
From Crash Consistency to Transactions

Yige Hu Youngjin Kwon Vijay Chidambaram Emmett Witchel
The University of Texas at Austin

Abstract

Modern applications use multiple storage abstractions
such as the file system, key-value stores, and embedded
databases such as SQLite. Maintaining consistency of
data spread across multiple abstractions is complex and
error-prone. Applications are forced to copy data unnec-
essarily and use long sequences of system calls to update
state in a consistent manner. Not only does this create
implementation complexity, it also introduces potential
performance problems from redundant IO and fsync()

calls, which fragment disk writes into small, random
IOs. In this paper, we propose that the operating system
should provide transactions across multiple storage ab-
stractions; we can build such transactions with low devel-
opment cost by taking advantage of a well-tested piece of
software: the file-system journal. We present the design
of our cross-abstraction transactions and some prelimi-
nary results, showing such transactions can increase per-
formance by 31% in certain cases.

1 Introduction

The interface to the file system is a defining feature of
operating systems. Early operating systems like the IBM
360 had indexed files to support database-like access to
file data; early MacOS supported extended file metadata
using resource forks; and UNIX beat all competitors by
treating files as a simple sequence of bytes accessed via
read(), write(), and seek() system calls.

Unfortunately, modern applications have certain re-
quirements that do not fit well with the current interface:
for example, storing structured data, and performing rich,
complex queries on the data. Applications have turned
to new abstractions such as embedded databases (e.g.,
SQLite [28]) and key-value stores (e.g., LevelDB [7]) to
meet their needs. Unfortunately, since these abstractions
operate on top of the file system, they have to work with
or around the simplistic API.

Such attempts have led to either poor performance or
loss of correctness in the face of a crash [18]. For ex-
ample, databases and key-value stores often maintain an
application-level log. The metadata for those logs is
written twice: once to the kernel’s file-system journal
and once in-place in the file system (this is called the

double journaling problem [11]). These additional IOs
along with the sync() system call overheads severely
degrade throughput on modern SSDs and the situation
will be even worse for faster devices like non-volatile
memory. As storage devices approach memory latency,
software overheads such as the processing required for
system calls begin to dominate latency (e.g., an fsync()
in the Redis key-value store takes 137us [17]).

Even if a particular abstraction works well with the file
system, modern applications often store across different
abstractions. For example, the Android Mail client stores
email messages in SQLite, attachments as files, and the
backup of mailbox information in a key-value store [26].
For such applications, a single logical update from the
user’s point of view may require writes across different
abstractions that all need to be performed atomically. Ac-
complishing this with user-level logs results in poor per-
formance and added complexity (see §2).

We believe that file-system transactions can fix these
performance and correctness problems while simplifying
user-level code. Transactions have been attempted in file
systems before, but have failed due to either low perfor-
mance or hard-to-use interfaces (see §5). We believe both
of these problems can be surmounted, and that they are
not fundamental features of transactional systems. An-
other challenge in building transactional interfaces is the
high implementation cost. We propose to build ACID
transactions on top of the file-system journal, a novel ap-
proach that will greatly reduce implementation complex-
ity by leveraging well-tested, mature kernel code.

We describe the design of T2FS, a file system which
leverages the failure-atomic file-system journal to pro-
vide ACID transactions to user-space applications (§3).
T2FS uses lazy version management and eager conflict
detection, maintaining in-kernel logs to buffer transac-
tional updates. T2FS will be the first system to pro-
vide transactions across different storage abstractions,
enabling applications such as MediaWiki and Android
Mail to transactionally update state distributed among
different abstractions such as file systems, embedded
databases, and key-value stores (§4).

