
The Dangers and Complexities of SQLite Benchmarking

Dhathri Purohith Jayashree Mohan Vijay Chidambaram

Department of Computer Science, University of Texas at Austin
email :{ dhathri, jaya, vijay}@cs.utexas.edu

Abstract

Benchmarking systems in a repeatable fashion is com-
plex and error-prone. The systems community has re-
peatedly discussed the complexities of benchmarking
and how to properly report benchmarking results. Us-
ing the example of SQLite, we examine the current state
of benchmarking in industry and academia. We show
that changing just one parameter in SQLite can change
the performance by 11.8X, and that changing multiple
parameters can lead up to a 28X difference in perfor-
mance. We find that these configuration parameters are
often not set or reported in academic research, leading to
incomplete and misleading evaluations. Running differ-
ent off-the-shelf SQLite benchmarking tools such as Mo-
bibench and Androbench in their default configuration
shows upto 50% difference in performance. We hope
this paper incites discussion in the systems community
and among SQLite developers. We hope that our detailed
analysis will help application developers to choose opti-
mal SQLite parameters to achieve better performance.

1 Introduction

Benchmarks occupy an important place in the systems
community: system design and development is driven by
the results of carefully chosen and widely-agreed upon
benchmarks. For example, the Yahoo Cloud Serving
Benchmark [1] is used extensively to benchmark the per-
formance of key-value stores such as LevelDB [2] and
RocksDB [3], and the TPC benchmarks [4,5] are used to
test the performance of databases and transaction pro-
cessing systems. Architects base design decisions on
such benchmarks. Industry makes purchasing decisions
(worth millions of dollars) based on such benchmarks.
Academic research also bases its results on such bench-
marks. Thus, proper benchmarking is vital to the systems
community.

Unfortunately, benchmarking complex systems in a

repeatable fashion is a hard problem. Since benchmark
results often depend upon a large number of factors both
in the benchmark itself and in the operating system en-
vironment, producing repeatable results requires a great
deal of care. Previous work by Mytkowicz et al. [6] and
Tarasov et al. [7] has shown how a seemingly innocuous
parameter in an experimental setup can lead to a signif-
icant bias in evaluating systems. They review some of
the commonly used benchmarks to show how their per-
formance differs by orders of magnitude [7].

Despite discussion in the systems community [6, 7],
we believe two problems related to benchmarking are
still rampant in industry and academia. First, there are
several industrial tools which benchmark the same sys-
tem and yet provide widely varying results. Second,
when researchers report the results from benchmarks,
they often omit important details about the setup with-
out which it is impossible to reproduce their results. The
combination of these problems lead to misleading results
that cannot be directly compared, resulting in confusion.

To illustrate these points, we examine the bench-
marking of SQLite [8], a lightweight, embedded rela-
tional database popular in mobile systems. SQLite is
a commonly used benchmark in many mobile applica-
tions (such as Twitter and Facebook) to store their data
[9, 10]. The SQLite website reports billions of deploy-
ments across different kinds of devices [11]. SQLite is
also widely used in academic research. For example,
SQLite has been used as a benchmark for evaluating new
I/O scheduling frameworks [12], the Linux read-ahead
mechanism [13], non-volatile write-ahead logging [14],
and hardware-assisted fault tolerance [15]. Investigating
the publications in the area of storage and systems in
the past eight years, including papers from several pre-
mier conferences, we find that work involving SQLite
has been done in 46 of these publications, with 25 papers
published in the past two years [16]. Thus, benchmark-
ing SQLite is an important part of evaluating these sys-
tems. In this paper, we focus on the evaluation of SQLite



Figure 1: Performance Impact of Parameters. The fig-
ure shows the 28X difference in performance from config-
uring SQLite parameters. Default config: journal mode
DELETE, synch mode FULL, file system ext4. Custom
config: journal mode WAL, WAL size 1 MB, synch mode
NORMAL, file system F2FS.

on the Android platform.
Evaluating SQLite performance is complex and error-

prone. SQLite performance depends on a number of pa-
rameters, and as we show later, changing just one pa-
rameter results in performance differing by a staggering
11.8X (§3). Figure 1 shows how performance can differ
by 28X, by just varying a few parameters and switching
the underlying file system from ext4 to F2FS.

