write Queue

• Read instructions may target the 1st or 2nd operand slot of any instruction

• General registers are divided into 4 architectural banks
– 32 registers per bank

– Bank i holds GRs i, i+4, i+8, etc

– Up to 8 reads and 8 writes may be performed at each bank

– Bank position is implicit based on read and write instructions in block header

– Implicit two bits added to 5-bit general register fields for 128 registers total

V RT1GR

Register Read Instructions

21 071620

V GR

Register Write Instructions

5 04

RT2

815

RQ

WQ
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ISA: Microarchitecture-Specific Target Formats

00 No Target

8 7 6 5 4 3 2 1 0

000

01 Predicate Slot (IQ)

10 OP0 Slot (IQ)

11 OP1 Slot (IQ)

Inst. ID

Inst. ID

Inst. ID

00

00 Write Slot (WQ)WID01

00

• A 9-bit general target specifier is used by most

instructions

• Read target specifiers are truncated to 8 bits,

with the implicit 9th bit always set to 1 (they

cannot target a write slot or a predicate slot)

• The all-zero encoding is used to represent no

target

• Write Queue entry 0.0 is implicitly targeted by

branch instructions and cannot be explicitly

targeted

• Most instructions are allowed to target register

outputs, predicates, 1st operands, and 2nd

operands
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ISA: More Details on Predication

• Any instruction using the G, I, L, S, or B format

may be predicated

• A 2-bit predicate field specified whether an

instruction is predicated and, if so, upon what

condition

• Predicated instructions must receive all of their

normal operands plus a matching predicate

before they are allowed to execute

• Instructions that meet these criteria are said to

be enabled

• Instructions that don’t meet these criteria are

said to be inhibited

• Inhibited instructions may cause other

dependent instructions to be indirectly inhibited

• A block completes executing when all of its

register and memory outputs are produced (it is

not necessary for all of its instructions to

execute)

(Reserved)01

Predicated Upon False10

Predicated Upon True11

Not Predicated00

DescriptionPR
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ISA: Loads and Stores

T0OP0, IMMLLoad WordLW

T0OP0, IMMLLoad Byte SignedLBS

T0OP0, IMMLLoad Halfword SignedLH

NoneOP0, OP1, IMMSStore DoublewordSD

NoneOP0, OP1, IMMSStore WordSW

NoneOP0, OP1, IMMSStore HalfwordSH

NoneOP0, OP1, IMMSStore ByteSB

T0OP0, IMMLLoad DoublewordLD

T0OP0, IMMLLoad Word SignedLWS

T0OP0, IMMLLoad HalfwordLH

T0OP0, IMMLLoad ByteLB

TargetsSourcesFormatNameMnemonic

• LB:  T0 = ZEXT( MEM_B[OP0 + SEXT(IMM)] )

• LBS: T0 = SEXT( MEM_B[OP0 + SEXT(IMM)] )

• LH:  T0 = ZEXT( MEM_H[OP0 + SEXT(IMM)] )
• LHS: T0 = SEXT( MEM_H[OP0 + SEXT(IMM)] )

• LW:  T0 = ZEXT( MEM_W[OP0 + SEXT(IMM)] )

• LWS: T0 = SEXT( MEM_W[OP0 + SEXT(IMM)] )

• LD:  T0 = ZEXT( MEM_D[OP0 + SEXT(IMM)] )

• SH:  MEM_H[OP0 + SEXT(IMM)] = OP1[15:0]

• SW:  MEM_W[OP0 + SEXT(IMM)] = OP1[31:0]

• SD:  MEM_D[OP0 + SEXT(IMM)] = OP1[63:0]
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ISA: Integer Arithmetic

T0, T1OP0, OP1GDivide SignedDIVS

T0OP0, IMMIDivide Signed ImmediateDIVSI

T0, T1OP0, OP1GDivide UnsignedDIVU

T0OP0, IMMIDivide Unsigned ImmediateDIVUI

T0, T1OP0, OP1GMultiplyMUL

T0OP0, IMMISubtract ImmediateSUBI

T0OP0, IMMIAdd ImmediateADDI

T0OP0, IMMIMultiply ImmediateMULI

T0, T1OP0, OP1GSubtractSUB

T0, T1OP0, OP1GAddADD

TargetsSourcesFormatNameMnemonic

• There is no support for overflow detection or extended arithmetic

• The multiply instruction may be split into signed and unsigned versions
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ISA: Integer Logical