T2FS will reduce application complexity and increase
performance. Application performance will increase
due to several factors: reduced IO (e.g., metadata is
written only once and editors would not have to make

open(/dir/tmp)
write(/dir/tmp)
fsync(/dir/tmp)
fsync(/dir)
rename(/dir/tmp, /dir/orig)
fsync(/dir/)

(a) Atomic Update via Rename

open(/dir/log)
write(/dir/log)
fsync(/dir/log)
fsync(/dir/)
write(/dir/orig)
fsync(/dir/orig)
unlink(/dir/log)
fsync(/dir/)

(b) Atomic Update via Logging

// Write attachment
open(/dir/attachment)
write(/dir/attachment)
fsync(/dir/attachment)
fsync(/dir/)

// Writing SQLite Database
open(/dir/journal)
write(/dir/journal)
fsync(/dir/journal)
fsync(/dir/)
write(/dir/db)
fsync(/dir/db)
unlink(/dir/journal)
fsync(/dir/)

(c) Atomically adding a email
message with attachments

in Android Mail

Figure 1: Different protocols used by applications to
make consistent updates to persistent data.

copies of edited files to ensure logical updates), batch-
ing of updates in transactions (especially benefiting small
writes [19]), fewer system calls (e.g., fewer calls to
fsync()), and fine-grained conflict detection.

2 How Applications Update State Today

Given that applications do not have access to transactions
across storage abstractions today, how do they consis-
tently update state? Even if the system crashes or power
fails, applications need to maintain invariants across state
in different abstractions (e.g., an image file should match
thumbnail in a picture Gallery). Applications achieve
this by using ad-hoc protocols that are complex and
error-prone.

In this section, we show how complex it is to imple-
ment seemingly simple protocols for consistent updates
to storage. There are many details that often get over-
looked, like the persistence of directory contents. These
protocols are complex, error prone, and inefficient. With
current storage technologies, these protocols must sacri-
fice performance to be correct because there is no effi-
cient way to order storage updates.

Currently, applications use the fsync() system call to
order updates to storage [4]; since fsync() forces dura-
bility of data, the latency of a fsync() call varies from a
few milliseconds to several seconds. As a result, applica-
tions do not call fsync() at all the places in the update
protocol where it is necessary, leading to severe data loss
and corruption bugs [18].

We now describe two common techniques used by ap-
plications to consistently update state on storage. Fig-

ure 1 illustrates these protocols.

Atomic Rename. Protocol (a) shows how a file can be
updated via atomic rename. The application writes new
data to a temporary file, persists it with an fsync() call,
updates the parent directory with another fsync() call,
and then renames the temporary file over the original file,
effectively causing the directory entry of the original file
to point to the temporary file instead. The old contents
of the original file are unlinked and deleted. Finally, to
ensure that the temporary file has been unlinked properly,
the application calls fsync() on the parent directory.

Logging. Protocol (b) shows another popular technique
for atomic updates, logging [8] (either write-ahead-
logging or undo logging). The log file is written with
new contents, and both the log file and the parent direc-
tory (with new pointer to log file) are persisted. The ap-
plication then updates the original file, and persists the
original file (since it already existed, the parent directory
has not changed). Finally, the log is unlinked, and the
parent directory is persisted.

The situation becomes more complex when applica-
tions use more than one storage abstraction. Protocol
(c) illustrates how the Android Mail application adds a
new email with an attachment. The attachment is stored
on the file system, while the email message (along with
metadata) is stored in the database. Since the database
has a pointer to the attachment (i.e., a file name), the at-
tachment must be persisted first. Persisting the attach-
ment requires two fsync() calls (to the file and its con-
taining directory) [1, 18]. SQLite has been configured
to use write-ahead-logging to then atomically update the
database; it follows a protocol similar to Protocol (b).

Thus we see how complex the protocols are, and that
they lead to low performance (e.g., Android Mail uses
six fsync() calls to persist a single email with an at-
tachment). System support for transactions over multiple
storage abstractions is required to maintain high perfor-
mance for these applications for current and emerging
high-performance storage devices.

3 T2FS transactions

T2FS builds upon the atomic update mechanism of the
file system (such as journaling [21]) to provide ACID
transactions to applications. Although most file systems
contain a well-tested, mature mechanism to atomically
update multiple blocks on storage, this mechanism is not
exposed to applications; rather it is used internally to
guarantee the integrity of updates to file-system meta-
data.