We see that developers and researchers still do not re-
port the required configuration parameters that affect the
performance of SQLite. The popular tools available to
benchmark SQLite give inconsistent results, often dif-
fering by 50% or more (§2) in its default configuration.
When we investigated 16 papers from the past two years
whose evaluation included SQLite, we find that none re-
port all the parameters required to meaningfully compare
results: ten papers do not report any parameters [17–26],
five do not report the sync mode [27–31], while only
one paper reports all parameters except write-ahead log
size [32]. Without reporting how SQLite was configured,
it is meaningless to compare SQLite results.

Most applications on Android use SQLite as the back-
end data-store with its default configuration, which is not
performance efficient. It is important for the applica-
tion developers to understand how different configura-
tion parameters affect the performance of SQLite. We
believe such understanding will be useful to academic
researchers as well. Millions of Android users already
use tools such as Mobibench to evaluate phones and stor-
age devices. Thus, we believe that it is essential for re-
searchers and developers to understand how to properly
evaluate SQLite, and how to report results in a complete
manner.

In this paper, we analyse the influence of different fac-

Tool Default TPS Custom TPS
MobiBench 20 57

RLBench 30 -

Androbench 29 150

Table 1: Benchmarking Tools. The table shows the
throughput achieved by three SQLite benchmarking tools
for 1000 insert operations. Note how the results differ by
50% in their default configuration, and as much as 3X
after changing a single parameter.

tors on SQLite performance (§3). The aim of our analysis
is two fold. First, we intend our analysis to help appli-
cation developers decide on an optimal SQLite configu-
ration to achieve better performance. Second, we hope
this paper serves as a wakeup call in the system com-
munity and improves the way in which benchmarking
results (especially for SQLite) are presented in future.

2 Tools to Benchmark SQLite

We examined 46 recent papers (published since 2008)
that used SQLite. Several use benchmarking tools like
Mobibench [33], RLbench [34], Androbench [35] to
evaluate their system and application. A closer look at
these publications reveal that seven of these works have
used Mobibench to benchmark SQLite in their applica-
tions, making it one of the most sought after tools in the
recent times for SQLite benchmarking. Four papers used
RLbench and three papers used Androbench.

Table 1 shows how the performance of these bench-
marks differ. In their default configurations, on the
same device, RLbench and Androbench report 50% bet-
ter throughput than Mobibench. Once a single parameter,
the journaling mode, is switched from DELETE to WAL,
Androbench achieves 3X the throughput of Mobibench.

Thus, it is easy to be mislead by the results of these
benchmarking tools if the parameters are not set cor-
rectly. It is not enough if a tool becomes a widely used
benchmark – for results to be compared, the relevant pa-
rameters should be reported.

3 Parameters Affecting Performance

We now describe the various parameters that can af-
fect SQLite performance and how the performance varies
with different settings. In order to evaluate this, we have
developed an application in Android that allows us to
configure different parameters for SQLite, as none of the
existing benchmarking tools allow us to vary all of these
parameters.

2



(a) Varying journal mode only (b) Varying synchronization mode only (c) Varying journal size only

Figure 2: Performance impact of a single SQLite parameter change. The figure shows the 11.8X difference in
performance due to changing only the journal mode, 1.5X difference due to varying the synchronization mode alone
and a 5X change by modifying only the journal size.

Hardware Setup. We run our experiments on a Sam-
sung Galaxy Nexus S phone with Dual-core, 1.2GHz,
Cortex-A9 processor; 32GB internal memory and 1GB
RAM running Android 6.0.1 (cyanogenmod 13.0) on
Linux 3.0.101 (F2FS enabled) kernel. The results pre-
sented in this paper are from experiments run on An-
droid 6.0.1. Experiments were also performed on An-
droid 4.2.1 to compare between different ROM versions,
which is not presented.

We design experiments where we vary one parame-
ter while keeping all other parameters constant. The de-
fault setting for SQLite is DELETE journal mode with
FULL synchronization on Ext4 file system in ordered
mode. We report the throughput (txs/sec) for performing
3000 transactions (1000 inserts, 1000 updates, and 1000
deletes). The experiments are performed on a database
pre-populated with 100K rows. We report the average of
ten runs.

We now describe the parameters that affect SQLite
performance. Figure 2 shows the performance implica-
tion of changing some of these parameters, one parame-
ter at a time.

SQLite Journaling mode. The SQLite journaling mode
defines the type of journal used: DELETE (default),
TRUNCATE, Write-Ahead Log (WAL), PERSIST, MEMORY
and OFF. Figure 2a shows the drastic 11.8X improve-
ment in performance by just changing the SQLite jour-
nal mode from DELETE to WAL. We later discuss how
the SQLite journaling mode interacts with the file sys-
tem journaling mode.

