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hitz
The study of reasoning about a
tions is an important subarea of the theoryof 
ommonsense reasoning. It is 
on
erned with developing appropriate systems oflogi
 for des
ribing a
tions and their e�e
ts on the world. In spite of the fa
t that thisreasoning is based on 
ommon sense and does not involve any spe
ialized knowledge,attempts to formalize it using 
lassi
al logi
 en
ountered serious diÆ
ulties, whi
hhave led to the emergen
e of a new �eld, nonmonotoni
 logi
s.In parti
ular, M
Cain and Turner introdu
ed the 
ausal logi
 in whi
h thenotions of \being 
aused" and \being true" are distinguished. Based on their logi
,Giun
higlia and Lifs
hitz proposed a high level a
tion language C, whi
h is a formalmodel of parts of natural language that are used for des
ribing properties of a
tions.The 
ausal logi
 and C, along with the 
on
ept of satis�ability planning, provided uswith a widely appli
able and eÆ
ient method of automated reasoning about a
tions,whi
h led to the 
reation of the Causal Cal
ulator (CCal
).vii



In this dissertation, we have identi�ed several essential limitations of theM
Cain{Turner 
ausal logi
 and a
tion language C. To over
ome these limitations,we de�ned an extension of the 
ausal logi
 to multi-valued formulas and a newa
tion language C+. Language C+ 
an represent non-propositional 
uents, de�ned
uents, additive 
uents, rigid 
onstants, and defeasible 
ausal laws. Se
ond, wehave redesigned and reimplemented CCal
 to a

ount for these extensions, andtested the new CCal
 and the underlying theory by applying them to several new,more diÆ
ult examples of 
ommonsense reasoning. The input language of the newCCal
 is more elaboration tolerant than the old version. Last, we have shown howto turn 
ausal logi
 into propositional logi
 based on the idea of \loop formulas"that originated from logi
 programming under the answer set semanti
s.
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Chapter 1
Introdu
tion

For a long time humans have been extending their abilities via their own inventions.Me
hani
al devi
es have been developed to ful�ll part of the dream. Ever sin
e
omputers were �rst built, the dream has geared its way to more intelligent tasks.On
e a task was well studied to automate, the use of 
omputers be
ame essential.As we learn how to build systems for doing su
h tasks, 
omputers seemto be
ome more \intelligent." However, there are many human abilities that still
annot be automated using the knowledge that we have: how 
an we build a systemthat 
an understand and speak a natural language as well as a human (The NaturalLanguage Problem), how 
an we build a system that 
an see as well as a human(The Vision Problem), to list a few.The ability to reason is also one of them. The intelle
tual me
hanisms in-volved in reasoning are not well understood, even1 in the 
ases when reasoningis based on 
ommon sense and does not involve any spe
ialized knowledge. In-deed, everyday life is full of 
ommonsense problems, but a human has no diÆ-1Or one might say, espe
ially. 1




ulty solving them. However, we have little idea how a human's reasoning me
h-anism works, let alone how to automate it. Even a simple-minded person 
aneasily devise a 
ommonsense problem that would be a 
onsiderable 
hallenge toresear
hers in this area. For instan
es of 
ommonsense problems that have parti
-ularly interested resear
hers, one may 
onsult the Common Sense Problem Page(http://www-formal.stanford.edu/leora/
s). A monograph by Davis [1990℄
ontains a survey of various topi
s in this area.For instan
e, the following are a few instan
es of problems we want to solveautomati
ally:� Monkey and Bananas There is a monkey in a room that 
ontains a boxand a bun
h of bananas hanging from the 
eiling. The bananas are beyondhis rea
h, but if he 
limbs onto the box, he would be able to grasp it. How
an a monkey grasp the bananas?� Missionaries and Cannibals Three missionaries and three 
annibals 
ometo a river and �nd a boat that holds two. If the 
annibals ever outnumber themissionaries on either bank, the missionaries will be eaten. How shall they
ross?� Getting to the Airport I am seated at my desk at home and my 
ar is athome also. How 
an I get to the airport [M
Carthy, 1959℄? 2Many AI resear
hers have been trying to endow 
omputers with intelligen
ethrough formal logi
. However, their �rst attempts were not su

essful be
ausetheories based on 
lassi
al logi
 were not adequate for solving 
ommonsense prob-2This is the oldest planning problem in the AI literature.2



lems. It was a new 
hallenge that logi
ians had been ignorant of, but one that AIresear
hers had to 
onfront to ful�ll their dream.One of the most fundamental diÆ
ulties was that all systems of logi
s knownat the time were monotoni
: if a 
on
lusion is derivable from a set of axioms, then itis still derivable even after adding more axioms. We may use the same old derivationwhi
h does not in
lude additional axioms. Monotoni
ity is natural in usual mathe-mati
s. However, it is not desirable in formalizing 
ommonsense reasoning, where a
on
lusion may no longer be derivable when we add new assumptions. For instan
e,a 
on
lusion that is based on assumptions su
h as \normally, the 
ar is drivable"may be retra
ted later under 
ertain ex
eptional 
ir
umstan
es su
h as \there is nogas in the 
ar," and then we may get a totally di�erent 
on
lusion. This may on
eagain be retra
ted if we are told that \the 
ar is run by ele
tri
ity, and it has enoughof it." Still the new 
on
lusion 
an be retra
ted on
e again if we are told that \it isa toy 
ar." It appears that one 
an 
ontinue to build an arbitrarily long sequen
eof ex
eptions to any 
ommonsense 
on
lusion.Despite this fa
t, humans have no diÆ
ulty drawing a 
on
lusion. In asense, humans' reasoning may involve jumping to a 
on
lusion. For instan
e, whenwe hear that there is a 
ar in the garage, we jump to a 
on
lusion that the 
ar 
anbe used to drive. Su
h a 
on
lusion 
an be retra
ted in the presen
e of additionalinformation that defeats the assumptions on whi
h the 
on
lusion was based. Logi
sthat have this property are 
alled nonmonotoni
 logi
s and they were proposed byAI resear
hers in the early 1980's. The formalism we propose in this dissertation isalso nonmonotoni
.Although signi�
ant progress has been made in the last de
ade, the theory3



of 
ommonsense reasoning is still far from being 
omplete. In this dissertation, wefo
us on the subarea 
alled reasoning about a
tions, in whi
h we are 
on
erned withthe formalization and automation of reasoning about the e�e
ts of a
tions. By ana
tion we mean anything that 
an be exe
uted, and then may a�e
t the state ofthe world. In fa
t, one 
an see that all three examples above involve a
tions. Thesea
tions are� walking, pushing the box, 
limbing onto the box, and grasping the bananas� 
rossing the river� walking and drivingrespe
tively. Walking 
hanges the lo
ation of the monkey; 
limbing onto the box
hanges the status of being on the box; 
rossing the river a�e
ts the number ofpeople on ea
h bank, et
.The automation of 
ommonsense reasoning about a
tions is the subje
t ofthis dissertation. Our work is based on a few su

esses in the last de
ade. In par-ti
ular, M
Cain and Turner introdu
ed a nonmonotoni
 
ausal logi
 [M
Cain andTurner, 1997℄, in whi
h the notions of \being 
aused" and \being true" are distin-guished. Based on it, Giun
higlia and Lifs
hitz proposed a high level a
tion languageC, whi
h is a formal model of parts of natural language that are used for des
ribingproperties of a
tions. The 
ausal logi
 and C, along with the 
on
ept of satis�abilityplanning, provided a widely appli
able and eÆ
ient method of automated reasoningabout a
tions, whi
h led to the 
reation of the Causal Cal
ulator (CCal
).In this dissertation, we have identi�ed several essential limitations of theM
Cain{Turner 
ausal logi
 and a
tion language C. To over
ome these limitations,4