We propose building on this mechanism to reduce the
implementation complexity in building a transactional
system. We use the running example of ext4 and its jour-

 ① fs_tx_commit
completes
in-memory
transaction

In-memory
file system
transactions

③Asynchronous
journal write back
(checkpoint)

On-disk
journal

File metadata
and data blocks

②Transaction
written to journal
on sync

TX1

TX2

Figure 2: T2FS relies on ext4’s own journal for atomic
updates. At commit time, the transaction-local opera-
tions are made global, and are recorded into the global in-
memory file system transaction. The following sync()

then forces the writes of the transaction into the journal.
Finally, the asynchronous journal checkpoint updates the
in-place file data and metadata blocks.

naling mechanism, although similar mechanisms such as
copy-on-write [10] in the ZFS file system [29] would
also work. ext4 guarantees that all the updates within
a journal transaction are applied to the file system atom-
ically; T2FS guarantees that an application-level trans-
action is contained within a single journal transaction,
thus ensuring it is atomically applied to the file system.
While the file system by default writes only metadata to
the journal, T2FS also journals data blocks. Journaling
data can significantly degrade performance; to minimize
this, T2FS employs selective data journaling [4], only
journaling data blocks that were already allocated (i.e.,
data blocks that are being updated), and avoiding jour-
naling newly allocated data blocks. This optimization
does not harm crash consistency because ext4’s ordered
mode forces data to be sync-ed before its corresponding
metadata.

API. T2FS provides developers with three system call
interfaces: fs tx begin(), which begins a transac-
tion; fs tx commit(), which ends a transaction and
attempts to commit it, and fs tx abort(), which dis-
cards all file-system updates done as part of the preced-
ing transaction. On commit, all file-system updates in an
application-level transaction are persisted in an atomic
fashion – after a crash, users see none of the transac-
tion updates, or all of them. fs tx commit() returns an
error code indicating whether the transaction was com-
mitted successfully (the commit may fail for various rea-
sons, such as a conflict, the transaction is too big, or the
file system has run out of space); the application can then
choose to retry the transaction.

T2FS provides isolation for its transactions; transac-
tional updates are not visible to other threads until com-
mit. T2FS isolates file-system updates only, the appli-

cation is responsible for synchronizing access to its own
data structures.

A user can surround any sequence of file-system
related system calls with fs tx begin() and
fs tx commit() and the system will execute those
system calls in a single transaction. This interface makes
it possible to bring the power of file-system transactions
selectively to existing applications piecemeal and with
little porting effort. This interface is easy for program-
mers to use and makes it simple to incrementally deploy
file system transactions into existing applications. In
contrast, some high-profile transactional file systems
(namely Window’s TxF [23]) had far more complex,
difficult to use interfaces.

Figure 2 shows how T2FS transactions proceed from
process-local in-memory modifications to durable, in-
place file system updates. The kernel buffers a process’
modifications to files, eventually making them globally
visible when the transaction commits. When the trans-
action is made durable, it is first written to the file sys-
tem journal. The journal contents are eventually, asyn-
chronously written back to the file system (a process
called check pointing the journal). The checkpoint la-
tency does not affect the latency of committing a durable
transaction.

Isolation. While ext4 journaling provides atomic,
durable updates, it does not provide isolation. Thus
the central challenge of T2FS is adding isolation. To
support isolation, T2FS maintains an in-memory log to
track local modifications to the kernel data structures.
T2FS makes local copies of dentries and inodes (the in-
memory data structures for directories and files) for a
user transaction at lookup time. It does copy-on-write for
pages and then inserts them into a transaction-local radix
tree. File-system code that can potentially change global
on-disk state is split into two parts: (1) that only changes
the in-memory status of the data structures, which should
be invoked immediately on the local copies when a sys-
tem call is performed. This enables later operations in-
side the same transaction to read earlier writes; (2) one
that changes the on-disk state, which should not be per-
formed until commit time. T2FS monitors file access
and guarantees that no other concurrent T2FS transac-
tions can read the data from an uncommitted one and
that any transaction is aborted if its data is written.

