
CC-Log: Drastically Reducing
Storage Requirements for Robots

Using Classification and Compression

Santiago Gonzalez, Vijay Chidambaram,

Jivko Sinapov, and Peter Stone

University of Texas at Austin

1

The Problem
• Robots have a growing number of increasingly

sophisticated sensors

• Roboticists want to leverage this data to gain insights
into system behavior

• High sampling rates and limited storage

• Storing everything is infeasible

• Have to let something go

2

Can we build a system to log
only the data we need?

3

Can we build a system to log
only the data we need?

4

+ figure out what data we need?

CC-Log
A modular, event-centric logging

solution for ROS.

• Uses ML to decide whether saving data is required

• Greatly reduced logging storage requirements

• Lossless; fine grained sampling for logged events

• Fits into ROS’s modular architecture

5

Outline

• Background

• The CC-Log system

• Evaluation

• Systems challenges in robotics

• Concluding remarks

6

Outline

• Background

• The CC-Log system

• Evaluation

• Systems challenges in robotics

• Concluding remarks

7

BWIBot

• Building-Wide Intelligence

• Autonomous, mobile
robots

• Roam for hours on a
single charge

• Controlled by a PC
running ROS (Robot
Operating System)

8

Robot Operating System (ROS)

Ubuntu

ROS

Hardware

Node

PC Hokuyo Laser
Scanner

Microsoft
Kinect Motors

Python

Node

Drivers XPC

Topic Topic

Scheduling

9

Robot Operating System (ROS)

Ubuntu

ROS

Hardware

Node

PC Hokuyo Laser
Scanner

Microsoft
Kinect Motors

Python

Node

Drivers XPC

Topic Topic

Scheduling

10

Robot Operating System (ROS)

Ubuntu

ROS

Hardware

Node

PC Hokuyo Laser
Scanner

Microsoft
Kinect Motors

Python

Node

Drivers XPC

Topic Topic

Scheduling

11

Robot Operating System (ROS)

Ubuntu

ROS

Hardware

Node

PC Hokuyo Laser
Scanner

Microsoft
Kinect Motors

Python

Node

Drivers XPC

Topic Topic

Scheduling

12

Nodes, topics, and
messages?

13
* from simulation

What does data look like?
ROS /odom topic

header:
 seq: 5229
 stamp:
 secs: 57
 nsecs: 530000000
 frame_id: odom
child_frame_id: base_footprint
pose:
 pose:
 position:
 x: 14.9999999995
 y: 110.0
 z: 0.0
 orientation:
 x: -3.50379416134e-07
 y: -2.89561146542e-05
 z: 7.86406532897e-09
 w: 0.999999999581
 covariance: [1e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1000000000000.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1000000000000.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1000000000000.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001]
twist:
 twist:
 linear:
 x: -3.55271378053e-12
 y: -6.45947936005e-12
 z: 0.0
 angular:
 x: 0.0
 y: 0.0
 z: 1.08357767203e-10
 covariance: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0]

14

What does data look like?
ROS /odom topic

{"twist": {"twist": {"linear": {"y": -5.167583477804464e-12, "x":
-3.5527137587950676e-12, "z": 0.0}, "angular": {"y": 0.0, "x": 0.0, "z":
1.114260199260157e-10}}, "covariance": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]},
"header": {"secs": 55, "nsecs": 84000000, "seq": 5007}, "pose":

{"pose": {"position": {"y": 109.99999999973956, "x":
14.999999999504467, "z": 0.0}, "orientation": {"y":

-2.8818053449111213e-05, "x": -3.4870814337234784e-07, "z":
7.729987484413655e-09, "w": 0.9999999995846992}}, "covariance":

[1e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1000000000000.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1000000000000.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1000000000000.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.001]}}

15

Position Over Time

16

t = 0s t = 63s

Orientation Over Time

17

t = 0s t = 63s

Linear Twist Over Time

18

t = 0s t = 63s

Angular Twist Over Time

19

t = 0s t = 63s

Outline

• Background

• The CC-Log system

• Evaluation

• Systems challenges in robotics

• Concluding remarks

20

CC-Log
Classification and Compression

• Use a machine learning classifier to determine whether
the system is currently in an anomalous state

• Anomalies trigger logging of a window of data extending
into the past and into the future

• Saved data is compressed to achieve further space
savings

21

Window Sampling

• Log Window provides flexible set of samples to log

• Sliding Window provides fixed set of samples for analysis

Current Sample Future SamplesPast Samples

Log Window

Sliding Window

Time

22

Window Sampling

Current Sample Future SamplesPast Samples

Log Window

Sliding Window

Time

23

• Log Window can grow as samples are deemed
anomalous using history in Sliding Window

• How do we know if a sample is anomalous?

Anomaly Classifier

• Want to determine if a datapoint is an outlier along a set
of dimensions

• 100s to 1,000s of dimensions

• Anomaly detection has been used to great effect in
numerous areas (e.g., structural integrity monitoring)

• CC-Log uses a 1-class RBF-SVM

24

Support Vector Machine (SVM)

• Find a maximally separating hyperplane between two sets
of linearly separable data

25

Support Vector Machine (SVM)

• Find a maximally separating hyperplane between two sets
of linearly separable data

26

Radial Basis Function (RBF) SVM

• The Kernel Trick: Find a separating surface between two
sets of data by embedding into a higher dimensional
implicit feature space

27

1-class RBF-SVM

graphic from Scikit-learn28

CC-Log Operation

1 Full logging
2 Offline learning

3 Intelligent logging

29

Topic
Callback

Record Node

ROS
Nodes
ROS

Nodes
ROS

Nodes

Sliding Window

Anomaly
Detector

Segbot System Storage

Data
Formatter

Contained within ROS

Training
Data

Logged
Windows

Testing Data

Continuous
Log

Build
Feature Vec.

