
The Dangers and Complexities of
SQLite Benchmarking

Dhathri Purohith, Jayashree Mohan and Vijay
Chidambaram

2

Benchmarking SQLite is Non-trivial !

● Benchmarking complex systems in a repeatable fashion is
error prone

● The main issues with benchmarking :
○ Inconsistency in the industrial benchmarking tools
○ Incorrect reporting of benchmarking results

3

● Benchmarking SQLite is hard

● Depends on several configuration parameters

● Current tools provide conflicting results(3X) for the

same set of parameters

● Easy to show conflicting results by tuning

parameters

● Right configuration can provide massive

performance gains(28X)

4

Outline

● Overview of SQLite
● Motivation
● Existing tools to benchmark SQLite
● Parameters affecting performance of SQLite
● Conclusion

5

SQLite

● Lightweight, embedded, relational database popular in mobile
systems

● Commonly used benchmark in many mobile applications to store their
data
○ E.g. Twitter and Facebook

● Used as a benchmark for evaluating several systems
○ E.g. I/O scheduling frameworks (Yang et.al., SOSP ‘15), the Linux

read-ahead mechanism (Olivier et.al., SIGBED ‘15)

Benchmarking SQLite is an important part of evaluating these systems.

6

SQLite architecture
User Space
Application

Cache Disk

DB

7

SQLite architecture
Cache Disk

DB

8

User Space
Application

SQLite architecture
Cache Disk

DB

Journal

9

User Space
Application

SQLite architecture

fsync()

Journal

Disk

DB

Cache

10

Journal fsync()

User Space
Application

SQLite architecture

Journal

Disk

DB

Cache

11

Journal

User Space
Application

SQLite architecture

Journal

Disk

DB

Cache

12

Journal

User Space
Application

SQLite architecture
Cache

Journal

Disk

DB

13

Journal

User Space
Application

SQLite architecture
Cache

Journal

Disk

DB

14

Journal

User Space
Application

Outline

● Overview of SQLite
● Motivation
● Existing tools to benchmark SQLite
● Parameters affecting performance of SQLite
● Conclusion

15

Motivation : A Case Study of SQLite

Benchmarking SQLite is tricky - It’s performance varies greatly
based on configuration parameters.

➢ Default: Delete journal mode , FULL
synchronization mode on Ext4 in
Android.

➢ Workload: 1 trial = 30K transactions
(10 K inserts, followed by updates and
deletes of 10K)

16

Motivation : A Case Study of SQLite

Benchmarking SQLite is tricky - It’s performance varies greatly
based on configuration parameters.

➢ Custom: WAL journal mode with
1MB journal size and NORMAL
synchronization mode on F2FS

➢ Default: Delete journal mode , FULL
synchronization mode on Ext4 in
Android.

➢ Workload: 1 trial = 30K transactions
(10 K inserts, followed by updates and
deletes of 10K)

17

Motivation : A Case Study of SQLite

Benchmarking SQLite is tricky - It’s performance varies greatly
based on configuration parameters.

➢ Default: Delete journal mode , FULL
synchronization mode on Ext4 in
Android.

➢ Workload: 1 trial = 30K transactions
(10 K inserts, followed by updates and
deletes of 10K)

➢ Custom: WAL journal mode with
1MB journal size and NORMAL
synchronization mode on F2FS

28X

18

Are we reporting it right?

19

Incomplete specification of benchmarking results
● 16 papers from the past couple of years, used SQLite to evaluate

performance.

No parameters

No sync Mode

No WAL Size

10

1

5

NONE of them reported all the parameters required to meaningfully compare results.

20

Outline

● Overview of SQLite
● Motivation
● Existing tools to benchmark SQLite
● Parameters affecting performance of SQLite
● Conclusion

21

Inconsistency in existing benchmarking tools

● Results between the tools differ by 50% in their default setting

 Tool Default TPS Custom TPS Papers that use

MobiBench

RL Bench

AndroBench

20

30

29

57

-

150

7

4

3

● Differ by 3X when a single parameter is changed.

Misleading and meaningless to compare, if parameters are not reported!