If fs tx abort() is called on a T2FS transaction, it
simply aborts the recorded local copies of in-memory
data structures, and recovers some potential side ef-
fects on the global data structures (which cannot be
read by other transactions due to conflict detection). If
fs tx commit() is called, T2FS first checks if there is
any confict or if an error happened during the transac-
tion. If so, it aborts the transaction. Otherwise, it starts
the commit protocol. The protocol traverses all recorded

data structures modified inside the local transaction, and
performs two phase locking. It makes the transaction up-
dates durable on the persistent journal (newly allocated
blocks are made durable on the file system), then copies
back the local dentries, inodes and pages to their global
counterparts. We currently rely on application writers
to call a flavor of the sync() system call to explicitly
make transactions durable on disk. This adds flexibility
to users to trade off between durability and performance.
Future work will include a flag to fs tx commit() that
achieves durability synchronously.

Conflict detection. We believe conflicts will be infre-
quent for the applications we target, therefore we keep
conflict detection and resolution simple. Prior work has
shown that multiple threads reading and writing the same
file at the same time is rare [18]. Accordingly, T2FS
uses a lightweight isolation mechanism that provides iso-
lation at the level of repeatable reads [3]. T2FS stores
transaction-local copies of written pages, and tracks
pages that are read by the transaction.

T2FS performs eager conflict detection to provide iso-
lation with respect to non-transactional writes: a non-
transactional write will abort any active transaction that
has read or written the same data. Nested T2FS trans-
actions are flattened into a single transaction. We detect
conflicts for file-system data structures, e.g. dentries, in-
odes and pages. We use fine-grained per-page conflict
resolution to resolve page-level read and write conflicts.
If two threads are modifying only data blocks from the
same file, writes to different data blocks would not cause
any conflict. By avoiding transactions being aborted by
such kind of false conflicts, we expect better parallelism
in applications using T2FS.

Limitations. Our current design has two main limita-
tions. First, the maximum size of a T2FS transaction is
limited by the size of the journal (similar to size limita-
tions of transactional memory systems [12]). Second,
although parallel transactions can proceed with ACID
guarantees, each transaction can only contain operations
from a single process. Transactions spanning multiple
processes are future work.

4 Integrating T2FS with Applications

To demonstrate the power and usefulness of T2FS, we
plan to modify several applications to use T2FS transac-
tions. We describe how we modified SQLite, and how
we plan to modify Cloudstone, MediaWiki, and a couple
of version control systems.

SQLite. We modified SQLite to use T2FS transactions.
Figure 3 illustrates the flow of updates when SQLite uses
T2FS transactions. Data and metadata are first written
safely to the journal, and then checkpointed in-place into

Memory

Storage

Database

Journal Metadata Data

update

① ②
③

④

Transaction

Update query

Figure 3: T2FS guarantees on-disk consistency for trans-
actions by utilizing Ext4’s own journal. The figure illus-
trates the memory and storage updates during a transac-
tion with an update to a database row. Writes to per-
sistent storage are listed as followed. (1) Data jour-
nal for the update; (2) Metadata journal for the update;
(3) Asynchronous write-back for the database data; (4)
Asynchronous write-back for the metadata.

the file system. Note that the metadata is written into
the file system exactly once. With Write-ahead-logging
(WAL) mode in SQLite, there would be 2× the meta-
data updates: once to the log, and once to the actual
database file. When SQLite is run in its safest config-
uration, there are more metadata updates because it must
update the parent directory whenever log files are created
or deleted [28]. Furthermore, SQLite with T2FS neatly
avoids having to clean up log files in the event of a crash:
user-level sees only the database file, not messy in-flight
data.

Preliminary Evaluation. We run SQLite modified to
use T2FS transactions on a 6 core Intel Xeon E5-2620
CPU, with 8 GB DDR3 RAM, 250 GB Samsung SSD
850 and 512 GB Samsung SSD 850. We use Ubuntu
16.04 LTS and Linux kernel 3.18.22.