we de�ned an extension of the 
ausal logi
 to multi-valued formulas and a newa
tion language C+. Language C+ 
an represent non-propositional 
uents, de�ned
uents, additive 
uents, rigid 
onstants, and defeasible 
ausal laws. Se
ond, wehave redesigned and reimplemented CCal
 to a

ount for these extensions, andtested the new CCal
 and the underlying theory by applying them to several new,more diÆ
ult examples of 
ommonsense reasoning. Last, we have shown how toturn 
ausal logi
 into propositional logi
 based on the idea of \loop formulas" thatoriginated from logi
 programming under the answer set semanti
s.After reviewing earlier work on the formalization and automation of reason-ing about a
tions in Chapters 2{4, we dis
uss the need to extend the M
Cain{Turner
ausal logi
, language C and an early version of CCal
 in Chapter 5. In Chapter 6we present an extension of the M
Cain{Turner 
ausal logi
 
alled multi-valued 
ausallogi
, a new a
tion language C+, and the new version of CCal
 that over
ome thelimitations, and relate C+ to the language ADL from [Pednault, 1994℄. In Chapter 7we test expressive possibilities of C+ and CCal
 by formalizing an a
tion domainof nontrivial size. We identify a 
lass of 
uents that we 
all additive and show howC+ 
an be used to talk about the e�e
ts of a
tions on su
h 
uents in Chapter 8. InChapter 9 we formalize M
Carthy's elaborations of the Missionaries and CannibalsPuzzle in the language of the new CCal
. We show how to turn 
ausal logi
 intopropositional logi
 using the idea of loop formulas in Chapter 10, and apply loopformulas to the problem of splitting a 
ausal theory in Chapter 11.
5



Chapter 2
Ba
kground

In his 
lassi
 paper [M
Carthy, 1959℄, M
Carthy proposed to 
reate a softwaresystem that he 
alled the advi
e taker. The system is supposed to draw relevant
on
lusions from the set of premises, mainly in the form of de
larative senten
es, de-s
ribing a domain of 
onsideration. If the information stored in the system needs tobe 
hanged, extended or deleted, that should be done by just updating the premises,rather than by rewriting the system's internal 
ode. Moreover, heuristi
s should alsobe introdu
ed by de
larative senten
es. The airport problem mentioned in Chap-ter 1 was the example used in the paper to explain this idea. The system is expe
tedto generate the plan of getting to the airport given a de
larative des
ription of theproblem.The idea of the advi
e taker was new, and there were many details to be
lari�ed; many serious diÆ
ulties were identi�ed later. In the 
ourse of dis
ussion,Bar-Hillel 
ommented, \Dr. M
Carthy's paper belongs in the Journal of Half-BakedIdeas." Even now, more than 40 years later, the idea is still being baked. However,6



we have seen mu
h progress. Re
ently, CCal
 was applied to solving the airportproblem [Lifs
hitz et al., 2000℄. In this 
hapter, we present how the resear
h in thisarea has evolved.2.1 Problems in Formal Reasoning about A
tionsIt seems natural to 
hoose formal logi
 as a vehi
le for representing 
ommonsenseknowledge due to its pre
ise and de
larative semanti
s. Hayes [1977℄ pointed outthat a logi
al model theory provides a

ounts for the meaning of a representa-tion or representational language and helps us 
ompare di�erent representations orlanguages. Resear
hers hoped that a 
omputer would be able to derive relevant
on
lusion from properly axiomatized knowledge.But soon serious diÆ
ulties with formal logi
 were re
ognized. Some of theproblems were due to the implausible number of axioms that were required. Themost important one is the frame problem, whi
h was �rst identi�ed in [M
Carthyand Hayes, 1969℄. The problem is how to represent what remains un
hanged afterexe
uting an a
tion. Axiomatizers have to des
ribe not only the things that 
hange,but also the things that do not 
hange; without that, one would not be able to drawmany useful 
on
lusions. The diÆ
ulty is that, in 
ommonsense domains, thereare too many things that do not 
hange, and enumerating all of them would notbe feasible (it looks also non-
ommonsensi
al to have to enumerate them all). Forinstan
e, when we des
ribe an a
tion of walking to the 
ar, we also need to list allthings that do not move: the desk, the 
ar, the airport, the house and so on.The frame problem be
omes more diÆ
ult in the presen
e of indire
t e�e
tsof an a
tion. The problem of des
ribing indire
t e�e
ts of an a
tion is 
alled the7



rami�
ation problem [Finger, 1986℄. For instan
e, if I drive to the airport, not onlymy lo
ation and the lo
ation of the 
ar 
hange, but also the lo
ations of things inmy po
ket and the trunk 
hange. Enumerating all indire
t e�e
ts is also tedious.2.2 Nonmonotoni
 ReasoningIt was observed that the diÆ
ulties with formal logi
 des
ribed above are related tothe fa
t that 
lassi
al logi
 is monotoni
: for any sets of premises A and B su
h thatA � B, if a senten
e F follows from A, then F follows from B also. In other words,every 
on
lusion that 
an be derived from A is also derivable from B. This is not de-sirable in 
ommonsense reasoning: as dis
ussed in the introdu
tion, when additionalassumptions are made, some of the 
on
lusions may need to be retra
ted. This wasa 
hallenge to AI resear
hers, and several systems of nonmonotoni
 reasoning wereinvented in response.A 1980 issue of the journal of Arti�
ial Intelligen
e presented three formsof nonmonotoni
 reasoning: 
ir
ums
ription by M
Carthy [1980℄, default logi
 byReiter [1980℄, and a nonmonotoni
 logi
 by M
Dermott and Doyle [1980℄. The 
on-
ept of 
ir
ums
ription was extended in [M
Carthy, 1986℄, and an in
uential modalnonmonotoni
 logi
 
alled autoepistemi
 logi
 was introdu
ed by Moore [1985℄.Every system of nonmonotoni
 reasoning provides a method for representing\defaults." One parti
ularly important default is the 
ommonsense law of inertia,whi
h says that everything tends to remain as it was. Formalizing this idea wasre
ognized as a key to solving the frame problem.While the earlier forms of nonmonotoni
 reasoning were going through re-�nements and improvements, in 1987, Hanks and M
Dermott 
hallenged the re-8



sear
h 
ommunity by arguing that formal logi
 is no good for representing 
om-monsense knowledge. As an example, they presented the so-
alled \Yale shootingproblem" [Hanks and M
Dermott, 1987℄, where M
Carthy's revised form of 
ir
um-s
ription [M
Carthy, 1986℄ 
ould not a

ount for a simple fa
t.There is a gun and a person (in some versions, a turkey) whose nameis Fred. If the gun is loaded, shooting it kills Fred. Now 
onsider thefollowing s
enario. Initially Fred was alive, and the gun was not loaded.Next the gun is loaded, and after waiting, the gun is shot. Is Fred dead?Intuitively, the answer should be yes. However, M
Carthy's 1986 proposal
ould not justify this. It left open the possibility that the gun gets unloaded byitself during the exe
ution of the wait a
tion.The failure dis
ouraged some AI resear
hers and made them abandon thelogi
ist approa
h to 
ommonsense reasoning. But others 
ontinued to extend thesystems of logi
 and 
ame up with various solutions in response to the 
hallenge.Some of them are [Lifs
hitz, 1987℄, [Morris, 1988℄, [Gelfond, 1989℄, [Baker, 1991℄and [Lifs
hitz, 1991℄.Logi
 programming be
ame a member of the family of nonmonotoni
 rea-soning systems on
e the semanti
s of \negation as failure" was 
lari�ed. Among thesemanti
s, in
uential are the 
ompletion semanti
s [Clark, 1978℄, the well-foundedsemanti
s [Van Gelder et al., 1991℄, and the stable model or the answer set seman-ti
s [Gelfond and Lifs
hitz, 1988℄. Gelfond [1987℄ showed how to translate logi
programs into autoepistemi
 logi
. Solutions to the Yale Shooting problem usinglogi
 programs are des
ribed in [Eshghi and Kowalski, 1989℄, [Evans, 1989℄, [Aptand Bezem, 1990℄. 9



