
Project 1: Distributed Key-Value Store

1. Introduction
In this project you will implement an eventually consistent key-value store. Each entry in the
key-value store will be a pair of binary strings. The system will consist of clients and servers.
Servers will store the data and perform updates when asked by the clients. Clients will be able
to perform the following operations:

● Put​ a new entry into the store.
● Get​ the value associated with a key.

You will design a protocol that guarantees eventual consistency plus two session guarantees:
Read Your Writes​ and ​Monotonic Read​s. Eventual consistency means that eventually all clients
will see all writes, but no other guarantees are provided.

● Read Your Writes - If a client has written a value to a key, it will never read an older
value.

● Monotonic Reads - If a client has read a value, it will never read an older value.
Eventual consistency is usually implemented through gossip - servers periodically exchanging
updates with other servers and bringing their logs to a consistent state. We will discuss
consistency models in the first weeks of class, and you can read the UW slides on consistency
and the book chapter on replication for more information about consistency and session
guarantees, both linked on the class schedule. The papers under week 4 (PNUTS, Consistency
at Facebook, and Bayou) detail real-world implementations of systems providing various forms
of consistency.

1.1 Logistics
This project is due on March 2. You should work in groups of 2-3 people.

2. Technical Details
The implementation can be written in any language or languages you like. The two
requirements are that no two client or server processes can share memory and all processes be
able to run concurrently. Other than that, the rest is up to you.

3. Performance
Part of your grade will be a performance component. We will benchmark your implementation
and you will receive points based on how many requests you can handle per second. This
section is worth 20 points out of the total 100. We will test 5 clients, each connected to one of 5

servers. The clients will rotate issuing put requests, then we will call ‘stabilize’ at the end. Points
will be awarded as follows:

● 5 points for 20 requests/second
● 10 points for 30 requests/second
● 20 points (full credit) for 40 requests/second

Since there will be variability in the results, we’ll use the median of five runs.

4. Testing
You should ensure that your system is able to pass correctness tests. Below are a couple of
cases that you can be sure we will run, though this isn’t an exhaustive list.

- The system should guarantee eventual consistency. After having created and
exchanged updates for a while, nodes should stop creating updates and just exchange
them with one another. Eventually, it should be possible to verify that all updates have
propagated to all nodes and the key-value stores at all servers should be identical. If it is
impossible for the stores to fully become identical, you should ensure that the stores for
nodes in the same partition converge to the same state. A system with 5 servers
shouldn’t take longer than 5 seconds to converge.

- The system should guarantee the two session guarantees (​Read Your Writes​ and
Monotonic Reads​) to its clients. If a client tries to perform a GET operation when one of
the properties isn’t satisfied, the replica that doesn’t satisfy the client’s dependencies
should return “ERR_DEP”.

3.1 The Master Program
To help you test your implementation and assist with the evaluation, each submission must
include a master program which will provide a programmatic interface with the key-value store.
The master program will keep track of and will also send command messages to all servers and
clients. More specifically, the master program will read a sequence of newline delineated
commands from standard input ending with EOF which will interact with the key-value store and,
when instructed to, will display output from the playlist to standard out. We will be using this
master program to test your implementation, not to trick you up on API edge cases. Your
Makefile for the project should compile this to an executable named “master”. If your
implementation doesn’t require a Makefile, turn in an empty file. The API for the master program
is defined on the next page. All ids mentioned in the API are in the same namespace. If for
example there are 3 servers and 2 clients, the ids 0-4 would be handed out.

3.2 Clean Up
An impatient user, change of plans, or unforseen bug in your code may cause some number of
processes in your system to crash, while leaving others up and running. To allow us to move

smoothly between different test cases, please provide some kind of script to clean up such
orphaned processes. This should kill all processes that are still alive in your system.

3.4 Master Program API Specification

Command Summary

joinServer [id] This command starts a server and will
connect this server to all other servers in the
system

killServer [id] This command immediately kills a server. It
should block until the server is stopped.

joinClient [clientId] [serverId] This command will start a client and connect
the client to the specified server.

breakConnection [id1] [id2] This command will break the connection
between a client and a server or between two
servers.

createConnection [id1] [id2] This command will create or restore the
connection between a client and a server or
between two servers.

stabilize This command will block until all values are
able to propagate to all connected servers.
This should block for a max of 5 seconds for
a system with 5 servers.

printStore [id] This command will print out a server’s
key-value store in the format described
below.

put [clientId] [key] [value] This command will tell a client to associate
the given value with the key. This command
should block until the client communicates
with one server.

get [clientId] [key] This command will tell a client to attempt to
get the key associated with the given value.
The value or error returned should be printed
to standard-out in the format specified below.
This command should block until the client
communicates with a server and the master
script.

3.5 Print Format
The “printStore” and “get” operations instruct the process to print out key-value pairs. These
should be printed in the format:

key:value
For a “get” operation, if the server doesn’t have a value for the key, the value should be
“ERR_KEY”. In the case that the server that the client is trying to connect to does not satisfy the
client’s dependencies, the value should instead be: “ERR_DEP”.

5. What to Turn In
One member of your group should submit everything to Canvas as a zip file.

1. Source code for your implementation (client, server, and master)
2. A makefile that compiles your implementation on the CS machines (can be empty)
3. A README file that details your implementation, your names, UT EIDs, and UTCS ids, a

description of your protocol, a description of your tests, instructions on how to use your
system, and any other information you think is relevant to the grading of your service.

Thanks to Dr. Lorenzo Alvisi and Dr. Michael Swift whose projects influenced the creation of this
document.