T0, T1OP0, OP1GBitwise XORXOR

T0OP0, IMMIBitwise OR ImmediateORI

T0OP0, IMMIBitwise AND ImmediateANDI

T0OP0, IMMIBitwise XOR ImmediateXORI

T0, T1OP0, OP1GBitwise OROR

T0, T1OP0, OP1GBitwise ANDAND

TargetsSourcesFormatNameMnemonic

• XORI may be used to perform a bitwise complement – XORI( A, -1 )
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T0, T1OP0, OP1GShift Right ArithmeticSRA

T0OP0, IMMIShift Right Logical ImmediateSRLI

T0OP0, IMMIShift Left Logical ImmediateSLLI

T0OP0, IMMIShift Right Arithmetic

Immediate

SRAI

T0, T1OP0, OP1GShift Right LogicalSRL

T0, T1OP0, OP1GShift Left LogicalSLL

TargetsSourcesFormatNameMnemonic

• Operand 1 provides the data to be shifted

• Operand 2 or IMM provides the shift count

• The lower 6 bits of the shift count are interpreted as an unsigned quantity

• The higher bits of the shift count are ignored

ISA: Integer Shift
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T0, T1OP0GExtend Unsigned HalfwordEXTUH

T0, T1OP0GExtend Unsigned ByteEXTUB

T0, T1OP0GExtend Signed HalfwordEXTSH

T0, T1OP0GExtend Unsigned WordEXTUW

T0, T1OP0GExtend Signed WordEXTSW

T0, T1OP0GExtend Signed ByteEXTSB

TargetsSourcesFormatNameMnemonic

• These are better than doing a left shift followed by a right shift

ISA: Integer Extend
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T0, T1OP0, OP1GTest GTTGT

T0, T1OP0, OP1GTest GT UnsignedTGTU

T0, T1OP0, OP1GTest GETGE

T0, T1OP0, OP1GTest GE UnsignedTGEU

T0, T1OP0, OP1GTest LTTLT

T0, T1OP0, OP1GTest LT UnsignedTLTU

T0, T1OP0, OP1GTest LETLE

T0, T1OP0, OP1GTest LE UnsignedTLEU

T0, T1OP0, OP1GTest NETNE

T0, T1OP0, OP1GTest EQTEQ

TargetsSourcesFormatNameMnemonic

• Test instructions produce true (1) or false (0)

ISA: Integer Test
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T1OP0, IMMITest EQ ImmediateTEQI

T1OP0, IMMITest NE ImmediateTNEI

T1OP0, IMMITest GT ImmediateTGTI

T1OP0, IMMITest GT Unsigned ImmediateTGTUI

T1OP0, IMMITest GE ImmediateTGEI

T1OP0, IMMITest GE Unsigned ImmediateTGEUI

T1OP0, IMMITest LT ImmediateTLTI

T1OP0, IMMITest LT Unsigned  ImmediateTLTUI

T1OP0, IMMITest LE ImmediateTLEI

T1OP0, IMMITest LE Unsigned ImmediateTLEUI

TargetsSourcesFormatNameMnemonic

• Test instructions produce true (1) or false (0)

ISA: Integer Test #2
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T0, T1OP0, OP1GFP Divide (simulator only!)FDIV

T0, T1OP0, OP1GFP SubstractFSUB

T0, T1OP0, OP1GFP MultiplyFMUL

T0, T1OP0, OP1GFP AddFADD

TargetsSourcesFormatNameMnemonic

• These operations are performed assuming double-precision values

• All results are rounded as necessary using the default IEEE rounding mode
(round-to-nearest)

• No exceptions are reported

• The is no support for gradual underflow or denormal representations

ISA: Floating Point Arithmetic
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T0, T1OP0, OP1GFP Test LEFLE

