Analyzing the Impact of GDPR on Storage Systems

Aashaka Shah, Vinay Banakar, Supreeth Shastri Melissa Wasserman and Vijay Chidambaram

The University of Texas School of Law The University of Texas at Austin **Hewlett Packard** Enterprise

General Data Protection Regulation (GDPR)

May 25, 2018

Adopted after 2 years of public debate. All but 2 EU countries have legislated.

Personal data

Any information relating to a natural person; Broad in scope unlike FERPA, HIPAA

Collection, processing, protection, transfer and deletion; Regulated via 99 articles

Fundamental right

Grants all European people a right to protection and privacy of personal data

Max penalty of 4% of global revenue or €20 million, whichever is greater

2

GDPR in the Wild

estimated compliance

By the end of 2018 [Gartner 2018]

complaints from people

In the first 9 months of GDPR rollout

Investigate how GDPR-compliance impacts Storage Systems

What effort is needed to make a **modern storage** system, GDPR-compliant?

Analyzing GDPR: Two Key Observations

31 of the **99** GDPR articles directly pertain to data storage

1 2 3	4 5	6 7	8 9	10 11	12	13 14	15
16 17 18	19 20	21 22	23 24	25 26	27	28 29	30
31 32 33	34 35	36 37	38 39	40 41	42	43 44	45
46 47 48	49 50	51 52	53 54	55 56	57	58 59	60
61 62 63	64 65	66 67	68 69	70 71	72	73 74	75
76 77 78	79 80	81 82	83 84	85 86	87	88 89	90
91 92 93	94 95	96 97	98 99				

GDPR's goal of data protection by design and by default

conflicts with the traditional system design goals of **performance, cost, and reliability**.

Key GDPR Articles concerning Storage Systems

Rights of data subjects

[15] Right of access
[17] Right to be forgotten
[20] Right to data portability
[21] Right to object

Responsibilities of Data Controllers

- [5] Purpose / Storage limitations
- [13] Conditions for data collection
- [25] Protection by design & by default
- [30] Records of processing activities
- [33] Notification of data breaches

Translating GDPR Articles into Storage Features

	GDPR article	Key requirement	Storage feature
15	Right of access by users	Allow customers to access all their data	Metadata indexing
17	Right to be forgotten	Find and delete groups of data	Timely deletion
21	Right to object	Avoid using data for any objected reasons	Metadata indexing
25	Protection by design and by default	Safeguard and restrict access to data	Access control, Encryption
30	Records of processing activity	Store audit logs of all operations on data	Logging
33	Notify data breaches	Share insights and logs from affected systems	Monitoring
46	Transfers subject to safeguards	Control where the data resides	Managing location

Features of GDPR-Compliant Storage

Timely **deletion**

Associate TTL to all personal data; it can be static value or a policy criterion

Metadata indexing

Provide quick and efficient access to groups of data

Manage data Location

Ability to find and control the location of personal data at all times

Access control

Limit access to permitted entities, for established purposes, and for predefined duration of time

Encrypt data at rest, and while in transit

Monitoring & Logging

Save the audit trail of all internal actions and external interactions

GDPR-Compliance is a Spectrum

Response Time

Real-time

Complete GDPR tasks synchronously in real-time

Capability

Full Support all GDPR features natively

Eventual

Complete GDPR tasks asynchronously

Partial

Support for some GDPR features is lacking or coarse-grained

10

GDPR-Compliant Redis benchmark with **YCSB**

Despite needing to implement a **small set** of new features for **GDPR**-compliance, storage systems would experience **significant** performance impact.

11

Redis' support for GDPR features

FULL

Monitoring & Logging Timely deletion Encryption Manage data Location Access control Metadata indexing

PARTIAL NO

GDPR-Compliant Redis: Monitoring & Logging

Three built-in options

MONITOR debug command

Configure slowlog option

Piggyback on AoF

modified AoF code to include read/scan operations

Even fully supported features can cause significant performance overheads

Throughput (op/sec)

GDPR-Compliant Redis: Timely Deletion

Three options to delete

- **DEL** and **UNLINK**
- FLUSH { DB | ALL }

EXPIRE and EXPIREAT

Redis erases expired keys using a lazy randomized algorithm

We changed it to a static scheme (== sub-second latency for up to 1M keys)

GDPR-Compliant Redis: Encryption

No native support

- Encryption at rest w
- Encryption in transit w/ STunnel

Investigated key-level encryption using Themis (== similar performance overhead)

Retrofitting new features **not aligned** with the **core design principles** of the system will result in excessive performance **overheads**

Concluding Remarks

"In law, nothing is certain but the expense." — Samuel Butler

GDPR-compliant Redis

Performance impact of GDPR on a modern storage system

Efficient Logging; Efficient Deletion; Efficient Metadata indexing

We want to hear from you!

Research challenges

Beyond GDPR

California's CCPA is going into effect 1/1/2020

https://utsaslab.github.io/research/gdpr/