2.3 Nonmonotoni
 Theories of CausalityCausality has been a major subje
t of study by philosophers from the an
ient times 1,and now it is studied in AI as well.In the natural s
ien
es, the distin
tion between a material impli
ation (\IfA holds, then B holds") and a 
ausal relation (\A 
auses B") is 
ommonly disre-garded. Su
h distin
tion, however, turned out to be quite useful in 
ommonsensereasoning. As a result, nonmonotoni
 theories based on 
ausality re
eived 
onsider-able attention.Pearl [1988℄ investigated the distin
tion between 
ausal and non-
ausal groundsin general default reasoning. Ge�ner [1990℄ introdu
ed a modal operator for rep-resenting 
ausality. Lin [1995℄ introdu
ed the predi
ate Caused ; his proposal madeit possible to 
onveniently express the indire
t e�e
ts of an a
tion, as well as thedire
t e�e
ts, using 
ir
ums
ription.Later, M
Cain and Turner [1997℄ introdu
ed a 
ausal logi
 in whi
h thenotions of \being 
aused" and \being true" are distinguished using expressions ofthe form F ( G (2.1)where F and G are propositional formulas. Intuitively (2.1) is understood as theassertion that F is 
aused if G holds. The semanti
s of the 
ausal logi
 is basedon \the prin
iple of universal 
ausation," whi
h says that every fa
t that obtainsis 
aused. This strong philosophi
al 
ommitment is rewarded by the mathemati
alsimpli
ity in the semanti
s. Universal Causal Logi
 (UCL) [Turner, 1999℄ extends1Aristotle enumerated four kinds of 
auses: the material, the formal, the eÆ
ient, and the�nal. Rene Des
artes, David Hume, Immanuel Kant, and John Stuart Mill were also among thephilosophers who studied 
ausality. 10



the language of 
ausal theories to a modal framework. Although the syntax ofGe�ner's theory and UCL are similar, their semanti
s are not, and there seems tobe no pre
ise relationship between them. The semanti
s of M
Cain and Turner's
ausal logi
 is 
losely related to that of logi
 programming under the answer setsemanti
s.The systems proposed by Ge�ner, Lin, M
Cain and Turner allow us to ex-press \stati
 
ausal laws"|
ausal dependen
ies between 
uents. This is essentialfor solving the rami�
ation problem.2.4 A
tion LanguagesA
tion languages [Gelfond and Lifs
hitz, 1998℄ are formal models of parts of naturallanguage that are used for des
ribing the e�e
ts of a
tions. They de�ne \transitionsystems"|dire
ted graphs whose verti
es 
orrespond to states and whose edges arelabeled by a
tions. Originally, a
tion languages were developed to represent theproperties of a
tions in a high level notation. Their simple but 
on
ise syntax helpsus 
ompare them and improve our understanding of reasoning about a
tions.The STRIPS language [Fikes and Nilsson, 1971℄ is not an a
tion languagein the sense of [Gelfond and Lifs
hitz, 1998℄, but is 
losely related. Despite itslimited expressivity and semanti
 pitfalls [Lifs
hitz, 1987℄, STRIPS's in
uen
e hasbeen signi�
ant for two reasons: the language provides a built-in solution to theframe problem; eÆ
ient 
omputation 
an be 
arried out by employing a resolutiontheorem prover in �nding a sequen
e of STRIPS operators that leads to a worldmodel in whi
h a given goal formula is true.Many extensions that improve the expressive power of STRIPS were pro-11



posed. Pednault's ADL [Pednault, 1994℄ extended STRIPS by allowing symbolsfor non-propositional 
uents and 
onditional e�e
ts of a
tions. Gelfond and Lif-s
hitz [1993℄ introdu
ed language A (whi
h is essentially the propositional fragmentof ADL) and related it to logi
 programming. Similar results for a language thatpermits the 
on
urrent exe
ution of a
tions were proved in [Baral and Gelfond,1997℄, and for a language with stati
 
ausal laws in [Turner, 1997℄. That work,along with the theory of nonmonotoni
 
ausal reasoning presented in [M
Cain andTurner, 1997℄, has led to the design of language C [Giun
higlia and Lifs
hitz, 1998℄,whi
h is a basis of the a
tion language C+ that we present in this dissertation.2.5 Elaboration Toleran
eM
Carthy [1998℄ expressed the view that human-level AI would require what he
alled elaboration toleran
e:A formalism is elaboration tolerant to the extent that it is 
onvenientto modify a set of fa
ts expressed in the formalism to take into a

ountnew phenomena or 
hanged 
ir
umstan
es. Representations of infor-mation in natural language have good elaboration toleran
e when usedwith human ba
kground knowledge. Human-level AI will require rep-resentations with mu
h more elaboration toleran
e than those used bypresent AI programs, be
ause human-level AI needs to be able to takenew phenomena into a

ount.The simplest kind of elaboration is the addition of new formulas. Next
omes 
hanging the values of parameters. Adding new arguments to12



fun
tions and predi
ates represents more of a 
hange.In the paper M
Carthy illustrated the idea by de�ning 19 variants of theMissionaries and Cannibals Puzzle (MCP). Here are some of his elaborations:� The boat 
an 
arry three.� There is an oar on ea
h bank.� Only one missionary and one 
annibal 
an row.� The biggest 
annibal 
annot �t in the boat with another person.� If the biggest 
annibal is isolated with the smallest missionary, the latter willbe eaten.� Three missionaries along with a 
annibal 
an 
onvert him into a missionary.� There is a bridge.� The boat leaks and must be bailed 
on
urrently with rowing.� There is an island.� There are four 
annibals and four missionaries, but if the strongest of themissionaries rows fast enough, the 
annibals won't have gotten so hungry thatthey will eat the missionaries.When humans are told about the elaborations above, they understand the
hanges using their ba
kground knowledge expressed in natural language withouthaving to start from s
rat
h. 13