Data
Formatter

Validator

Build
Feature Vec.

Window
Trigger

ROS
Nodes
ROS

Nodes
Actuators

ROS
Nodes
ROS

Nodes
Sensors

30

CC-Log Architecture

Topic
Callback

Record Node

ROS
Nodes
ROS

Nodes
ROS

Nodes

Sliding Window

Anomaly
Detector

Segbot System Storage

Data
Formatter

Contained within ROS

Training
Data

Logged
Windows

Testing Data

Continuous
Log

Build
Feature Vec.

Data
Formatter

Validator

Build
Feature Vec.

Window
Trigger

ROS
Nodes
ROS

Nodes
Actuators

ROS
Nodes
ROS

Nodes
Sensors

31

CC-Log Architecture

Topic
Callback

Record Node

ROS
Nodes
ROS

Nodes
ROS

Nodes

Sliding Window

Anomaly
Detector

Segbot System Storage

Data
Formatter

Contained within ROS

Training
Data

Logged
Windows

Testing Data

Continuous
Log

Build
Feature Vec.

Data
Formatter

Validator

Build
Feature Vec.

Window
Trigger

ROS
Nodes
ROS

Nodes
Actuators

ROS
Nodes
ROS

Nodes
Sensors

32

CC-Log Architecture

1 Full logging

Topic
Callback

Record Node

ROS
Nodes
ROS

Nodes
ROS

Nodes

Sliding Window

Anomaly
Detector

Segbot System Storage

Data
Formatter

Contained within ROS

Training
Data

Logged
Windows

Testing Data

Continuous
Log

Build
Feature Vec.

Data
Formatter

Validator

Build
Feature Vec.

Window
Trigger

ROS
Nodes
ROS

Nodes
Actuators

ROS
Nodes
ROS

Nodes
Sensors

33

Topic
Callback

Record Node

ROS
Nodes
ROS

Nodes
ROS

Nodes

Sliding Window

Anomaly
Detector

Segbot System Storage

Data
Formatter

Contained within ROS

Training
Data

Logged
Windows

Testing Data

Continuous
Log

Build
Feature Vec.

Data
Formatter

Validator

Build
Feature Vec.

Window
Trigger

ROS
Nodes
ROS

Nodes
Actuators

ROS
Nodes
ROS

Nodes
Sensors

2 Offline learning

34

Topic
Callback

Record Node

ROS
Nodes
ROS

Nodes
ROS

Nodes

Sliding Window

Anomaly
Detector

Segbot System Storage

Data
Formatter

Contained within ROS

Training
Data

Logged
Windows

Testing Data

Continuous
Log

Build
Feature Vec.

Data
Formatter

Validator

Build
Feature Vec.

Window
Trigger

ROS
Nodes
ROS

Nodes
Actuators

ROS
Nodes
ROS

Nodes
Sensors

3 Intelligent logging

35

Implementation

• Dependency and setup challenges

• VM used extensively

• Tricky to get system fully integrated into ROS

• Collecting data proved to be arduous

Outline

• Background

• The CC-Log system

• Evaluation

• Systems challenges in robotics

• Concluding remarks

37

Simulation

• Robot is shared resource, need lots of data

• Full featured simulation within ROS, based on Gazebo

• Different notions of nominal behavior, subset of reality

• Can’t simply train in simulation and test on physical robot

• Domain adaptation outside of project scope

38

Simulation

39

In Silico Classifier Accuracy

40

Training: 983 nominal
Testing: 492 nominal, 20 anomalous

In Silico Classifier Accuracy

Training: 983 nominal
Testing: 492 nominal, 20 anomalous

41

In Silico Classifier Accuracy

42

Training: 983 nominal
Testing: 492 nominal, 20 anomalous

Total Events 512

True Positives 20

False Positives 183

False Negatives 0

True Negatives 309

In Silico Classifier Accuracy

43

Training: 983 nominal
Testing: 492 nominal, 20 anomalous

Total Events 512

True Positives 20

False Positives 183

False Negatives 0

True Negatives 309

Compression Schemes

44

Compression Schemes

45

Limitations
• Currently tailored for odometry data

• Adapting to real robot requires lots of clean running data

• Cannot capture aggregate data

• Simple classifier cannot fully capture certain intricacies

• Need more data

• Could be better served by HMM or LSTM based model

46

Future Work

• Collect more data and fine tune the classifier

• Incorporate more types of data into the system

• Course-grained continuous logging

• Integrate compressive sampling, such as RTV

47

Outline

• Background

• The CC-Log system

• Evaluation

• Systems challenges in robotics

• Concluding remarks

48

Scheduling

• Robots require more nuanced scheduling

• Data generated at different speeds

• Different nodes need to process data at different rates

• ROS has very primitive scheduling

Lightweight Processes

• BWIBot has sluggish performance after some time

• Many concurrent ROS nodes

• Each ROS node is a process

• ROS nodes are too heavy for long-running processes

Storage

• CC-Log solves one facet of the storage problem

• Other use cases may require stratified sampling to get
aggregate statistics

• Security and privacy

Continuous Learning

• Want robots to be able to train models “on-the-go”

• Continuous learning poses unique challenges

• Data requirements change over time

• How much data is enough data?

Retrospective

• Tackled a problem in robotics from a systems perspective

• Simple techniques can be very powerful

• Robotics / systems collaborations are great

• Building a working system end-to-end in ROS is
somewhat difficult, collaboration should ameliorate this

53

Q&A

54

Santiago Gonzalez
slgonzalez@utexas.edu

