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The Problem
• Robots have a growing number of increasingly 

sophisticated sensors


• Roboticists want to leverage this data to gain insights 
into system behavior


• High sampling rates and limited storage


• Storing everything is infeasible


• Have to let something go
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Can we build a system to log 
only the data we need?
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Can we build a system to log 
only the data we need?
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+ figure out what data we need?



CC-Log
A modular, event-centric logging 

solution for ROS.

• Uses ML to decide whether saving data is required

• Greatly reduced logging storage requirements

• Lossless; fine grained sampling for logged events

• Fits into ROS’s modular architecture

5



Outline

• Background


• The CC-Log system


• Evaluation


• Systems challenges in robotics


• Concluding remarks
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BWIBot

• Building-Wide Intelligence


• Autonomous, mobile 
robots


• Roam for hours on a 
single charge


• Controlled by a PC 
running ROS (Robot 
Operating System)
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Nodes, topics, and 
messages?
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What does data look like? 
ROS /odom topic

header:  
  seq: 5229 
  stamp:  
    secs: 57 
    nsecs: 530000000 
  frame_id: odom 
child_frame_id: base_footprint 
pose:  
  pose:  
    position:  
      x: 14.9999999995 
      y: 110.0 
      z: 0.0 
    orientation:  
      x: -3.50379416134e-07 
      y: -2.89561146542e-05 
      z: 7.86406532897e-09 
      w: 0.999999999581 
  covariance: [1e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 
1000000000000.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1000000000000.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 
1000000000000.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001] 
twist:  
  twist:  
    linear:  
      x: -3.55271378053e-12 
      y: -6.45947936005e-12 
      z: 0.0 
    angular:  
      x: 0.0 
      y: 0.0 
      z: 1.08357767203e-10 
  covariance: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 
0.0, 0.0, 0.0]
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What does data look like? 
ROS /odom topic

{"twist": {"twist": {"linear": {"y": -5.167583477804464e-12, "x": 
-3.5527137587950676e-12, "z": 0.0}, "angular": {"y": 0.0, "x": 0.0, "z": 
1.114260199260157e-10}}, "covariance": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]}, 
"header": {"secs": 55, "nsecs": 84000000, "seq": 5007}, "pose": 

{"pose": {"position": {"y": 109.99999999973956, "x": 
14.999999999504467, "z": 0.0}, "orientation": {"y": 

-2.8818053449111213e-05, "x": -3.4870814337234784e-07, "z": 
7.729987484413655e-09, "w": 0.9999999995846992}}, "covariance": 

[1e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 
1000000000000.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1000000000000.0, 0.0, 
0.0, 0.0, 0.0, 0.0, 0.0, 1000000000000.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 

0.001]}}
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Position Over Time
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Orientation Over Time
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Linear Twist Over Time
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Angular Twist Over Time
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Outline

• Background


• The CC-Log system


• Evaluation


• Systems challenges in robotics


• Concluding remarks
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CC-Log 
Classification and Compression

• Use a machine learning classifier to determine whether 
the system is currently in an anomalous state


• Anomalies trigger logging of a window of data extending 
into the past and into the future


• Saved data is compressed to achieve further space 
savings
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Window Sampling

• Log Window provides flexible set of samples to log


• Sliding Window provides fixed set of samples for analysis

Current Sample Future SamplesPast Samples

Log Window

Sliding Window

Time
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Window Sampling

Current Sample Future SamplesPast Samples

Log Window

Sliding Window

Time
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• Log Window can grow as samples are deemed 
anomalous using history in Sliding Window


• How do we know if a sample is anomalous?



Anomaly Classifier

• Want to determine if a datapoint is an outlier along a set 
of dimensions


• 100s to 1,000s of dimensions


• Anomaly detection has been used to great effect in 
numerous areas (e.g., structural integrity monitoring)


• CC-Log uses a 1-class RBF-SVM
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Support Vector Machine (SVM)

• Find a maximally separating hyperplane between two sets 
of linearly separable data
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Support Vector Machine (SVM)

• Find a maximally separating hyperplane between two sets 
of linearly separable data
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Radial Basis Function (RBF) SVM

• The Kernel Trick: Find a separating surface between two 
sets of data by embedding into a higher dimensional 
implicit feature space
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1-class RBF-SVM

graphic from Scikit-learn28



CC-Log Operation

1 Full logging
2 Offline learning

3 Intelligent logging
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CC-Log Architecture
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CC-Log Architecture
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CC-Log Architecture



1 Full logging
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Implementation

• Dependency and setup challenges


• VM used extensively


• Tricky to get system fully integrated into ROS


• Collecting data proved to be arduous



Outline

• Background


• The CC-Log system


• Evaluation
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Simulation

• Robot is shared resource, need lots of data


• Full featured simulation within ROS, based on Gazebo


• Different notions of nominal behavior, subset of reality


• Can’t simply train in simulation and test on physical robot


• Domain adaptation outside of project scope
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Simulation
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In Silico Classifier Accuracy

40

Training: 983 nominal 
Testing: 492 nominal, 20 anomalous
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In Silico Classifier Accuracy
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Training: 983 nominal 
Testing: 492 nominal, 20 anomalous

Total Events 512

True Positives 20

False Positives 183

False Negatives 0

True Negatives 309



In Silico Classifier Accuracy
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Training: 983 nominal 
Testing: 492 nominal, 20 anomalous

Total Events 512

True Positives 20

False Positives 183

False Negatives 0

True Negatives 309



Compression Schemes
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Compression Schemes
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Limitations
• Currently tailored for odometry data


• Adapting to real robot requires lots of clean running data


• Cannot capture aggregate data


• Simple classifier cannot fully capture certain intricacies


• Need more data


• Could be better served by HMM or LSTM based model
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Future Work

• Collect more data and fine tune the classifier


• Incorporate more types of data into the system


• Course-grained continuous logging


• Integrate compressive sampling, such as RTV
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Scheduling

• Robots require more nuanced scheduling


• Data generated at different speeds


• Different nodes need to process data at different rates


• ROS has very primitive scheduling



Lightweight Processes

• BWIBot has sluggish performance after some time


• Many concurrent ROS nodes


• Each ROS node is a process


• ROS nodes are too heavy for long-running processes



Storage

• CC-Log solves one facet of the storage problem


• Other use cases may require stratified sampling to get 
aggregate statistics


• Security and privacy



Continuous Learning

• Want robots to be able to train models “on-the-go”


• Continuous learning poses unique challenges


• Data requirements change over time


• How much data is enough data?



Retrospective

• Tackled a problem in robotics from a systems perspective


• Simple techniques can be very powerful


• Robotics / systems collaborations are great


• Building a working system end-to-end in ROS is 
somewhat difficult, collaboration should ameliorate this
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Q&A
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