mLSM: Making Authenticated
Storage Faster in Ethereum

Pandian Raju?, Soujanya Ponnapallil, Evan Kaminsky?!, Gilad Oved!, Zachary Keener!
Vijay Chidambaram??, Ittai Abraham?

The University of Texas at Austin;
2\VMware Research

¥ TEXAS vmware



Ethereum

* Distributed software platform
* Cryptocurrency applications

* Key-value store
* Accounts : Balances
* Trustless Decentralized setting




Ethereum — Distributed Decentralized System




Need for Authenticated Storage

Balance : $O
<

Balance : $0 ‘ I Balance (A) ?

-

2

User A, Balance: SO

User B, Balance: S5000

User C, Balance: SO

~

/

-~

\_

User A, Balance: $500

User B, Balance: S5000

User C, Balance: S500000

: kIll/



Authenticated Storage

 Users can verify the value returned by a node
* Each read is returned with the value and a proof

-~

User A, Balance: $500

Balance (A) ?

>

« User B, Balance: S5000

[ $500, PROOF ]

User C, Balance: S500000

kIll/

\_




Authentication Techniques in Ethereum

* Ethereum authenticated storage suffer from high |10 Amplification
* 64x in the worst case

* |10 Amplification
e Ratio of the amount of 10 to the amount of user data

User data : 10 GB
User data : 10 GB -
& Total write 10 : 500 GB

Write Amplification : 50




Why is IO Amplification bad?

* Reduces the write throughput

* Directly impact the life of Flash devices
* Flash devices wear out after limited write cycles

(Intel SSD DC P4600 can last ~5 years assuming ~5 TB write per day)

For the same SSD life expectancy, with 65x 10 Amplification, instead of
5TB of data we can now only write ~75 GB of user data per day



How to designh an authenticated storage system
that minimizes |0 amplification?

Merkelized LSM

* Maintains multiple mutually independent binary merkle trees
* Decouples lookup from authentication

* Minimizes IO Amplification



Outline

e Authentication in Ethereum
* Why caching doesn’t work?
 Merkelized LSM



Authenticated Storage in
Ethereum



Merkle Trees — Fundamental building blocks

Root hash is publicly
available to all clients

With a constant sized root hash,
we can authenticate all the
key-value pairs

11



Authentication using Merkle Trees

* Client queries for value of key

z

* Server replies with the value

12



Authentication using Merkle Trees

* Client queries for value of key

:

* Server replies with the value
* Along with a Merkle Proof

13



Authentication using Merkle Trees

* Client queries for value of key

z

* Server replies with the value / \
* Along with a Merkle Proof

14



Authentication using Merkle Trees

* Client verifies the value by

calculating the root hash from
the value and Merkle proof / \

15



Authentication using Merkle Trees

* Client verifies the value by
calculating the root hash from

the value and Merkle proof / \

16



Authentication using Merkle Trees

* Client verifies the value by
calculating the root hash from
the value and Merkle proof




Authentication using Merkle Trees

* Client queries for value of key

z

* Server replies with value and a / \
Merkle Proof

18



Authentication using Merkle Trees

* Client queries for value of key

z

* Server replies with value and a / \
Merkle Proof

19



Authentication using Merkle Trees

* Client verifies the value by

calculating the root hash from
the value and Merkle proof /

Response : [

—/

20



Authentication using Merkle Trees

* Client verifies the value by
calculating the root hash from
the value and Merkle proof

Response : [

21



Authentication using Merkle Trees

 Server can no longer lie about

the data
7\

22



Authentication using Merkle Trees

e Server can no longer lie about

the value
7\

23



Authentication using Merkle Trees

* Client verifies the value by
calculating the root hash from
the value and Merkle proof




Authentication using Merkle Trees

* Client queries for value of key

z

* Server replies with value and a / \
Merkle Proof

25



Authentication using Merkle Trees

* Client queries for value of key

z

* Server replies with value and a / \
Merkle Proof

26



Authentication using Merkle Trees

* Client verifies the value by

calculating the root hash from
the value and Merkle proof /

Response : [

—/

27



Authentication using Merkle Trees

* Server cannot lie about the
value

e (0 SEED ?)