Our prototype can run limited-size single-threaded
benchmarks. Table 1 reports a sequence of insert or up-
date operations for a single database table grouped into
a transaction. Performance is reported as operations per
second (so larger is better) and compared with different
SQLite journaling modes (where the default is rollback
journaling).

Using T2FS is faster than any existing SQLite journal-
ing scheme for updating, and it is competitive for insert-
ing (with no mode dominating insert performance). The
updating workload is 31% faster than the default. No
journaling is an unsafe mode that would make SQLite
vulnerable to corruption on a crash, but represents the
best possible performance for the workload. Several
choices for SQLite logging mode, including T2FS, re-

Performance (Ops/s) IO (MB) Sync/tx
Journal mode Insert Update Insert Update Insert Update

Rollback
(default)

53899.7 28001 1977 3946 4 10

Truncate 53496.3 (0.99×) 28907 (1.03×) 1976 3944 4 10
WAL 39774.5 (0.74×) 34551.9 (1.23×) 3944 3928 3 3
T2FS 51398.5 (0.95×) 36695.8 (1.31×) 1970 3916 1 1

No journal
(unsafe)

54888.4 (1.02×) 50608 (1.81×) 1966 1956 1 1

Table 1: The table compares operations per second (larger is better) and total amount of IO for SQLite executing
1.5M 1KB operations grouping 10K operations in a transaction using different journaling modes (including T2FS).
The database is prepopulated with 15M rows. All experiments use SQLite’s NORMAL synchronization mode (the
most widely used mode by applications).

sult in similar levels of IO that resemble the no journal
lower bound. Write-ahead logging mode (WAL) does
write more data for the insert workload, which harms
its performance. Note that T2FS does not suffer WAL’s
performance shortfall on insert, and it surpasses its per-
formance on update, making it a better alternative. Al-
though the file system journal shares similarity with a
WAL log, T2FS does not generate redundant IO on insert
because of its selective data journaling. Newly allocated
blocks in a T2FS transaction are not journaled.

T2FS’s improved performance for the update work-
load is due to several factors. T2FS reduces the number
of data syncs from 10 (in Rollback and Truncate mode)
or 3 (in WAL mode) to only 1, which leads to better
batching and re-ordering of writes inside a single trans-
action. It performs half its IO to the journal, which is
written sequentially. The remaining IO is done asyn-
chronously via a periodic file-system checkpoint that
writes the journaled blocks to in-place files. T2FS does
not suffer from the double journaling problem [24].

These preliminary measurements convince us that
T2FS is a promising research direction. We anticipate
higher performance gains for multi-threaded workloads.

PHP and MediaWiki. MediaWiki [2] is an open source
Wiki written in PHP and originally used for Wikipedia.
It stores binary files directly in a file system and metadata
(such as file size and location) in a database. High-level
actions such as uploading an image results in updates to
both the file system and database; these updates must be
done atomically to ensure the consistency of MediaWiki.

We plan to augment the PHP API with transactional
calls (such as tx begin() and tx end()) and use these
calls to transactionally update MediaWiki state. Using
transactions reduces the number of fsync() calls and ef-
ficiently batches IO. Transactions also reduce complexity
of supporting rollback of operations such as file updates,
even in the presence of crashes.

Cloudstone. The Cloudstone WEB 2.0 benchmark sim-

ulates a social event website. Cloudstone models a
LAMP stack, consisting of a web server (nginx), PHP,
and MySQL. Cloudstone uses files (e.g., for storing im-
ages) and a database for storing information about events
and people. Cloudstone provides a performance frame-
work to evaluate T2FS in the context of a realistic web
application. Making consistent updates to events re-
quires transactions that update files and a database.

Version Control Systems. Git and Mercurial are
widely-used version control systems that would benefit
from file-system transactions. To enable high perfor-
mance, git does not order its operations via fsync() [18]
leaving it vulnerable to garbage files and outright data
corruption on a system crash. The git commit com-
mand requires two file system operations to be atomic:
a file append (logs/HEAD) and a file rename (to a lock
file). Failure to achieve atomicity results in data loss and
a corrupted repository [18].