Synchronization Mode. SQLite synchronization modes
controls the frequency at which fsync() command is
issued by the SQLite library. The parameter has three
values: OFF, NORMAL, and FULL. Figure 2b shows how
performance increases by 54% when changing the syn-
chronization mode from FULL to NORMAL.

SQLite Journal Size. This parameter is the size of the

journal in SQLite, in bytes. Figure 2c illustrates how per-
formance reduces by 5X when the journal size is reduced
to 64 KB from the unlimited default setting.

File System. The file system on the Android device
can also impact the performance of applications that use
SQLite, as it potentially changes the IO pattern at the
block level. We present an analysis of how SQLite pa-
rameters interact with the file system type and the file
system journaling mode.

Pre-populating the Database. To obtain realistic per-
formance estimates, it is necessary to pre-populate the
database on which the SQLite operations are performed.
We discuss how not doing so can seem to increase the
performance and why this has to be avoided.

Apart from the parameters presented above, other fac-
tors such as the Flash Card used [36], the SQLite li-
brary version, and the Android version also affect per-
formance. However, since the performance difference is
small or well studied (as in the case of the flash card), we
do not discuss such factors, but it is important to report
these parameters while presenting benchmarking results.

3.1 SQLite Journal mode

The different journal modes of SQLite are DELETE, WAL,
TRUNCATE, PERSIST, MEMORY and OFF. The default jour-
nal mode is DELETE, which uses the traditional roll-
back journaling mechanism in which the content of the
database is written on to the journal and the changes are
written to the database file directly. The journal is au-
tomatically committed and deleted at the end of each
transaction. The WAL journal mode uses write-ahead
log, in which the changes to the database are written to
the journal and is committed to the database when the
user externally triggers a commit or once a 1000 page
limit is reached [37]. TRUNCATE mode is same as the
DELETE mode, except that the roll-back journal is trun-

3



(a) Performance for different SQLite journal
modes. The figure shows that WAL mode perfor-
mance is 10X higher than DELETE mode. Data jour-
naling, ordered, and writeback are ext4 journaling
modes.

(b) Performance for different synchronization
modes. The figure shows that turning OFF SQLite
synchronization gives the best performance, and
NORMAL synch mode performs 50% better than FULL

synch mode.

(c) Performance for different WAL sizes. The figure
shows that the performance of SQLite increases as
the WAL journal grows. Performance differs by 5X
difference between WAL sizes of 64KB and 1 MB.

(d) Performance with pre-population.The figure
shows that the throughput decreases by 50% for up-
date and delete operations when the database is pre-
populated.

Figure 3: Impact of various parameters on SQLite performance

cated to zero length instead of deleting it after every
transaction. In MEMORY mode, the roll-back journal is
stored in-memory which reduces the disk IO at the cost
of database safety and integrity. In a PERSIST mode,
the roll-back journal is re-written after every transac-
tion commit, which is same as truncating the journal on
a flash device. SQLite also provides an option to turn
off journaling, which improves performance by forego-
ing crash consistency.

In our experiments, we compare three most commonly
used SQLite journaling modes – DELETE, WAL and OFF

for different file system (ext4) journaling modes. Fig-
ure 3a presents the results of our experiments. We make
two observations based on the results.

First, turning off journaling in SQLite increases per-
formance, but at the cost of disabling the atomic commit
and roll-back features of SQLite [38]. Write ahead log

(WAL) mode outperforms DELETE mode by ∼10X in all
file system configurations. This is because in DELETE

mode, the roll-back journal is deleted at every transac-
tion commit and hence an fsync() is initiated after ev-
ery transaction. For a workload of 1000 SQLite inserts,
1000 fsync() calls were issued in WAL mode, while
5000 fsync() calls were issued in DELETE mode.

Second, as expected, the writeback file-system mode
performs the best, while data journaling mode performs
the worst [39]. Since data journaling generates the most
IO (2X the IO generated by ordered mode), and write-
back has the least ordering constraints, these results are
consistent with expectations. We see the same pattern in
other experiments as well.

4



(a) Journal:DELETE, Synch:FULL (b) Journal:TRUNCATE, Synch:NORMAL (c) Journal:WAL, Synch:NORMAL

Figure 4: Performance on different filesystems. The figure shows how SQLite performance varies drastically (upto
20X) depending upon the underlying file system and the SQLite journal mode. Based on the journal mode, either ext4
or F2FS perform best for SQLite operations.