Lifs
hitz [2000℄ showed how to formalize the ten elaborations of MCP abovein the language of CCal
. Instead of formalizing ea
h elaboration from s
rat
h,he \fa
tored out" their 
ommon part; ea
h formalization of an elaboration does notmodify the 
ommon part, but just adds to it a few propositions that express the
hange. This is the simplest kind of elaboration that M
Carthy dis
ussed. CCal
has determined the shortest number of steps to solve ea
h elaboration and showedthe solution.2.6 SAT solversSATISFIABILITY (or SAT for short) is the problem of determining whether agiven Boolean expression in 
onjun
tive normal form is satis�able. This is the �rstproblem proven to be NP-
omplete [Cook, 1971℄.Systems that solve instan
es of this problem are 
alled SAT solvers. Manyof them are based on an algorithm due to Davis, Logemann and Loveland [1962℄.Various te
hniques su
h as intelligent ba
ktra
king, learning, ba
kjumping and arapid restart strategy have been used to improve the eÆ
ien
y of SAT solvers. Atthe time of this writing, hundreds of thousands of atoms, and millions of 
lauses 
anbe handled reasonably well in many 
ases.Sin
e various problems 
an be 
ast as propositional theories, SAT solversare widely applied. In \satis�ability planning" [Kautz and Selman, 1992℄ a plan-ning problem is en
oded as a propositional theory so that a model of the theory
orresponds to a plan|a sequen
e of a
tions|that leads to a goal state from aninitial state. The plan 
an be found by running a SAT solver. Bla
kbox 2 is a2http://www.
s.washington.edu/homes/kautz/bla
kbox .14



planning system that 
onverts a STRIPS formalization of a planning problem intoa propositional theory, and then �nds its models using SAT solvers.SAT solvers have many appli
ations to areas other than reasoning about a
-tion. For instan
e, they have been applied to the formal veri�
ation of hardwaresystems with emphasis in Bounded Model Che
king: NuSMV2 3 is a SAT-based sym-boli
 model 
he
ker that turned out to be more eÆ
ient than BDD-based NuSMV;GrAnDe 4 is a theorem prover based on SAT solvers; SAT solvers have been alsoused for �nding atta
ks to a set of well-known authenti
ation proto
ols [Armandoand Compagna, 2002℄.Some SAT solvers are 
omplete, that is, they �nd a model if there existsone, and answer \no" if there is none. Others sa
ri�
e 
ompleteness in return foreÆ
ien
y. Most SAT solvers today a

ept the DIMACS input format. This simpli�esthe e�orts required to test and 
ompare the solvers. Also systems employing SATsolvers as their sear
h engines have the 
exibility of 
hoosing di�erent solvers. Forinstan
e, one 
an run an in
omplete solver �rst, and if it does not terminate after
ertain time, run a 
omplete solver. Competitions for SAT solvers are held frequentlyto en
ourage the 
reation of more eÆ
ient systems.5Carefully engineered solvers have shown signi�
ant speed-up. Cha� [Moskewi
zet al., 2001; Zhang et al., 2001℄ was designed from the beginning to handle largeformulas from a very spe
i�
 area (mostly Bounded Model Che
king) using \lazy"data stru
tures, and also integrated a new form of learning, taking advantage ofthe overall lazy data stru
tures used. Cha� outperforms existing SAT solvers on a3http://nusmv.irst.it
.it/ .4http://www.
s.miami.edu/~tptp/ATPSystems/GrAnDe/ .5For a re
ent report, 
onsult http://www.satisfiability.org/SAT04/ .15



large set of \stru
tured" (as opposed to random) instan
es. This eÆ
ien
y boost isexpe
ted to make SAT solvers more widely appli
able.

16



Chapter 3
Logi
 Programs and theM
Cain{Turner Causal Logi


The underlying nonmonotoni
 formalism we 
hoose for formalizing the properties ofa
tions is 
ausal logi
. It is 
losely related to the answer set semanti
s (also knownas the stable model semanti
s) of logi
 programs by Gelfond and Lifs
hitz [1988℄,whi
h has led to a new de
larative programming paradigm 
alled answer set pro-gramming [Lifs
hitz, 1999; Marek and Trusz
zy�nski, 1999; Niemel�a, 1999℄.A spe
ial 
ase of the answer set semanti
s is 
losely related to a simplenonmonotoni
 formalism 
alled Clark's 
ompletion [Clark, 1978℄. Completion is at-tra
tive be
ause it is de�ned as a transformation of logi
 programs to 
lassi
al logi
,but it sometimes gives unintuitive results [Przymusinski, 1989, Se
tion 4.1℄. The
on
ept of 
ompletion was extended to 
ausal logi
 by M
Cain and Turner [1997℄,and the relationship between the semanti
s of 
ausal logi
 and 
ompletion turnedout to be more immediate than the relationship between the answer set semanti
s17



and 
ompletion. This idea has led to an eÆ
ient implementation of automatedreasoning about a
tions.In this 
hapter we review the answer set semanti
s and the semanti
s of
ausal logi
, and their relationships with 
ompletion.3.1 Answer Set Semanti
s for Normal ProgramsWe review the answer set semanti
s for normal programs [Gelfond and Lifs
hitz,1988℄. The word atom is understood here as in propositional logi
.A (normal) rule is an expression of the formp1  p2; : : : ; pm;not pm+1; : : : ;not pn (3.1)(1 � m � n) where all pi are atoms. Atom p1 is 
alled the head, and the partp2; : : : ; pm;not pm+1; : : : ;not pnis 
alled the body of the rule. We will often write (3.1) in the formp1  B;F (3.2)where B is p2; : : : ; pm, and F is not pm+1; : : : ;not pn, and we will sometimes iden-tify B with the set fp2; : : : ; pmg. If the body is empty, then  
an be dropped.A (normal logi
) program is a �nite set of rules of form (3.1).1We say that a set X of atoms satis�es the body B;F of rule (3.2) (symboli-
ally, X j= B;F ) if p2; : : : ; pm 2 X and pm+1; : : : ; pn =2 X. We say that X satis�esa normal program � (symboli
ally, X j= �) if, for every rule (3.2) of that program,p1 2 X whenever X satis�es B;F .1In the literature, programs are allowed to 
ontain in�nitely many rules, but in this dissertation,for simpli
ity, we restri
t attention to �nite programs only.18



Answer sets are de�ned by a �xpoint de�nition. The redu
t �X of a normalprogram � with respe
t to a set X of atoms is obtained from � by� deleting ea
h rule (3.2) su
h that X 6j= F , and� repla
ing ea
h remaining rule (3.2) by p1  B.A set X of atoms is an answer set of � if X is minimal among the sets of atomsthat satisfy �X .For example, 
onsider the following program �1:p not qq not pConsider, one by one, all sets formed from the atoms p and q:� X1 = ;. The redu
t �X11 is fp; qg, whi
h X1 does not satisfy. Consequently,X1 is not an answer set of �1.� X2 = fpg. The redu
t �X21 is fpg. Sin
e X2 is minimal among the sets ofatoms that satisfy the redu
t, X2 is an answer set of �1.� X3 = fqg. Similarly to the above, the redu
t �X31 is fqg. Sin
e X3 is minimalamong the sets of atoms that satisfy �X31 , X3 is an answer set of �1.� X4 = fp; qg. The redu
t �X41 is ;, whi
h X4 satis�es, but it is not minimalamong the sets of atoms that satisfy the redu
t. Consequently, X4 is not ananswer set of �1.Thus we see that X2 and X3 are the only answer sets of �1.19