Mercurial uses a combination of different files
(journal, filelog, manifest) to consistently up-
date state. Mercurial’s commit command requires a long
sequence of file-system operations including file cre-
ations, appends, and renames be atomic; if not, the repos-
itory is corrupted [18]. With simple changes, T2FS trans-
actions will allow these programs to provide stronger
failure guarantees more efficiently.

5 Related work

There have been a number of efforts over the years to
provide systems support for file-system transactions. We
now discuss different approaches and their problems.

Building file systems on top of user-space databases.
One way to allow applications to update state in a trans-
actional manner is to build a file system over a user-space
transactional database. OdeFS [6], Inversion [15], and
DBFS [14] use a database (such as Berkeley DB [16]) to

provide ACID transactions to applications. Amino [31]
tracks all user updates via ptrace and employs a user-
level database to provide transactional updates. Such
systems suffer from high performance degradation (e.g.,
5-7× on certain workloads).

In-kernel Transactional File Systems. An approach
that leads to higher performance is adding transactions
to in-kernel file systems. Valor [27] provides kernel sup-
port for file-system transactions. However, Valor relies
on mandatory file locks held at user level and complex
rules for write ordering due to its log being independent
from the file system’s. Its performance on several types
of benchmarks is about 3× slower than ext3. T2FS fea-
tures a simpler system call interface and more in-kernel
work to maintain isolation. Its state management is sim-
pler because it reuses the file system journal. T2FS has
much higher performance.

Microsoft introduced Transactional NTFS (TxF),
Transaction Registry (TxR), and the kernel transaction
manager (KTM) in Windows Vista [23]. Using TxF re-
quires all transactional operations be explicit (i.e., read
does not work within a transaction, the programmer must
add an explicit transactional read). Therefore TxF had
a high barrier to entry and code that used it required
separate maintenance. TxF also had significant limita-
tions, like no transactions on the root file system. In
contrast, T2FS allows the application to wrap unmodi-
fied file-system updates in a transaction. TxF also had
restrictions on use, for example, no transactions for files
on the boot disk. In contrast, in T2FS, the only restric-
tion is that all operations inside a transaction have to be
on the same file system (which is the same limitation as
with hard links).

Transactional Operating Systems. A third, somewhat
heavyweight, approach is modifying the entire operating
system to provide transactions. Locus [30], QuickSil-
ver [9], and TxOS [20] are operating systems that pro-
vide transactions. This approach adds significant com-
plexity to the kernel; a large number of kernel data struc-
tures will have to rewritten to support transactions. T2FS
mostly confines its modifications to the VFS and is de-
signed to be extended to work for file systems other than
ext4. Developing a correct transactional database is ex-
tremely complicated – retrofitting an existing kernel to
do so is even more so.

Transactional Storage Systems. Similar to our work,
CFS [13] provides a lightweight mechanism for atomic
updates of multiple files. CFS builds on top of trans-
actional flash storage. MARS [5] builds on hardware-
provided atomicity to build a transactional system.
TxFLash [22] uses the copy-on-write nature of Flash
SSDs to provide transations at low cost. Isotope [25]
uses the interal multi-versioning in block stores to pro-

vide isolation at the block level. In contrast to these sys-
tems, T2FS provides transactions without assuming any
hardware support (beside device cache flush and atomic
sector updates).

6 Conclusion

In this paper, we take the position that the operating sys-
tem should provide a transactional interface for applica-
tions to efficiently update persistent state across storage
abstractions. We propose a novel way to reduce the im-
plementation complexity of building a transactional sys-
tem, by leveraging the file-system journal. We show that
our system, T2FS, increases performance in SQLite by
up to 32% in insert and update workloads.

Acknowledgments

We would like to thank the anonymous reviewers for
their feedback and guidance. This work was supported
in part by NSF (CNS-1618563, CCF-1333594) and by
generous donations from VMware and Facebook. Any
opinions, findings, and conclusions, or recommendations
expressed herein are those of the authors and do not nec-
essarily reflect the views of other institutions.