22

Outline

● Overview of SQLite
● Motivation
● Existing tools to benchmark SQLite
● Parameters affecting performance of SQLite
● Conclusion

23

Parameters affecting SQLite Performance

1. Filesystem
2. Journaling Mode
3. Pre-population of database
4. Synchronization Mode
5. Journal Size

24

Hardware Setup for experimentation

● Experiments performed
on Samsung Galaxy
Nexus S on 32GB
internal storage.

● Controlled experimental
setup : Vary one
parameter, while
keeping all others
constant.

25

Workload

● 1 trial = 3000 transactions (1000 inserts, followed by 1000 updates
and 1000 deletes)

● Database prepopulated with 100K rows.
● Results reported as throughput (transactions/sec)
● Default Configuration :

○ DELETE journal mode
○ FULL synchronization mode
○ Ext4 filesystem in ordered mode.

26

Outline
● Overview of SQLite
● Motivation
● Existing tools to benchmark SQLite
● Parameters affecting performance of SQLite

○ Filesystem
○ Journal Mode
○ Pre-population of the database
○ Synchronization mode
○ Journal Size

● Conclusion

27

1. Filesystem
● Application writes are transformed into block level operations by filesystem.

28

1. Filesystem

DELETE - Normal

29

1. Filesystem

DELETE - Normal

30

1. Filesystem

DELETE - Normal WAL - Normal

31

1. Filesystem

DELETE - Normal WAL - Normal

32

1. Filesystem

DELETE - Normal DELETE - FULLWAL - Normal

33

1. Filesystem
● Depending on the parameters chosen, we can show either one performing

better.
● F2fs paper evaluates only WAL mode : claims better performance than ext4.

DELETE - Normal DELETE - FULLWAL - Normal

34

Outline
● Overview of SQLite
● Motivation
● Existing tools to benchmark SQLite
● Parameters affecting performance of SQLite

○ Filesystem
○ Journal Mode
○ Pre-population of the database
○ Synchronization mode
○ Journal Size

● Conclusion

35

2. Journaling mode

● Defines the type of SQLite journal used.
○ DELETE : Default mode

■ Uses traditional rollback journaling mechanism: contents
of the database is written on to the journal and the
changes are written to the database file directly.

36

DELETE Journal mode revisited
Cache

Journal

Disk

DB

37

Journal

User Space
Application

2. Journaling mode

● Defines the type of SQLite journal used.
○ DELETE : Default mode

■ Uses traditional rollback journaling mechanism: contents
of the database is written on to the journal and the
changes are written to the database file directly.

○ WAL :
■ Write-ahead log, in which the changes to the database

are written to the journal and is committed to the
database when user explicitly triggers it.

38

WAL journal mode
Cache Disk

39

User Space
Application

WAL journal mode

Tx : 1

Tx : 1

C
O
M
M
I
TWAL

Cache Disk

40

User Space
Application

WAL journal mode
Cache

Tx : 1

C
O
M
M
I
TWAL

Disk

41

User Space
Application

WAL journal mode
User Space
Application

Tx : 2

Tx : 1

C
O
M
M
I
T

Tx : 2

C
O
M
M
I
TWAL

Cache Disk

42

WAL journal mode - checkpointing
User Space
Application

Tx : 2

Tx : 1

C
O
M
M
I
T

Tx : 2

C
O
M
M
I
TWAL

Cache Disk

Chec
kp

oint

43

2. Journaling mode

○ OFF:
■ No Rollback journal
■ Likely corruption on crash

44

2. Journaling mode

● X-axis : Journaling mode

● Y-axis : Results reported in
transactions/sec

45

2. Journaling mode

● DELETE :

Max TPS of 30 achieved

46

2. Journaling mode

● WAL :

Max TPS of 270 achieved

47

2. Journaling mode

● WAL 10X better than
DELETE

● Journal deleted after each
commit in DELETE mode.

● For 1000 SQLite inserts,
○ WAL : 1000 fsync()
○ DELETE : 5000 fsync()

48

Outline
● Overview of SQLite
● Motivation
● Existing tools to benchmark SQLite
● Parameters affecting performance of SQLite

○ Filesystem
○ Journal Mode
○ Pre-population of the database
○ Synchronization mode
○ Journal Size

● Conclusion

49

3. Pre-population of database

● Necessary to ensure realistic performance estimates.