3.2 CompletionLet � be a program whose rules have the form (3.2). The 
ompletion of �, Comp(�),
onsists of the equivalen
es p1 � _p1 B;F 2 �B ^ F (3.3)for all atoms p1 that o

ur in �.2For example, Comp(�1) is p�:qq �:p;whose models are fpg, fqg, whi
h are the same as the answer sets of �1.Proposition [Erdem and Lifs
hitz, 2003, Proposition 1℄ For any program � andany set X of atoms, if X is an answer set of � then X is a model of Comp(�).It is well known that the 
onverse of this proposition does not hold. The one-rule program p  p is a standard 
ounterexample; both ; and fpg are the modelsof Comp(�), but only ; is the answer set of �.Fages [1994℄ showed that if a program is \tight," then the 
onverse of theproposition holds as well. Erdem and Lifs
hitz [2003℄ generalized Fages' theoremand extended it to a more general 
lass of programs.3.3 The M
Cain{Turner Causal Logi
Like logi
 programs, 
ausal theories 
onsist of rules, but they are di�erent in thatheads and bodies are arbitrary formulas in propositional logi
. In this sense they are2Completion de�ned here 
an easily be extended to the 
ase where rules are allowed to haveempty heads, whi
h is omitted here for simpli
ity.20



more \propositional logi
 friendly" than logi
 programs. In this se
tion we reviewthe semanti
s of 
ausal logi
.A propositional signature is a set of symbols of propositional atoms. Aformula is a propositional 
ombination of atoms as in propositional logi
. An inter-pretation of � is a fun
tion that maps ea
h element of � to the truth values.By a (
ausal) rule we mean an expression of the formF ( G(\F is 
aused if G holds"), where F , G are formulas in propositional logi
 of thesignature �. Formula F is 
alled the head and G is 
alled the body of the rule.Rules with the head ? are 
alled 
onstraints.A 
ausal theory is a �nite set of 
ausal rules.Like the semanti
s of a logi
 program, the semanti
s of a 
ausal theory isgiven by a �xpoint de�nition. Let T be a 
ausal theory, and I an interpretation ofits signature. The redu
t T I of T relative to I is the set of the heads of all rulesin T whose bodies are satis�ed by I. We say that I is a model of T if I is the uniquemodel of T I .Intuitively, T I is the set of formulas that are 
aused, a

ording to the rulesof T , under interpretation I. If this set has no models or more than one model,then, a

ording to the de�nition above, I is not 
onsidered a model of T . If T I hasexa
tly one model, but that model is di�erent from I, then I is not a model of Teither. The only 
ase when I is a model of T is when I satis�es every formula inthe redu
t, and no other interpretation does.If a 
ausal theory T has a model, we say that it is 
onsistent, or satis�able.If every model of T satis�es a formula F then we say that T entails F and write21



T j= F .As an example, take the following 
ausal theory T1 whose signature is fp; qg:p ( qq ( q:q ( :q: (3.4)Consider, one by one, all interpretations of that signature (we identify aninterpretation with the set of literals that are true in it):� I1 = fp; qg. The redu
t 
onsists of the heads of the �rst two rules of T1:T I11 = fp; qg. Sin
e I1 is the unique model of T I11 , it is a model of T1.� I2 = f:p; qg. The redu
t is the same as above, and I2 is not a model of theredu
t. Consequently, I2 is not a model of T1.� I3 = fp;:qg. The only element of the redu
t is the head of the third ruleof T1: T I31 = f:qg. It has two models. Consequently, I3 is not a model of T1.� I4 = f:p;:qg. The redu
t is the same as above, so that I4 is not a modelof T1 either.Thus we see that I1 is the only model of T1.Consider another example T2 whose signature is again fp; qg:p _ :q ( >:p _ q ( >:The redu
t T I2 is equal to the set of the heads of the rules in T2 regardless of theinterpretation I, so that it has two models, fp; qg and f:p;:qg. Therefore, T2 hasno models. 22



T3 is the following theory of the same signature that adds one rule to T2:p _ :q ( >:p _ q ( >p _ q ( >:Similarly to the previous example, T I3 is equal to the set of the heads of the rulesin T3 regardless of the interpretation I. Now f:p;:qg is not a model of T I3 , so thatT3 has one model: fp; qg.Theories T2 and T3 illustrate the nonmonotoni
ity of 
ausal logi
: we mayget a new model by adding more rules.3.4 Literal CompletionA 
ausal theory is 
alled de�nite if the head of every rule in it is either a literal or ?.For a de�nite theory, we 
an des
ribe its models in terms of \literal 
ompletion"[M
Cain and Turner, 1997℄, whi
h is similar to Clark's 
ompletion for normal logi
programs.Consider a de�nite 
ausal theory T of a signature �. For ea
h literal l, theliteral 
ompletion formula for l is the formulal � G1 _ � � � _Gnwhere G1; : : : ; Gn (n � 0) are the bodies of the rules of T with head l. The (literal)
ompletion of T is obtained by taking the 
ompletion formulas for every literal of �,along with the formula :F for ea
h 
onstraint ?( F in T .
23



For example, the 
ompletion of T1 isp� q:p�?q � q:q �:q; (3.5)
and its only model is fp; qg, whi
h is exa
tly the model found above using thede�nition of 
ausal logi
.The relationship between 
ausal logi
 and 
ompletion is more immediate thanthe relationship between logi
 programs and 
ompletion des
ribed in Proposition 1from [Erdem and Lifs
hitz, 2003℄ (Se
tion 3.2):Proposition [M
Cain and Turner, 1997℄ The models of a de�nite 
ausal theoryare pre
isely the models of its 
ompletion.However, the method of 
ompletion is not appli
able to nonde�nite theories,su
h as T2 and T3.Here are two more examples of the use of 
ompletion. First, we will showhow to turn any set � of formulas into a 
ausal theory that has the same modelsas �. The rules of this theory are� l( l for every literal l of �, and� the 
onstraints ?( :F for every F 2 �.The 
ompletion of this theory 
onsists of the formulas l � l for all literals l and theformulas ::F for all F 2 �. Clearly, the 
ompletion is equivalent to �.24



Se
ond, de�nite theories 
an be used to express the \
losed-world assump-tion," [Reiter, 1978℄ as follows. Take a signature �. The assumption that theelements of � are false by default 
an be expressed by the rules:a( :a (a 2 �) (3.6)(if a is false then there is a 
ause for this). If, for some subset S of �, we 
ombine (3.6)with the rules a( > (a 2 S);we will get a 
ausal theory whose only model is the interpretation I that assigns tto the atoms in S and f to all other atoms. Indeed, the 
ompletion of this theory
onsists of the formulas a�> (a 2 S);a�? (a 2 � n S);:a�:a (a 2 �);and I is the only model of these formulas.The proposition above shows that the satis�ability problem for de�nite 
ausaltheories belongs to 
lass NP. It is 
learly NP-
omplete.3.5 The Causal Cal
ulator (CCal
)The proposition from Se
tion 3.4 tells us that the models of de�nite theories 
anbe 
omputed by SAT solvers. This idea led M
Cain to design the Causal Cal
u-lator (CCal
) 3|an implementation of de�nite 
ausal theories. Computationally,CCal
 turns a de�nite theory into a propositional theory by literal 
ompletion,3http://www.
s.utexas.edu/users/tag/
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and then 
alls SAT solvers to �nd the models of the propositional theory, whi
h, inturn, 
orrespond to the models of the 
ausal theory.The original version of CCal
 was implemented in Prolog as part of M
-Cain's dissertation [M
Cain, 1997℄. The idea is similar to satis�ability planning [Kautzand Selman, 1992℄ but the formalism of CCal
 is mu
h more expressive than theSTRIPS based formalisms [M
Cain and Turner, 1998℄. An early version of CCal
was applied to formalizing several 
hallenge problems in the theory of 
ommon-sense knowledge, in
luding M
Carthy's airport example [Lifs
hitz et al., 2000℄ andelaborations of the Missionaries and Cannibals Puzzle [Lifs
hitz, 2000℄.We will talk about CCal
 in more detail in the following 
hapter.
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Chapter 4
A
tion Language C and theCausal Cal
ulator

4.1 Language CThe review of C in this se
tion follows [Giun
higlia and Lifs
hitz, 1998℄.4.1.1 SyntaxIn C, a signature � is partitioned into two groups of symbols: 
uent symbols �fland a
tion symbols �a
t. A 
uent formula is a formula that does not 
ontain a
tionsymbols.Consider the monkey and bananas problem des
ribed in Chapter 1. To for-malize the problem in a de
larative language, one needs to be able to des
ribe� the lo
ations of the monkey, the bananas, and the box,� whether the monkey is on the box, and27