T0, T1OP0, OP1GFP Test LTFLT

T0, T1OP0, OP1GFP Test GEFGE

T0, T1OP0, OP1GFP Test GTFGT

T0, T1OP0, OP1GFP Test NEFNE

T0, T1OP0, OP1GFP Test EQFEQ

TargetsSourcesFormatNameMnemonic

• These operations are performed assuming double-precision values

• Test instructions produce true (1) or false (0)

ISA: Floating-Point Test
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T0, T1OP0GConvert Single FP to Double FPFSTOD

T0, T1OP0GConvert Double FP to IntegerFDTOI

T0, T1OP0GConvert Double FP to Single FPFDTOS

T0, T1OP0GConvert Integer to Double FPFITOD

TargetsSourcesFormatNameMnemonic

• FITOD: Converts a 64-bit signed integer to a double-precision float

• FDTOI: Converts a double-precision float to a 64-bit signed integer

• FSTOD: Converts a single-precision float to a double-precision float

• FDTOS: Converts a double-precision float to a single-precision float

• FSTOD is needed to load of a single-precision float value

• FDTOS is needed to store of a single-precision float value

ISA: Floating Point Conversion
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PCOP0BReturnRET

PC +=OFFSETBCall with OffsetCALLO

PC +=OFFSETBBranch with OffsetBRO

PCNoneBSystem CallSCALL

PCOP0BCallCALL

PCOP0BBranchBR

TargetsSourcesFormatNameMnemonic

• Predication should be used for conditional branches

• Special branch and call instructions may produce an address offset (in
chunks) rather than a full address

• Call and return behave like normal branches (but may be treated in a
special way be a hardware branch predictor)

• The System Call instruction will trigger a System Call Exception

ISA: Control Flow



June 4, 2005 UT-Austin TRIPS Tutorial 236

ISA: Miscellaneous

NoneNoneCNo OperationsNOP

T0, T1, T2, T3OP0M4Move to four targetsMOV4

T0, T1, T2OP0M3Move to three targetsMOV3

T0NoneIMove from PCMFPC

T0, T1NoneGNullify OutputNULL

T0CONSTCGenerate Unsigned ConstantGENU

T0IMMIMove ImmediateMOVI

T0, T1OP0GMoveMOV

T0CONSTCGenerate Signed ConstantGENS

T0OP0, CONSTCAppend ConstantAPP

T0OP0LLoad and LockLock

TargetsSourcesFormatNameMnemonic

• NULL is a special instruction for cancelling one or more block outputs

• MOV is the same as RPT (but with a conventional name)

• The generate and append instructions may be used to form large constants

• Three instructions are required to form a 48-bit constant

• Four instructions are required to form a 64-bit constant
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Bandwidth Summary

88 MB/s0.3366 MHz32 bitsExternal Bus Interface

266 MHz

(266
MHz)

533 MHz

533 MHz

533 MHz

533 MHz

533 MHz

533 MHz

Freq

1.1 GB/s0.564 bitsDDR 266 SDRAM (64B Read)

(1.7 GB/s)0.864 bits
Chip-to-Chip Network Link (64B
Read)

6.8 GB/s0.8128 bitsOn-Chip Memory Bank (64B Read)

6.8 GB/s0.8128 bitsOn-Chip Network Link (64B Read)

68 GB/s5 * 2 * 0.8128 bitsProcessor to OCN Interface

34 GB/s4128 bitsProcessor Inst Cache (Fetch or Fill)

34 GB/s4 * 264 bitsProcessor Data Cache (Load + Store)

68 GB/s4 * 2128 bitsProcessor Data Cache (Fill + Spill)

Bytes/SecMultiplierWidthInterface

(Maximum bandwidth calculations)
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G-tile: Access to Architected Registers

Access to architected registers allowed when processor is halted

G-tile
Read/write request

OCN

OPN

Reply

OPN

Read/write request

Read reply

Only one read/write request handled at a time
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OPN: Detailed Router Schematic