28



Merkle Patricia Trie

e Similar to Merkle trees

* Lookup based on the key structure Root Hash
Branching: 0 - f

* Considering 4 bit hex key-value pairs:
* 0x20-V1
e Ox2f—-V2
* Ox51-V3
* Ox5e —-V4

29



Authenticated Storage in Ethereum

* Trie is flattened and stored as key

value pairs oot Hach

* For every leaf node V, we store = ---—F-===KN----- Branching: 0 - f
[Hash(V) -> V]

* For every parent node P, we have an
[Hash(P) ->[ ... ]].

30



Authenticated Storage in Ethereum

KEY VALUE

Root Hash

- mf e =8 = = = = = Branching:0-f

31



Authenticated Storage in Ethereum

Root Hash

- mf e =8 = = = = = Branching:0-f

32



Authenticated Storage in Ethereum

Hash (V1) Vi1

Hash (V2) V2 Root Hash
Hash (V3) V2 ———=—=pf——===NX====— Branching:0-f
Hash (V4)

33



Authenticated Storage in Ethereum

KEY
Hash (V1)

Hash (V2)
Hash (V3)
Hash (V4)

Hash (P1)

Hash (P2)

VALUE

V1

V2

V3

V4

Hash (V1),

Hash (V2)

Hash (V3),
Hash (V4)

Root Hash

_____ Branching: 0 - f

34



Read Amplification in Ethereum

Get (0x2f)

KEY VALUE

Hash (V1) Vi

Hash (V2) V2 Root Hash

Hash (V3) i i e e e e e Branching: 0 - f
Hash (V4) V4

Hash (P1) Hash (V1), Hash (V2)

Hash (P2) Hash (V3), Hash (V4)

Hash (RH) Hash (P1), Hash (P2)

35



Read Amplification in Ethereum

Get (0x2f)

Get (Hash(RH))
‘
V1

Hash (V1)

Hash (V2) V2 Root Hash

Hash (V3) V3 e e Branching: 0 - f

2 5
Hash (V4) V4
Hash (P1) Hash (V1), Hash (V2)
Hash (P2) Hash (V3), Hash (V4)
Mt HenPuHehPE o : .

36




Read Amplification in Ethereum

Get (0x2f)

Get (Hash(P1))
‘
V1

Hash (V1)

Hash (V2) V2 Root Hash
Branching: 0 - f

Hash (V3) v3i . EEEE T E T TR T
Hash (V4) V4
Hash (P2) Hash (V3), Hash (V4)

37



Read Amplification in Ethereum

Get (0x2f)

Get (Hash(V2))
ER T S

Hash (V1)

Hash (V3) v3i . EEEE T E T TR T

Hash (V4)

Hash (P2) Hash (V3), Hash (V4)

38



Write Amplification in Ethereum

Update (0x2f, 5)

Update (Hash(V5), V5)
Hash (V1) Vi
Hash (V3) e ey e Branching: 0 - f
Hash (V4) V4
Hash (P1) Hash (V1), Hash (V2)
Hash (P2) Hash (V3), Hash (V4)
Hash (RH) Hash (P1), Hash (P2)

39



Write Amplification in Ethereum

Put (0x2f, 5)

Update (Hash (P1’))
KEY VALUE
Hash (V1) Vi
———— . i : _f
Hash (V3) V3 Branching: 0

Hash (V4)
Hash (P2) Hash (V3), Hash (V4)

0 f 1 e
Hash (RH) Hash (P1), Hash (P2)

40



Write Amplification in Ethereum

Put (0x2f, 5)

Update (RH’)
KEY VALUE
Hash (V1) Vi
Hash (V3) V3 —_ e e e e = N - ——— Branching: 0 - f

Hash (V4)
Hash (P2) Hash (V3), Hash (V4)
Heh(H) | HehGT) R o : .

41



Experimental Setup

Private Ethereum network
Importing first 1.6 M blocks of the real-world public block chain
geth - Ethereum go client

Machine
* 16 GB of RAM
e 2TB Intel 750 series SSD

42



IO Amplification in Ethereum

e State Trie — 7X 10 Amplification

 getBalance (addr)
* Returns the amount of ether balance present in the account addr
* 0.22M account addresses
* 1.4M LevelDB gets

43



IO Amplification in Ethereum

e State Trie — 7X 10 Amplification

* Worst case — 64X 10 Amplification
* Key : 256 bits
* Every node : 4 bits
e Depth of Trie : 64 in the worst case

* Ignoring the 10 Amplification introduced by underlying kv store

e Considers the first 1.6M blocks of the block chain
e Current size of blockchain : 5.9M blocks

44



Caching - Why doesn’t it work?