� whether the monkey has the bananas.Assuming that the possible lo
ations of the monkey, the bananas, and thebox are L1; L2; L3, a signature that would allow us to talk about the states 
onsistsof symbols: At(x; l) (x2fMonkey ;Bananas ;Boxg; l2fL1; L2; L3g);HasBananas ; OnBox : (4.1)A
tions in the domain 
an be denoted by symbols:Walk(l); PushBox (l); ClimbOn; ClimbO� ; GraspBananas : (4.2)There are two kinds of propositions, 
alled \
ausal laws," in C. A stati
 lawis an expression of the form 
aused F if G (4.3)where F and G are 
uent formulas. For instan
e,
aused At(Bananas ; l) if At(Monkey ; l) ^HasBananas (4.4)is a stati
 law. The intuitive meaning of the proposition is that the lo
ation of thebananas is determined by the lo
ation of the monkey if it has the bananas. The
hange of the lo
ation of the bananas is an indire
t e�e
t of any a
tion that a�e
tsthe lo
ation of the monkey.A dynami
 law is an expression of the form
aused F if G after H (4.5)where F and G are 
uent formulas and H is a formula. For instan
e,
aused At(Monkey ; l) if > after Walk(l)28



is a dynami
 law des
ribing the e�e
t of an a
tion of walking.In both propositions (4.3) and (4.5), the formula F is 
alled the head. Thepart if G 
an be dropped if G is >.A 
ausal law is a stati
 law or a dynami
 law. An a
tion des
ription is a�nite set of 
ausal laws. An a
tion des
ription is de�nite if the head of every 
ausallaw of it is either a literal or ?.4.1.2 Semanti
sAs in [Giun
higlia and Lifs
hitz, 1998℄, the semanti
s of C 
an be de�ned in termsof 
ausal logi
. An a
tion des
ription is mapped to a 
ausal theory whose modelsare in a 1{1 
orresponden
e with the paths in the transition system.More pre
isely, any a
tion des
ription 
an be viewed as an abbreviation fora sequen
e of 
ausal theories. For any a
tion des
ription D and any nonnegativeinteger m, the 
ausal theory Dm is de�ned as follows. The signature of Dm 
onsistsof the pairs i :
 su
h that� i 2 f0; : : : ;mg and 
 is a 
uent 
onstant of D, or� i 2 f0; : : : ;m� 1g and 
 is an a
tion 
onstant of D.If 
 is a 
uent, then i : 
 means that 
 holds at step i, and if 
 is an a
tion, then i : 
means that 
 o

urs between steps i and i + 1.In the des
ription of the rules of Dm below, the following 
onvention is used:for any formula F of the signature of D, i :F stands for the result of pre�xing all
uent symbols and a
tion symbols in F with i : . The rules of Dm arei :F ( i :G (4.6)29



for every stati
 law (4.3) in D and every i 2 f0; : : : ;mg;i+1:F ( i+1:G ^ i :H (4.7)for every dynami
 law (4.5) in D and every i 2 f0; : : : ;m� 1g;0 :
( 0:
0::
( 0::
 (4.8)for every 
uent symbol 
; i :
( i :
i ::
( i ::
 (4.9)for every a
tion symbol 
, and every i 2 f0; : : : ;m� 1g.Rules (4.8) express that the initial values of all 
uents are \exogenous": they
an be 
hosen arbitrarily. Rules (4.9) express that all a
tions are exogenous: whetheror not an a
tion is exe
uted 
an be de
ided arbitrarily.For instan
e, 
onsider the following simple a
tion des
ription SD where thereare only one 
uent symbol P and only one a
tion symbol A:
aused P if > after A
aused P if P after P
aused :P if :P after :P:The �rst line expresses that if the a
tion A is exe
uted, then the value of P will be
aused to be true; the next two lines express the 
ommonsense law of inertia: in theabsen
e of any eviden
e to the 
ontrary, the value of P after an event is assumed tobe the same as the value before the event. This is how C solves the frame problem.
30



The 
ausal theory SDm for a
tion des
ription SD 
onsists ofi + 1:P ( i :Ai + 1:P ( i + 1:P ^ i :Pi + 1::P ( i + 1::P ^ i ::Pfor every i 2 f0; : : : ;m� 1g a

ording to (4.7);0 :P ( 0:P0::P ( 0::Pa

ording to (4.8); i :A( i :Ai ::A( i ::Afor every i 2 f0; : : : ;m� 1g a

ording to (4.9).It is easy to 
he
k that the models of the 
ompletion of SDm 
an be writtenas m equivalen
es i + 1:P � i :A _ i :P (0 � i < m):SDm has 2m+1 models, ea
h 
hara
terized by the truth values assigned to the 
on-stants 0 : P and i : A (i = 0; : : : ;m � 1). For instan
e, one of the models of SD2is f:0:P; :0:A; :1:P; 1:A; 2:Pg: (4.10)Intuitively, it means that P is false in the beginning, and remains false when a
tionA is not exe
uted. Then the a
tion is exe
uted, whi
h will make P true.Certain abbreviations are useful. If a is an a
tion 
onstant and F , G are
uent formulas, then a 
auses F if G (4.11)31



PfAgfAgf:Ag f:Ag:P
Figure 4.1: The transition system des
ribed by SDstands for the dynami
 law
aused F if > after a ^G:The rule (4.11) 
an be used for des
ribing a 
onditional e�e
t of an a
tion, i.e., forexpressing that exe
uting a
tion a 
auses F to be true if G holds in the 
urrentstate. The part if G 
an be dropped if G is >. So the �rst line of SD 
an beabbreviated as A 
auses P:There is also an abbreviation for the last two lines of SD :inertial P: (4.12)4.1.3 States and TransitionsThe models of SDm 
an be visualized as paths in a \transition system"|the graphshown in Figure 4.1. The two verti
es of the graph represent states; in one state,the value of the 
uent P is f, in the other it is t. The edges represent transitionsbetween states; the a
tion a is exe
uted in two transitions, and it is not exe
uted inthe other two. 32



There is a simple 1{1 
orresponden
e between the models of SDm and thepaths of length m in this transition system. For instan
e, the model of SD2 in (4.10)
orresponds to the path h:P; :A; :P; A; P i:Indeed, any a
tion des
ription des
ribes a transition system. Consider ana
tion des
ription D with a set �fl of 
uent symbols and a set �a
t of a
tion symbols.The transition system represented by D is de�ned by D0 and D1 as we will see soon.We 
an represent any interpretation of the signature of Dm in the form(0:s0) [ (0 :e0) [ (1 :s1) [ (1 :e1) [ � � � [ (m :sm) (4.13)where s0; : : : ; sm are interpretations of �fl, and e0; : : : ; em�1 are interpretationsof �a
t.A state is an interpretation s of �fl su
h that 0 : s is a model of D0. Statesare the verti
es of the transition system represented by D. A transition is a triplehs; e; s0i, where s and s0 are interpretations of �fl and e is an interpretation of �a
t,su
h that 0 : s [ 0 : e [ 1 : s0 is a model of D1. Transitions 
orrespond to the edgesof the transition system: for every transition hs; e; s0i, it 
ontains an edge from s tos0 labeled e. These labels e will be 
alled events. One 
an 
he
k that a

ording tothe de�nitions, the graph in Figure 4.1 is indeed the transition system des
ribed bySD . A history is a sequen
e of the formhs0; e0; s1; e1; : : : ; sm�1; em�1; smiwhere ea
h hs0; e0; s1i; hs1; e1; s2i; � � � ; hsm�1; em�1; smi is a transition.33