3.2 SQLite Synchronization Mode
SQLite allows three modes of synchronization to persist
the data written– FULL, NORMAL and OFF. FULL synchro-
nization writes changes to the database on each commit,
while NORMAL mode only writes to the log.In the OFF

mode, dirty data is not forced to storage, and instead
the operating system writes out the dirty data later. OFF
mode can lead to corruption on crash, and hence is not
preferred. Thus the three modes differ in the amount of
IO and the number of fsync() calls issued. In practice,
SQLite is run in WAL mode with NORMAL synchronization,
to strike a balance between durability and performance.

Figure 3b shows the impact of modifying the synchro-
nization mode in the default DELETE mode across Ext4
file system configurations. As expected, turning off all
consistency mechanisms increases performance signifi-
cantly. Note that while changing from FULL to NORMAL

synch mode increases performance by 1.5X in DELETE

mode, it increases performance by 3X in WAL mode.

3.3 SQLite Journal Size
In the WAL mode of SQLite, by default, there is no
limit set on the journal size, which allows it to grow
unbounded, thereby potentially affecting read perfor-
mance [37]. Figure 3c shows the throughput across 1000
SQLite inserts, updates and deletes for different WAL

sizes and different file system modes in ext4.

We observe that larger WAL sizes lead to higher
throughput. There is a 5X performance difference be-
tween WAL sizes of 64 KB and 1 MB. When the WAL

gets full, a checkpoint is triggered with an associated
fsync() call. If the WAL is not full, a checkpoint is trig-
gered every 1000 pages that are written to the WAL. For
smaller WAL sizes, the WAL becomes full quickly, leading
to performance degradation. Increasing the WAL size be-
yond 1000 pages does not help since checkpointing will

be triggered for every 1000 pages anyway.

There is no performance benefit to increasing the WAL
size beyond 1 MB, and bounding the WAL at this size
helps maintain a trade-off between read and write per-
formance of SQLite.

3.4 Pre-populating the Database

For many SQLite operations, the state of the database
on which operations are performed, significantly affects
it’s performance. In the default configuration of SQLite
(DELETE mode), when data is updated in an operation,
the old data is first copied into a journal, and the new data
is written directly into the database. Thus, whether the
database already contains data or not significantly affects
performance.

We conducted experiments where SQLite operations
such as insert, update, and delete were performed both
on an empty database, and a database pre-populated with
100K entries. Figure 3d shows the results.

We observe that for update and delete operations,
performance is close to 2X higher if run on an empty
database. Most benchmarking tools do not pre-populate
the database, thus producing unrealistic performance
numbers.

3.5 File Systems

The file system on which SQLite is run also impacts
its performance, as application writes are transformed
into different block IO by the file system. Having dis-
cussed how SQLite performance varies with ext4 jour-
naling mode in previous sections, we now present how
SQLite performance changes when run on a file system
designed specifically for flash: F2FS [30].

Figure 4 shows the performance of different SQLite
operations on ext4 and F2FS. We observe that in the

5



default SQLite configuration, ext4 performs better than
F2FS for all SQLite operations. In contrast, in the
TRUNCATE/Synch-NORMAL configuration, F2FS outper-
forms ext4 in all SQLite operations. In the WAL/Synch-
NORMAL configuration, SQLite updates and deletes per-
form ∼4X better in F2FS, whereas SQLite inserts are
30% faster in ext4. Thus, depending on the experiment
you choose, you can show either F2FS or ext4 perform-
ing better for SQLite operations! We note that the F2FS
paper only reports performance on WAL mode, without
reporting the synchronization setting [30].

We also observed a 6X improvement in performance
when the synchronization mode is changed from FULL

To NORMAL in WAL journal mode in F2FS.

4 Conclusion

We inspect the state of benchmarking (and how results
are reported) in industry and academia, using SQLite as
an example. We show that benchmarking SQLite is com-
plex and that SQLite performance depends upon a large
number of parameters. Tuning a few parameters can
vary performance significantly (upto 28X). We show that
industrial tools for benchmarking SQLite report widely
varying results, and that academic research does not re-
port on all the configuration parameters required to re-
produce benchmarking results.

We hope our study accomplishes two objectives. First,
we hope it helps developers and researchers realize the
impact of these parameters on SQLite performance. Sec-
ond, and more importantly, we hope it spurs discussion
about what must be reported in conjunction with SQLite
results to make the results repeatable and comparable.
Given the importance of benchmarks in the systems com-
munity and the rising use of SQLite, we believe this dis-
cussion is crucial and timely.