References

[1] Fsync man page. http://man7.org/linux/

man-pages/man2/fdatasync.2.html.

[2] MediaWiki.org. https://www.mediawiki.org/
wiki/MediaWiki.

[3] Hal Berenson, Phil Bernstein, Jim Gray, Jim
Melton, Elizabeth O’Neil, and Patrick O’Neil. A
critique of ANSI SQL isolation levels. In ACM
SIGMOD Record, volume 24, pages 1–10. ACM,
1995.

[4] Vijay Chidambaram, Thanumalayan Sankara-
narayana Pillai, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Optimistic Crash Con-
sistency. In Proceedings of the 24th ACM Sympo-
sium on Operating Systems Principles (SOSP ’13),
Farmington, PA, November 2013.

[5] Coburn, Joel and Bunker, Trevor and Schwarz,
Meir and Gupta, Rajesh and Swanson, Steven.
From ARIES to MARS: Transaction Support for
Next-generation, Solid-state Drives. In Proceed-
ings of the Twenty-Fourth ACM Symposium on Op-
erating Systems Principles, SOSP ’13, pages 197–
212, New York, NY, USA, 2013. ACM.

http://man7.org/linux/man-pages/man2/fdatasync.2.html
http://man7.org/linux/man-pages/man2/fdatasync.2.html
https://www.mediawiki.org/wiki/MediaWiki
https://www.mediawiki.org/wiki/MediaWiki

[6] Gehani, Narain H and Jagadish, HV and Roome,
William D. OdeFS: A File System Interface to an
Object-Oriented Database. In VLDB, pages 249–
260. Citeseer, 1994.

[7] Google. LevelDB. https://github.com/

google/leveldb.

[8] Robert Hagmann. Reimplementing the Cedar
file system using logging and group commit, vol-
ume 21. ACM, 1987.

[9] Rober Haskin, Yoni Malachi, and Gregory Chan.
Recovery management in quicksilver. ACM Trans-
actions on Computer Systems (TOCS), 6(1):82–
108, 1988.

[10] Dave Hitz, James Lau, and Michael Malcolm. File
System Design for an NFS File Server Appliance.
In Proceedings of the USENIX Winter Technical
Conference (USENIX Winter ’94), San Francisco,
California, January 1994.

[11] Sooman Jeong, Kisung Lee, Seongjin Lee, Seoung-
bum Son, and Youjip Won. I/O stack optimiza-
tion for smartphones. In Proceedings of the 2013
USENIX Conference on Annual Technical Confer-
ence, USENIX ATC’13, pages 309–320, Berkeley,
CA, USA, 2013. USENIX Association.

[12] Tomas Karnagel, Roman Dementiev, Ravi Rajwar,
Konrad Lai, Thomas Legler, Benjamin Schlegel,
and Wolfgang Lehner. Improving in-memory
database index performance with intel R© transac-
tional synchronization extensions. In High Perfor-
mance Computer Architecture (HPCA), 2014 IEEE
20th International Symposium on, pages 476–487.
IEEE, 2014.

[13] Min, Changwoo and Kang, Woon-Hak and Kim,
Taesoo and Lee, Sang-Won and Eom, Young Ik.
Lightweight Application-Level Crash Consistency
on Transactional Flash Storage. In 2015 USENIX
Annual Technical Conference (USENIX ATC 15),
pages 221–234, 2015.

[14] Nick Murphy, Mark Tonkelowitz, and Mike Vernal.
The design and implementation of the database file
system, 2002.

[15] Michael A Olson. The Design and Implementation
of the Inversion File System. In USENIX Winter,
pages 205–218, 1993.

[16] Michael A Olson, Keith Bostic, and Margo I
Seltzer. Berkeley db. In USENIX Annual Techni-
cal Conference, FREENIX Track, pages 183–191,
1999.