Proposition [Giun
higlia and Lifs
hitz, 1998, Proposition 2℄ For any m > 0, aninterpretation (4.13) of the signature of Dm is a model of Dm i�hs0; e0; s1; e1; : : : ; sm�1; em�1; smiis a history of D.4.2 Examples4.2.1 Monkey and BananasWe illustrate the use of C by formalizing the Monkey and Bananas domain. Thesignature is as given in Se
tion 4.1.1. In the following, x ranges over Monkey ,Bananas , Box ; l, l1, l2 range over L1, L2, L3.The �rst postulate expresses that there exists a lo
ation for ea
h obje
t atevery instant: 
onstraint WlAt(x; l) (4.14)The symbol Wl denotes a multiple disjun
tion over lo
ations l. For a 
uent for-mula F , 
onstraint Fstands for the stati
 law 
aused ? if :F:The proposition 
onstrains the set of states: if an a
tion des
ription 
ontains theproposition, every state in the 
orresponding transition system must satisfy F .The se
ond postulate expresses that ea
h obje
t belongs to at most one34



lo
ation: 
aused :At(x; l1) if At(x; l) (l 6= l1): (4.15)The fa
t that an obje
t, when moved to another lo
ation, \disappears" from itsprevious lo
ation 
an be treated as an indire
t e�e
t, or \rami�
ation," of themoving a
tion. This is represented by (4.15), whi
h illustrates how C solves therami�
ation problem using stati
 laws. Note that stati
 laws do not mention a
tions,and we will soon see why the use of stati
 laws is an attra
tive solution for therami�
ation problem.The next group of stati
 laws further 
onstrains the set of states: if themonkey has the bananas, then the bananas are at the lo
ation where the monkeyis; if the monkey is on the box, then the monkey is at the lo
ation where the box is.
aused At(Bananas ; l) if At(Monkey ; l) ^HasBananas
aused At(Monkey ; l) if At(Box ; l) ^OnBox : (4.16)The �rst law ensures that the 
hange in the lo
ation of the bananas is an indire
te�e
t of walking if the monkey has the bananas. Walking not only a�e
ts the lo
ationof the monkey, but also the lo
ation of the bananas if the monkey has them. These
ond e�e
t 
an be des
ribed byWalk(l) 
auses At(Bananas ; l) if HasBananas :But this law is redundant, be
ause in the presen
e of the �rst line of (4.16), the
hange in the lo
ation of the bananas is an indire
t e�e
t of walking (and of any othera
tion that a�e
ts the lo
ation of the monkey). The possibility of this simpli�
ationis what makes the postulate (4.16) attra
tive.35



Similarly in view of the se
ond law, the 
hange in the lo
ation of the monkeyis an indire
t e�e
t of moving the box.1The e�e
ts and the pre
onditions of walking are des
ribed as follows:Walk (l) 
auses At(Monkey ; l)nonexe
utable Walk(l) if At(Monkey ; l)nonexe
utable Walk(l) if OnBox : (4.17)In the last two lines nonexe
utable a if G (4.18)is an abbreviation for (4.11) when F is ?. The proposition is used to represent aquali�
ation for exe
uting a
tion a.Pushing the box has two e�e
ts and three pre
onditions:PushBox (l) 
auses At(Monkey ; l)PushBox (l) 
auses At(Box ; l)nonexe
utable PushBox (l) if At(Monkey ; l)nonexe
utable PushBox (l) if At(Monkey ; l1) ^At(Box ; l2) (l1 6= l2)nonexe
utable PushBox (l) if OnBox : (4.19)1Of 
ourse in this domain with only one monkey, it is not possible to move the box with themonkey on it. But if we enhan
e the domain to allow multiple monkeys, then this will be
omepossible.
36



The des
riptions of the rest of a
tions have a similar stru
ture:ClimbOn 
auses OnBoxnonexe
utable ClimbOn if At(Monkey ; l) ^At(Box ; l1) (l 6= l1)nonexe
utable ClimbOn if OnBoxClimbO� 
auses :OnBoxnonexe
utable ClimbO� if :OnBoxGraspBananas 
auses HasBananasnonexe
utable GraspBananas if HasBananasnonexe
utable GraspBananas if At(Monkey ; l) ^At(Bananas ; l1) (l 6= l1)nonexe
utable GraspBananas if :OnBox : (4.20)Every 
uent in this domain tends to keep its previous value. The inertiarules are inertial 
 (4.21)for every 
uent symbol 
 from (4.1).The 
on
urrent exe
ution of a
tions 
an be prohibited by postulatingnonexe
utable 
 ^ d (4.22)for every pair of distin
t a
tion symbols 
, d from (4.2).Let us 
all this a
tion des
ription MB . The planning problem given in Chap-ter 1 asks to �nd a path in the transition system des
ribed by MB that starts fromthe state de�ned byAt(Monkey ; L1); At(Bananas ; L2); At(Box ; L3)37



and leads to a goal state that satis�esHasBananas :4.2.2 Blo
ks WorldIn the blo
ks world, a state is des
ribed by a set of sta
ks of blo
ks on the table.In the following, b, b1, b2 range over blo
ks A, B, C and D; l ranges overblo
ks and Table. The symbol On(b; l) denotes the fa
t that blo
k b is on lo
ationl; the symbol Move(b; l) denotes the a
tion of moving blo
k b onto lo
ation l. As inthe previous example, we begin by postulating that On is a fun
tion that maps ablo
k into a lo
ation:
onstraint WlOn(b; l)
aused :On(b; l1) if On(b; l) (l 6= l1): (4.23)In addition, we say that, in any state, two blo
ks 
annot be on top of thesame blo
k at the same time:
onstraint :(On(b; b2) ^On(b1; b2)) (b 6= b1): (4.24)The e�e
t of moving a blo
k is represented by the following rule:Move(b; l) 
auses On(b; l): (4.25)The next three postulates des
ribe the pre
onditions of the a
tion: a blo
k
an be moved only when it is 
lear; a blo
k 
an be moved only to a position that is
lear; a blo
k 
annot be moved onto a blo
k that is being moved also:nonexe
utable Move(b; l) if On(b1; b)nonexe
utable Move(b; b1) if On(b2; b1)nonexe
utable Move(b; b1) ^Move(b1; l): (4.26)38



Initial 
ondition Goal
DAB C B DA CFigure 4.2: The Blo
ks World|A planning problemFinally the inertia rules are inertial On(b; l): (4.27)Let us 
all this a
tion des
ription BW . A typi
al problem in this domain isto �nd a sequen
e of moves that leads to a goal. For instan
e, 
onsider the problemin Figure 4.2: given an initial 
on�guration shown on the left, what is the shortestsequen
e of moves that turns it into the goal 
on�guration shown on the right? Thisis a planning problem that asks to �nd a path in the transition system des
ribed byBW that starts from the state de�ned byOn(A;B); On(B;Table); On(C;D); On(D;Table);and leads to the goal state de�ned byOn(A;Table); On(B;A); On(C;Table); On(D;C):