50

3. Pre-population of database

● Necessary to ensure realistic performance estimates.

● Almost 2X performance
difference

● Benchmarking tools don’t
prepopulate. Unrealistic
numbers.

51

Outline
● Overview of SQLite
● Motivation
● Existing tools to benchmark SQLite
● Parameters affecting performance of SQLite

○ Filesystem
○ Journal Mode
○ Pre-population of the database
○ Synchronization mode
○ Journal Size

● Conclusion

52

4. Synchronization Mode

● Controls the frequency of fsync() issued by SQLite library.
○ FULL :

■ Writes to database(calls fsync()) on each commit.

53

FULL Synchronization in WAL

Tx : 1

Tx : 1

C
O
M
M
I
T

C
O
M
M
I
T

WAL

Cache Disk

Chec
kp

oint

54

User Space
Application

4. Synchronization Mode

● Controls the frequency of fsync() issued by SQLite library.
○ FULL :

■ Writes to database(calls fsync()) on each commit.

○ NORMAL:
■ Writes to log on each commit.

55

NORMAL Synchronization in WAL
 Cache Disk

Chec
kp

ointTx : 1 Tx : 100

Tx : 1

C
O
M
M
I
T

Tx : 100

C
O
M
M
I
T

S
Y
N
C

56

User Space
Application

4. Synchronization Mode

● Controls the frequency of fsync() issued by SQLite library.
○ FULL :

■ Writes to database(calls fsync()) on each commit.

○ NORMAL:
■ Writes to log on each commit.

○ OFF:
■ Consistency mechanism left to the OS.

57

4. Synchronization Mode

● X-axis : Synchronization
mode

● Y-axis : Results reported in
transactions/sec

58

4. Synchronization Mode

● FULL :

Max TPS : 30

59

4. Synchronization Mode

● NORMAL :

Max TPS : 45

60

4. Synchronization Mode

● NORMAL : 1.5X better than
FULL .

● To strike balance between
durability and performance,
use WAL+NORMAL

61

Outline
● Overview of SQLite
● Motivation
● Existing tools to benchmark SQLite
● Parameters affecting performance of SQLite

○ Filesystem
○ Journal Mode
○ Pre-population of the database
○ Synchronization mode
○ Journal Size

● Conclusion

62

5. Journal Size

● In WAL mode, journal can grow unbounded
● Potentially affects read performance.

63

5. Journal Size

● In WAL mode, journal can grow unbounded
● Potentially affects read performance.

64

5. Journal Size

● In WAL mode, journal can grow unbounded
● Potentially affects read performance.

● Performance improves with
increase in journal size

65

5. Journal Size

● In WAL mode, journal can grow unbounded
● Potentially affects read performance.

● Performance improves with
increase in journal size

● When WAL is full - triggers
checkpoint.

● Smaller WAL => more
checkpointing

66

5. Journal Size

● In WAL mode, journal can grow unbounded
● Potentially affects read performance.

● Performance improves with
increase in journal size

● When WAL is full - triggers
checkpoint.

● Smaller WAL => more
checkpointing

● Saturates beyond a point

67

Outline

● Overview of SQLite
● Motivation
● Existing tools to benchmark SQLite
● Parameters affecting performance of SQLite
● Conclusion

68

Conclusion

● The Systems community has discussed in the past, how tricky
benchmarking can be.

● But in practice, we have shown that industrial benchmarking tools are
inconsistent, and academic reporting of results is incomplete.

● Draw attention to:
○ Developers and researchers must understand the impact of

various parameters on SQLite performance.
○ To ensure repeatable and comparable results, reporting

configuration parameters is vital.

69

THANK YOU..

Questions ?

Jayashree Mohan
jaya@cs.utexas.edu

70

BACKUP SLIDES

71

Hardware Setup for experimentation

● Experiments performed
on Samsung Galaxy
Nexus S

● Controlled experimental
setup : Vary one
parameter, while
keeping all others
constant.

CPU Dual Core 1.2GHz Cortex A9

Memory 32GB internal, 1GB RAM

Android 6.0.1(cyanogenmod 13)

Kernel 3.0.101 (F2FS enabled)

Battery 3.7V, 1850mAh

72