5 Acknowledgments

We would like to thank the anonymous reviewers for
their feedback and guidance. This work was supported
by generous donations from VMware and Facebook.
Any opinions, findings, and conclusions, or recommen-
dations expressed herein are those of the authors and do
not necessarily reflect the views of other institutions.

References
[1] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakr-

ishnan, and Russell Sears. Benchmarking cloud serving systems
with ycsb. In Proceedings of the 1st ACM symposium on Cloud
computing, pages 143–154. ACM, 2010.

[2] Google. Leveldb. https://github.com/google/leveldb.

[3] RocksDB — A persistent key-value store. http://rocksdb.

org.

[4] Transaction Processing Performance Council. Tpc benchmark c,
standard specification version 5, 2001.

[5] Transaction Processing Performance Council. ‘tpc benchmark
b. Standard Specification, Waterside Associates, Fremont, CA,
1990.

[6] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F.
Sweeney. Producing wrong data without doing anything obvi-
ously wrong! In Proceedings of the 14th International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems, ASPLOS XIV, pages 265–276, New York,
NY, USA, 2009. ACM.

[7] Vasily Tarasov, Saumitra Bhanage, Erez Zadok, and Margo
Seltzer. Benchmarking file system benchmarking: It* is* rocket
science. In HotOS, 2011.

[8] SQLite. SQLite transactional SQL database engine. http://

www.sqlite.org/.

[9] Why to use SQLite in Android. https://www.quora.com/

Why-should-we-use-SQLite-in-Android-development,
January 2017.

[10] SQLite in Android. http://www.grokkingandroid.com/

sqlite-in-android, January 2017.

[11] SQLite. Most Widely Deployed SQL Database Engine. https:
//www.sqlite.org/mostdeployed.html.

[12] Suli Yang, Tyler Harter, Nishant Agrawal, Salini Selvaraj
Kowsalya, Anand Krishnamurthy, Samer Al-Kiswany, Rini T
Kaushik, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-
Dusseau. Split-level i/o scheduling. In Proceedings of the 25th
Symposium on Operating Systems Principles, pages 474–489.
ACM, 2015.

[13] Pierre Olivier, Jalil Boukhobza, and Eric Senn. Revisiting read-
ahead efficiency for raw nand flash storage in embedded linux.
ACM SIGBED Review, 11(4):43–48, 2015.

[14] Wook-Hee Kim, Jinwoong Kim, Woongki Baek, Beomseok
Nam, and Youjip Won. Nvwal: Exploiting nvram in write-ahead
logging. In Proceedings of the Twenty-First International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems, pages 385–398. ACM, 2016.

[15] Dmitrii Kuvaiskii, Rasha Faqeh, Pramod Bhatotia, Pascal Felber,
and Christof Fetzer. Haft: hardware-assisted fault tolerance. In
Proceedings of the Eleventh European Conference on Computer
Systems, page 25. ACM, 2016.

[16] Publications involving SQLite. http://dl.acm.org/

results.cfm?query=(sqlite)&within=owners.owner=

HOSTED&filtered=&dte=2008&bfr=, January 2017.

[17] Nikolaos Ch. Kasmeridis and Michael Gr. Vassilakopoulos. A
diet-guide mobile application for diabetes mellitus management.
In Proceedings of the 19th Panhellenic Conference on Informat-
ics, PCI ’15, pages 377–381, New York, NY, USA, 2015. ACM.

[18] Simone Mutti, Enrico Bacis, and Stefano Paraboschi. Sesqlite:
Security enhanced sqlite: Mandatory access control for android
databases. In Proceedings of the 31st Annual Computer Security
Applications Conference, ACSAC 2015, pages 411–420, New
York, NY, USA, 2015. ACM.

[19] Eunryoung Lim, Seongjin Lee, and Youjip Won. Androtrace:
Framework for tracing and analyzing ios on android. In Proceed-
ings of the 3rd Workshop on Interactions of NVM/FLASH with
Operating Systems and Workloads, INFLOW ’15, pages 3:1–3:8,
New York, NY, USA, 2015. ACM.

[20] Suli Yang, Tyler Harter, Nishant Agrawal, Salini Selvaraj
Kowsalya, Anand Krishnamurthy, Samer Al-Kiswany, Rini T.
Kaushik, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Split-level i/o scheduling. In Proceedings of the 25th
Symposium on Operating Systems Principles, SOSP ’15, pages
474–489, New York, NY, USA, 2015. ACM.

