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Benchmarking SQLite is Non-trivial !

● Benchmarking complex systems in a repeatable fashion is 
error prone

● The main issues with benchmarking :
○ Inconsistency in the industrial benchmarking tools
○ Incorrect reporting of benchmarking results
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● Benchmarking SQLite is hard

● Depends on several configuration parameters

● Current tools provide conflicting results(3X) for the 

same set of parameters

● Easy to show conflicting results by tuning 

parameters

● Right configuration can provide massive 

performance gains(28X)
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● Conclusion
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SQLite

● Lightweight, embedded, relational database popular in mobile 
systems

● Commonly used benchmark in many mobile applications to store their 
data
○ E.g.  Twitter and Facebook

● Used as a benchmark for evaluating several systems
○ E.g. I/O scheduling frameworks (Yang et.al., SOSP ‘15), the Linux 

read-ahead mechanism (Olivier et.al., SIGBED ‘15)

Benchmarking SQLite is an important part of evaluating these systems.
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Motivation : A Case Study of SQLite

Benchmarking SQLite is tricky - It’s performance varies greatly 
based on configuration parameters. 

➢ Default: Delete journal mode , FULL 
synchronization mode on Ext4 in 
Android.

➢ Workload: 1 trial  = 30K transactions 
(10 K inserts, followed by updates and 
deletes of 10K )
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Are we reporting it right?
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Incomplete specification of benchmarking results
● 16 papers from the past couple of years, used SQLite to evaluate 

performance.

No parameters

No sync Mode

No WAL Size
 

10

1

5

NONE of them reported all the parameters required to meaningfully compare results.
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Inconsistency in existing benchmarking tools

● Results between the tools differ by 50% in their default setting

 Tool Default TPS Custom TPS Papers that use

MobiBench

RL Bench

AndroBench

20

30

29

57

-

150

7

4

3

● Differ by 3X when a single parameter is changed.

Misleading and meaningless to compare, if parameters are not reported!
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Parameters affecting SQLite Performance

1. Filesystem
2. Journaling Mode 
3. Pre-population of database
4. Synchronization Mode
5. Journal Size
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Hardware Setup for experimentation

● Experiments performed 
on Samsung Galaxy 
Nexus S on 32GB 
internal storage.

● Controlled experimental 
setup : Vary one 
parameter, while 
keeping all others 
constant.
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Workload

● 1 trial  = 3000 transactions (1000 inserts, followed by 1000 updates 
and 1000 deletes)

● Database prepopulated with 100K rows.
● Results reported as throughput (transactions/sec)
● Default Configuration : 

○ DELETE journal mode
○ FULL synchronization mode
○ Ext4 filesystem in ordered mode.
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1. Filesystem
● Application writes are transformed into block level operations by filesystem.
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1. Filesystem

DELETE - Normal

29



1. Filesystem

DELETE - Normal

30



1. Filesystem

DELETE - Normal WAL - Normal
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1. Filesystem
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1. Filesystem

DELETE - Normal DELETE - FULLWAL - Normal
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1. Filesystem
● Depending on the parameters chosen, we can show either one performing 

better.
● F2fs paper evaluates only WAL mode : claims better performance than ext4.

DELETE - Normal DELETE - FULLWAL - Normal
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2. Journaling mode

● Defines the type of SQLite journal used.
○ DELETE : Default mode

■ Uses traditional rollback journaling mechanism: contents 
of the database is written on to the journal and the 
changes are written to the database file directly.
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2. Journaling mode

● Defines the type of SQLite journal used.
○ DELETE : Default mode

■ Uses traditional rollback journaling mechanism: contents 
of the database is written on to the journal and the 
changes are written to the database file directly.

○ WAL :
■ Write-ahead log, in which the changes to the database 

are written to the journal and is committed to the 
database when user explicitly triggers it.
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WAL journal mode - checkpointing 
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2. Journaling mode

○ OFF:
■ No Rollback journal
■ Likely corruption on crash
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2. Journaling mode

● X-axis : Journaling mode

● Y-axis : Results reported in 
transactions/sec
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2. Journaling mode

● DELETE : 

Max TPS of 30 achieved 
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2. Journaling mode

● WAL : 

Max TPS of 270 achieved
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2. Journaling mode

● WAL 10X better than 
DELETE

● Journal deleted after each 
commit in DELETE mode.

● For 1000 SQLite inserts,
○ WAL : 1000 fsync()
○ DELETE : 5000 fsync()
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3. Pre-population of database

● Necessary to ensure realistic performance estimates.
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3. Pre-population of database

● Necessary to ensure realistic performance estimates.

● Almost 2X performance 
difference

● Benchmarking tools don’t 
prepopulate. Unrealistic 
numbers.
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4. Synchronization Mode

● Controls the frequency of fsync() issued by SQLite library.
○ FULL :

■ Writes to database(calls fsync()) on each commit.
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FULL Synchronization in WAL
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4. Synchronization Mode

● Controls the frequency of fsync() issued by SQLite library.
○ FULL :

■ Writes to database(calls fsync()) on each commit.

○ NORMAL:
■ Writes to log on each commit.
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NORMAL Synchronization in WAL 
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4. Synchronization Mode

● Controls the frequency of fsync() issued by SQLite library.
○ FULL :

■ Writes to database(calls fsync()) on each commit.

○ NORMAL:
■ Writes to log on each commit.

○ OFF:
■ Consistency mechanism left to the OS.
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4.  Synchronization Mode

● X-axis : Synchronization 
mode

● Y-axis : Results reported in 
transactions/sec
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4. Synchronization Mode

● FULL :

Max TPS : 30
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4. Synchronization Mode

● NORMAL :

Max TPS : 45
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4. Synchronization Mode

● NORMAL : 1.5X better than 
FULL .

● To strike balance between 
durability and performance, 
use WAL+NORMAL
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5. Journal Size

● In WAL mode, journal can grow unbounded
● Potentially affects read performance.
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5. Journal Size

● In WAL mode, journal can grow unbounded
● Potentially affects read performance.

● Performance improves with 
increase in journal size

● When WAL is full - triggers 
checkpoint.

● Smaller WAL => more 
checkpointing
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5. Journal Size

● In WAL mode, journal can grow unbounded
● Potentially affects read performance.

● Performance improves with 
increase in journal size 

● When WAL is full - triggers 
checkpoint.

● Smaller WAL => more 
checkpointing

● Saturates beyond a point
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Conclusion

● The Systems community has discussed in the past, how tricky 
benchmarking can be.

● But in practice, we have shown that industrial benchmarking tools are 
inconsistent, and academic reporting of results is incomplete.

● Draw attention to:
○ Developers and researchers must understand the impact of 

various parameters on SQLite performance.
○ To ensure repeatable and comparable results, reporting 

configuration parameters is vital.
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THANK YOU..        

Questions ?

Jayashree Mohan
jaya@cs.utexas.edu 
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BACKUP SLIDES
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Hardware Setup for experimentation

● Experiments performed 
on Samsung Galaxy 
Nexus S

● Controlled experimental 
setup : Vary one 
parameter, while 
keeping all others 
constant.

CPU Dual Core 1.2GHz Cortex A9

Memory 32GB internal, 1GB RAM

Android 6.0.1(cyanogenmod 13)

Kernel 3.0.101 (F2FS enabled)

Battery 3.7V, 1850mAh
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