Arbiter

OPN_NO_CTRL

OPN_NO_HOLD

FIFO-N
destination 

OPN_SI_CTRL OPN_EI_CTRL OPN_WI_CTRLOPN_NI_CTRL

OPN_LI_HOLD

OPN_NI_HOLD
OPN_SI_HOLD
OPN_EI_HOLD
OPN_WI_HOLD

Arbiter Arbiter Arbiter

OPN_SO_CTRL OPN_EO_CTRL OPN_WO_CTRL OPN_LO_CTRL

OPN_EO_HOLD OPN_WO_HOLDOPN_SO_HOLD

Arbiter

FIFO-S FIFO-E FIFO-W

OPN_LI_CTRL

head packet
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E-Tile: List of Pipelines

• Instruction Dispatch Pipeline (GDN)

– Update Instruction Register File and Status Buffer

• Operand Delivery Pipeline (OPN)

– Update Operand Register File and Status Buffer

• Instruction Wakeup and Select Pipeline

– Two stage instruction selection among three potential candidates

• Definite ready instruction

• Instruction Late Selection: instruction with remote/local bypassed operand

– Guarantee absence of retire conflict

• Instruction Execute and Writeback Pipeline

– Pipelined execution

– Retire local targets through local bypass

– Retire remote targets through OPN

• Instruction Flush / Commit Pipeline (GCN)

– Clear block state (pipeline registers, status buffer etc.)
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E-tile: Two Stage Select-Execute Pipeline

STATUS
BUFFER

1. Instruction

    Wakeup

2. Issue

    Prioritization

3. Scoreboard

    Access

4. Instruction,

    Operand

    Buffer

    Read

OPN
CTRL PKT

LOCAL
CTRL PKT

Previous Remote Bypass
Data

Previous Local Bypass Data

Register Data

Immediate Data

Local Bypass Data

OPN Remote Bypass Data

EXECUTE

Control
Packet

Previous Remote Bypass
Data

Previous Local Bypass Data

Register Data

Immediate Data

Local Bypass Data

OPN Remote Bypass Data

DEFINITE INSTRUCTION

SELECTION CYCLE

INSTRUCTION LATE

SELECTION CYCLE
INSTRUCTION EXECUTION CYCLE

DEFINITE
READY
INST
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M-Tile: Internal Structure

OCN

Incoming

Interface

OCN

Outgoing

Interface

Data Array

Tag

Array

MSHR

MT decoder

MT encoder

OCN dataIn [127:0]

OCN typeIn [1:0]

OCN validIn [3:0]

OCN dataOut [127:0]

OCN typeOut [1:0]

OCN validOut [3:0]
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EBC: External Bus Controller Datapath

• Provides an interface between the 440

GP and TRIPS chips

• GPIOs for general purpose I/O

• Synchronizes between 66MHz 440GP

bus and system clock

• Interrupt process:

– CPU’s and DMAs notify EBC of an

exception through the “intr” interface

– Interrupt controller calls service

routines in 440 GP via irq line

– 440 GP writes to the Halt Controller’s

registers to stop the processors

– 400 GP services the interrupt

DMA 0

Interrupt

Controller

GPIOintr

intr

intr

intr

irq

Halt

Controller

OCN Controller

EBI

440 GP (MCP)

halt

halt

OCN Client Interface

DMA 1

CPU 0
CPU 1

EBC
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SRC: SDRAM Controller Diagram

• Memory Controller provided
by IBM

• SDC Interface provides:
– Protocol conversion between

OCN and Controller’s
interface.

– Synchronization between
SDRAM clock and OCN clock

– Address remapping from
System address to 2GB
SDRAMs

– Error detection and reply for
misaligned/out of range
requests

– Support for OCN swap
operation

SDC

IBM

Memory

Controller

SDRAM

SDC

Interface

Chip

Boundary

OCN

Network

OCN Client

Interface



June 4, 2005 UT-Austin TRIPS Tutorial 245

DMA Controller

• Facilitates transfer of data
from one set of system
addresses to another.

• Transfer from and to any
addresses except CFG space

• Three types of transfers:
– Single Block contiguous

– Single Block scatter/gather

– Multi Block linked list

• Up to 64KB transfer per
block

• 512 byte buffer to optimize
OCN traffic

DMA

Configuration

Registers

DMA FIFO

OCN Interface Unit

OCN Network

OCN Client Interface

DMA