Caching key with value, proof

* Going back to our example

* For a 4 bit hex string key-value pairs Root Hash
e OX20-12  mEmm=feem==R--" Branching: 0 - f
e Ox2f-2
* 0x51-3
* Ox5e—-4

46



Caching key with value, proof

* For every key, we cache the value and
the Merkle Proof

Root Hash

o Qo ot R S

47



Caching key with value, proof

* For every key, we cache the value and
the Merkle Proof

o e ot R S -

Ox2f 2 [1, P2, Root Hash]

"_-('5 ot

48

Root Hash



Caching key with value, proof

* For every key, we cache the value and
the IVIerkIe Proof

Root Hash

Key |Vvalue |Proof . R Branching: 0 - f

Ox2f 2 [1 P2, Root Hash]

0X20 1 - d h

49




Caching key with value, proof

* For every key, we cache the value and
the Merkle Proof

Ox2f 2 [1, P2, Root Hash]
0x20 1 [2, P2, Root Hash]
0x51 3 [4, P1, Root Hash]

Root Hash

50



A single update invalidates the whole cache

Root Hash
o e o S
Ox2f 2 [1, P2, Root Hash]
0x20 1 [2, P2, Root Hash]
0x51 3 [4, P1, Root Hash]
0x5e 4 [3, P1, Root Hash]

Reads can be served from the cache

51



A single update invalidates the whole cache

Root Hash’
o e [ror I S
Ox2f 2 [1, P2, Root Hash]
0x20 1 [2, P2, Root Hash]
0x51 3 [4, P1, Root Hash]
0x5e 4 [3, P1, Root Hash]

52



A single update invalidates the whole cache

Root Hash
o e o S
ox2f 5 [1, P2, Root Hash]
0x20 1 [2, P2, Root Hash]
0x51 3 [4, P1, Root Hash]

0x5e 4 [3, P1, Root Hash]

53



A single update invalidates the whole cache

Key

0ox2f
0x20
0x51

Ox5e

Root Hash

e L S

[1, P2, Root Hash]
[2, P2, Root Hash]
[4, P1’, Root Hash]

[3, P1’, Root Hash]

54



A single update invalidates the whole cache

Key

0ox2f
0x20
0x51

Ox5e

Root Hash’

e L S

[1, P2, Root Hash’]
[2, P2, Root Hash’]
[4, P1’, Root Hash’]

[3, P1’, Root Hash’]

55



A single update invalidates the whole cache

Root Hash’

—— e e =8 = = = = = Branching:0-f

Works only for read-only workloads

56



Merkelized LSM



Why caching didn’t work?

* Tight coupling between any two nodes in the tree
* All nodes form a single tree under the same root node

* Tight coupling between Lookup and Authentication
* Lookup for a value is done traversing the authenticated data structure

58



Insights behind mLSM

Maintaining Multiple Independent structures
Decoupling Lookup from Authentication



Maintaining multiple
independent structures



Merkelized LSM : Design

In-memory and On-disk layers

61



Merkelized Log Structured Merge Tree (mLSM)

In-Memory
Memory

Storage

In memory data is periodically written as binary Merkle trees to storage

62



Merkelized LSM : Design

* Binary Merkle Trees
* Reduce the size of the Merkle Proof
e Balance data better than Tries

63



Merkelized Log Structured Merge Tree (mLSM)

Level 0

Level 1

Merkle Trees on storage are logically arranged in different levels

64



Merkelized Log Structured Merge Tree (mLSM)

In-Memory
Memory

Storage

—D Compaction

Compaction is performed once #Trees in a level reaches a threshold

Level n

65



Merkelized Log Structured Merge Tree (mLSM)

Level 0

Level 1

Level n

Compaction is performed once #Trees in a level reaches a threshold

66



Writes in Merkelized LSM

Level 1

Level n

Write (Key, Value)

Writes are handled in-memory

67



Writes in Merkelized LSM

Level 0

Level 1

Level n

Write (Key, Value)
l|||‘|i%%‘HH|IIII\

Writes are batched and written onto storage

68



Writes in Merkelized LSM

Write (Key, Value)
In-Memory
Memory

- Storage
Level 0 -

levell @ 2 s s s cccsccscscscscscscscsscsssssss-m--—-—-—-—-

Leveln

Numbers of files on reaching the threshold at the level o



Writes in Merkelized LSM

In-Memory
Memory

Storage
Level 0
Level 1 Compaction
[
Level n

Compaction is performed from lower levels to higher levels

70



Authentication in mLSM

71



Authentication in mLSM

s

Storage
Level O .