[17] Simon Peter, Jialin Li, Irene Zhang, Dan R. K.
Ports, Doug Woos, Arvind Krishnamurthy, Thomas
Anderson, and Timothy Roscoe. Arrakis: The op-
erating system is the control plane. In Proceedings
of the 11th USENIX Conference on Operating Sys-
tems Design and Implementation, OSDI’14, pages
1–16, Berkeley, CA, USA, 2014. USENIX Associ-
ation.

[18] Thanumalayan Sankaranarayana Pillai, Vijay
Chidambaram, Ramnatthan Alagappan, Samer
Al-Kiswany, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. All File Systems Are
Not Created Equal: On the Complexity of Crafting
Crash-Consistent Applications. In Proceedings of
the 11th Symposium on Operating Systems Design
and Implementation (OSDI ’14), Broomfield, CO,
October 2014.

[19] Donald E. Porter, Owen S. Hofmann, Christopher J.
Rossbach, Alex Benn, and Emmett Witchel. Oper-
ating system transactions. In Proceedings of the
22nd ACM Symposium on Operating Systems Prin-
ciples (SOSP), Big Sky, MT, October 2009.

[20] Donald E Porter, Owen S Hofmann, Christopher J
Rossbach, Alexander Benn, and Emmett Witchel.
Operating System Transactions. In Proceedings of
the ACM SIGOPS 22nd Symposium on Operating
Systems Principles, pages 161–176. ACM, 2009.

[21] Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. Analysis and Evo-
lution of Journaling File Systems. In The Pro-
ceedings of the USENIX Annual Technical Confer-
ence (USENIX ’05), pages 105–120, Anaheim, CA,
April 2005.

[22] Prabhakaran, Vijayan and Rodeheffer, Thomas L
and Zhou, Lidong. Transactional Flash. In OSDI,
pages 147–160, 2008.

[23] Russinovich, Mark E and Solomon, David A and
Allchin, Jim. Microsoft Windows Internals: Mi-
crosoft Windows Server 2003, Windows XP, and
Windows 2000, volume 4. Microsoft Press Red-
mond, 2005.

[24] Kai Shen, Stan Park, and Men Zhu. Journaling of
journal is (almost) free. In Proceedings of the 12th
USENIX Conference on File and Storage Technolo-
gies (FAST 14), pages 287–293, 2014.

[25] Shin, Ji-Yong and Balakrishnan, Mahesh and Mar-
ian, Tudor and Weatherspoon, Hakim. Isotope:
Transactional Isolation for Block Storage. In 14th
USENIX Conference on File and Storage Technolo-
gies (FAST 16), 2016.

https://github.com/google/leveldb
https://github.com/google/leveldb

[26] Riley Spahn, Jonathan Bell, Michael Lee, Sravan
Bhamidipati, Roxana Geambasu, and Gail Kaiser.
Pebbles: Fine-grained data management abstrac-
tions for modern operating systems. In 11th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14), pages 113–129,
2014.

[27] Richard P Spillane, Sachin Gaikwad, Manjunath
Chinni, Erez Zadok, and Charles P Wright. En-
abling transactional file access via lightweight ker-
nel extensions. In FAST, volume 9, pages 29–42,
2009.

[28] SQLite. SQLite transactional SQL database engine.
http://www.sqlite.org/.

[29] Sun Microsystems. ZFS: The last word in file
systems. www.sun.com/2004-0914/feature/,
2006.

[30] Matthew J Weinstein, Thomas W Page Jr, Brian K
Livezey, and Gerald J Popek. Transactions and
synchronization in a distributed operating system.
In ACM SIGOPS Operating Systems Review, vol-
ume 19, pages 115–126. ACM, 1985.

[31] Wright, Charles P and Spillane, Richard and Si-
vathanu, Gopalan and Zadok, Erez. Extending
ACID semantics to the File System. ACM Trans-
actions on Storage (TOS), 3(2):4, 2007.

http://www.sqlite.org/
www.sun.com/2004-0914/feature/

	Introduction
	How Applications Update State Today
	T2FS transactions
	Integrating T2FS with Applications
	Related work
	Conclusion