6



[21] Dmitrii Kuvaiskii, Rasha Faqeh, Pramod Bhatotia, Pascal Felber,
and Christof Fetzer. Haft: Hardware-assisted fault tolerance. In
Proceedings of the Eleventh European Conference on Computer
Systems, EuroSys ’16, pages 25:1–25:17, New York, NY, USA,
2016. ACM.

[22] Charlie Curtsinger and Emery D. Berger. Coz: Finding code that
counts with causal profiling. In Proceedings of the 25th Sym-
posium on Operating Systems Principles, SOSP ’15, pages 184–
197, New York, NY, USA, 2015. ACM.

[23] Yan Wang and Atanas Rountev. Profiling the responsiveness of
android applications via automated resource amplification. In
Proceedings of the International Conference on Mobile Software
Engineering and Systems, MOBILESoft ’16, pages 48–58, New
York, NY, USA, 2016. ACM.

[24] Georgios Chatzopoulos, Aleksandar Dragojević, and Rachid
Guerraoui. Estima: Extrapolating scalability of in-memory appli-
cations. In Proceedings of the 21st ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP ’16,
pages 27:1–27:11, New York, NY, USA, 2016. ACM.

[25] Pierre Olivier, Jalil Boukhobza, and Eric Senn. Revisiting read-
ahead efficiency for raw nand flash storage in embedded linux.
SIGBED Rev., 11(4):43–48, January 2015.

[26] Phil Mcminn, Chris J. Wright, and Gregory M. Kapfhammer.
The effectiveness of test coverage criteria for relational database
schema integrity constraints. ACM Trans. Softw. Eng. Methodol.,
25(1):8:1–8:49, December 2015.

[27] Lei Li, Kai Qian, Qian Chen, Ragib Hasan, and Guifeng Shao.
Developing hands-on labware for emerging database security. In
Proceedings of the 17th Annual Conference on Information Tech-
nology Education, SIGITE ’16, pages 60–64, New York, NY,
USA, 2016. ACM.

[28] Gihwan Oh, Sangchul Kim, Sang-Won Lee, and Bongki Moon.
Sqlite optimization with phase change memory for mobile appli-
cations. Proc. VLDB Endow., 8(12):1454–1465, August 2015.

[29] Wook-Hee Kim, Jinwoong Kim, Woongki Baek, Beomseok
Nam, and Youjip Won. Nvwal: Exploiting nvram in write-ahead
logging. SIGOPS Oper. Syst. Rev., 50(2):385–398, March 2016.

[30] Changman Lee, Dongho Sim, Joo-Young Hwang, and Sangyeun
Cho. F2fs: A new file system for flash storage. In Proceedings of
the 13th USENIX Conference on File and Storage Technologies,
FAST’15, pages 273–286, Berkeley, CA, USA, 2015. USENIX
Association.

[31] Eric Koskinen and Junfeng Yang. Reducing crash recoverability
to reachability. SIGPLAN Not., 51(1):97–108, January 2016.

[32] Dam Quang Tuan, Seungyong Cheon, and Youjip Won. On the io
characteristics of the sqlite transactions. In Proceedings of the In-
ternational Conference on Mobile Software Engineering and Sys-
tems, MOBILESoft ’16, pages 214–224, New York, NY, USA,
2016. ACM.

[33] Sooman Jeong, Kisung Lee, Jungwoo Hwang, Seongjin Lee, and
Youjip Won. Androstep: Android storage performance analysis
tool. In Software Engineering (Workshops), volume 13, pages
327–340, 2013.

[34] RL Benchmark. https://play.google.com/store/apps/

details?id=com.redlicense.benchmark.sqlite&hl=en,
December 2016.

[35] Je-Min Kim and Jin-Soo Kim. Androbench: Benchmarking the
storage performance of android-based mobile devices. In Fron-
tiers in Computer Education, pages 667–674. Springer, 2012.

[36] Hyojun Kim, Nitin Agrawal, and Cristian Ungureanu. Revisiting
storage for smartphones. Trans. Storage, 8(4):14:1–14:25, De-
cember 2012.

[37] WAL mode in SQLite. https://www.sqlite.org/wal.html,
January 2017.

[38] No journal in SQLite. https://www.sqlite.org/pragma.

html#pragma_journal_mode, January 2017.

[39] Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. Analysis and Evolution of Journaling File Sys-
tems. In The Proceedings of the USENIX Annual Technical
Conference (USENIX ’05), pages 105–120, Anaheim, CA, April
2005.

7