Levell = = 8 e e e e mm m e e e e e e e - — - - - ——— - -

Every binary merkle tree on level has a local root
72



Authentication in mLSM |

M
emory

Storage
Level O

Level 1

Level n

Global Master Root dynamically computes global Merkle Tree .



Authentication in mLSM

Merkle Proof includes the local and the global Merkle proofs

74



Decoupling lookup from
Authentication



LevelDB Cache .

LevelDB cache

Key, Value,
Level Proof Level 0

Level 1

Level n

LevelDB cache to store ( Key, Level : Value, Merkle Proof ) 5



Reads in mLSM Get (ke

In-Memory
Memory

LevelDB cache

Key, Storage
Level Level 0

Level 1

77




Reads in mLSM Get (ke

In-Memory
Memory
LevelDB cache
Key, Storage

Level 1 e e e -

In-memory structure is searched for the value e




Reads in mLSM Get (ke

In-Memory
Memory
LevelDB cache
Key, Storage

Level 1 e e e -

mLSM is traversed level by level in-order 79




Reads in mLSM Get (ke

In-Memory
Memory
LevelDB cache
Key, Storage

Level 1 e e e -

First occurrence of the key value pair is returned w0




Reads in mLSM Get (ke

In-Memory
Memory
LevelDB cache

Key, Storage
Level Level 0

Level 1

<Key, level : value, local Merkle proof> are cached o




Reads in mLSM * _ /‘

Key, Value,
Level Proof

Level 1

Level n

NOTE: Global Proof is not cached

82



Reads in mLSM

Get (key) r
n-Memory

Memory

LevelDB cache

Key, Storage
Level Level 0

Level 1

Subsequent reads are served from the cache

83



Reads in mLSM

In-Memory

LevelDB cache

Key,

Level

Compaction

Level n

LevelDB cache can be populated once a new binary Merkle tree is created
84



Revisiting writes

Put (Key, value)

—

In-Memory M
emory

Storage
Level O

Level 1
()
O e e e e

Writes affect values in a single local tree and the global root



Would writes invalidate the whole cache?

* Global proofs are not cached

* Writes don’t invalidate any existing entries

* Keys at the same level are over-written when the binary tree is created
* Cache will not be invalidated on every write

86



Merkelized LSM : Reviewing the design

* Writes
e Buffered in memory
e Then written to storage
* No in place updates
* A write affects one tree and the master root

* Reads
* Served from the cache
* Or by traversing levels from lowest and till the first occurrence of key is found
* Returns value and proof : <local proof, global proof>

87



Merkelized LSM advantages

* Writes are handled in memory : O(1) complexity

* Reads :
e Served from cache : O(levels in LevelDB cache)
* Traversing the mLSM : O(height of mLSM * height of a binary Merkle tree)

Complexity Served by

Cache Hit O(Levels in Cache) LevelDB cache

Cache Miss O(Height of mLSM x Traversing mLSM
Height of the binary tree)

88



Merkelized LSM challenges

* Handling read amplification
* Overhead of LSM structure is significant for applications with little data
* LevelDB cache misses would result in read amplification

* Deterministic Compaction
» Replicas : Multiple nodes storing data

89



Deterministic Compaction

<
e

Memory
Storage
Level 0
Level 1
Compaction
[}
Level n

Compaction changes the local roots "



Deterministic Compaction

<
e

In-Memory
Memory

Storage

Level 0

Level 1

Compaction

Level n

Compaction changes the local roots and the global root



MmLSM : Authenticated Data Structure

* Minimizes IO Amplification
* Maintains multiple mutually independent binary Merkle trees

* Decouples lookup from authentication

92