4.3 Language of the Causal Cal
ulatorSin
e CCal
 is an implementation of de�nite 
ausal theories, it 
an handle de�nitea
tion des
riptions in C. Indeed, all examples of C a
tion des
riptions we have seen39



so far belong to this 
ategory.Many 
ommonsense reasoning problems related to C a
tion des
riptions 
anbe viewed as problems of generating paths in the 
orresponding transition systemsthat satisfy 
ertain 
onditions. As shown in Se
tion 4.1.2, paths of a transition sys-tem 
an be obtained by 
omputing the models of the 
orresponding 
ausal theory.An a
tion des
ription is translated by CCal
 �rst into a 
ausal theory by a ma
roexpansion me
hanism and then into a set of propositional formulas using the literal
ompletion pro
edure (Se
tion 2.3). The models of the set of formulas, whi
h 
or-respond to paths in the transition system, are found by running SAT solvers, su
has sato [Zhang, 1997℄ and relsat [Bayardo and S
hrag, 1997℄, in the spirit of sat-is�ability planning [Kautz and Selman, 1992℄. Below we present how the example Ca
tion des
riptions in the previous se
tion 
an be represented in the input languageof CCal
.4.3.1 Monkey and Bananas in the Language of CCal
A C input �le for the Causal Cal
ulator 
onsists of de
larations, propositions in C(or, more often, s
hemas with metavariables whose instan
es are propositions in C),queries (for instan
e, planning problems) and 
omments. Among its de
larations,a C input �le usually 
ontains a dire
tive to in
lude the \standard" �le C.t whi
h
ontains rewrite rules for translating from C into the language of 
ausal logi
, aswell as various sorts, variables, 
onstants, and domain independent 
ausal laws thathave been found to be useful in formalizing a
tion domains.A C input �le for MB (Se
tion 4.2.1) is shown in Figure 4.3|4.4: Figure 4.3
ontains de
larations for symbols used; Figure 4.4 
ontains the 
orresponding 
ausal40



% File: 'monkey.t':- in
lude 'C.t'.:- sortsthing;lo
ation.:- variablesO :: thing;L, L1, L2 :: lo
ation.:- 
onstantsmonkey, box, bananas :: thing;l1, l2, l3 :: lo
ation;at(thing,lo
ation), onBox, hasBananas :: inertialFluent;walk(lo
ation), pushBox(lo
ation),
limbOn, 
limbOff, graspBananas :: a
tion.Figure 4.3: Monkey and Bananas in the language of CCal
|De
larationslaws from Se
tion 4.2.1.Sin
e CCal
 is written in Prolog, the syntax of input �les follows the Prologtradition of 
apitalizing variables. The ranges of s
hemati
 variables de
lared inthe variables se
tion in Figure 4.3 are given names thing, lo
ation in the sortde
laration se
tion at the beginning. The extent of ea
h sort is de�ned in the�rst two lines of the 
onstant de
laration se
tion. Fluent symbols are de
laredinertialFluents: the identi�er instru
ts CCal
 to de
lare the symbols 
uents,and moreover to postulate that the 
uents are inertial, i.e., impli
itly added areinertial 
 for ea
h 
uent symbol 
. This is a built-in solution in CCal
 forsolving the frame problem.The propositions in Figure 4.4 are almost identi
al to the 
ausal laws from41




onstraint [\/L | at(O,L)℄.
aused -at(O,L1) if at(O,L) & L\=L1.
aused at(bananas,L) if hasBananas & at(monkey,L).
aused at(monkey,L) if at(box,L) & onBox.walk(L) 
auses at(monkey,L).nonexe
utable walk(L) if at(monkey,L).nonexe
utable walk(L) if onBox.pushBox(L) 
auses at(monkey,L).pushBox(L) 
auses at(box,L).nonexe
utable pushBox(L) if at(monkey,L).nonexe
utable pushBox(L) if at(monkey,L1) & at(box,L2) & L1\=L2.nonexe
utable pushBox(L) if onBox.
limbOn 
auses onBox.nonexe
utable 
limbOn if at(monkey,L) & at(box,L1) & L\=L1.nonexe
utable 
limbOn if onBox.
limbOff 
auses -onBox.nonexe
utable 
limbOff if onBox.graspBananas 
auses hasBananas.nonexe
utable graspBananas if hasBananas.nonexe
utable graspBananas if at(monkey,L) & at(bananas,L1) & L\=L1.nonexe
utable graspBananas if -onBox.no
on
urren
y.Figure 4.4: Monkey and Bananas in the language of CCal
|Causal laws
42



% File: 'monkey-test.t':- in
lude 'monkey.t'.:- planfa
ts ::0: at(monkey,l1),0: at(banana,l2),0: at(box,l3);goals ::1..100: hasBananas.Figure 4.5: Monkey and Bananas in the language of CCal
|Planning problemSe
tion 4.2.1. The ASCII representations of some symbols used in the language ofCCal
 are summarized in the following 
hart:Symbol : 6= ^ _ � � ? >ASCII representation - \= & ++ ->> <-> false trueEvery proposition in Figure 4.4 
ontaining s
hemati
 variables is treated asan abbreviation for the set of C propositions. In a step 
alled \grounding," CCal
repla
es ea
h variable with every obje
t in the range of the 
orresponding sort; someparts of a s
hema turn into 0-pla
e 
onne
tives >, ?. For instan
e, grounding turnsL\=L1 in the s
hema
aused -at(O,L1) if at(O,L) & L\=L1.into > when L and L1 are instantiated by di�erent obje
ts, and into ? otherwise.Figure 4.5 represents the planning problem for this domain. Symbols 0: and1..100: are \time stamps." 1..100: in the goal 
ondition instru
ts CCal
 to43



�rst try to �nd a plan of length 1, then 2, 3, and so on until it �nds a solution orfails after trying length 100.Given the query, CCal
 �nds a model of MBm that satis�es the initial
onditions 0:At(Monkey ; L1); 0:At(Bananas ; L2); 0:At(Box ; L3) (4.28)and the goal m :HasBananas (4.29)where m is the smallest number for whi
h su
h a model exists. CCal
 takes 
onse
-utively m = 1; 2; : : : and looks for an interpretation satisfying both the 
ompletionof MBm and formulas (4.28), (4.29). Su
h an interpretation will be �rst foundfor m = 4. It assigns the value t to0:Walk (L3); 1:PushBox (L2); 2:ClimbOn ; 3:GraspBananas :A

ordingly, CCal
 output is as follows:| ?- plan 0.
alling sato 3.1.2...run time (se
onds) 0.00No plan of length 1,
alling sato 3.1.2...run time (se
onds) 0.01No plan of length 2,
alling sato 3.1.2... 44



run time (se
onds) 0.01No plan of length 3,
alling sato 3.1.2...run time (se
onds) 0.000: at(bananas,l2) at(box,l3) at(monkey,l1)ACTIONS: walk(l3)1: at(bananas,l2) at(box,l3) at(monkey,l3)ACTIONS: pushBox(l2)2: at(bananas,l2) at(box,l2) at(monkey,l2)ACTIONS: 
limbOn3: onBox at(bananas,l2) at(box,l2) at(monkey,l2)ACTIONS: graspBananas4: hasBananas onBox at(bananas,l2) at(box,l2) at(monkey,l2)yes
4.3.2 Blo
ks World in the Language of CCal
Figure 4.6 is a formalization of the Blo
ks World BW in the language of CCal
,similar to Se
tion 4.2.2. 45



% File: 'bw.t':- in
lude 'C.t'.:- sortslo
ation >> blo
k.:- variablesB,B1,B2 :: blo
k;L,L1 :: lo
ation.:- 
onstantstable :: lo
ation;on(blo
k,lo
ation) :: inertialFluent;move(blo
k,lo
ation) :: a
tion.
onstraint [\/L | on(B,L)℄.
aused -on(B,L1) if on(B,L) & L\=L1.
onstraint B�<B1 ->> -(on(B,B2) & on(B1,B2)).move(B,L) 
auses on(B,L).nonexe
utable move(B,L) if on(B1,B).nonexe
utable move(B,B1) if on(B2,B1).nonexe
utable move(B,B1) & move(B1,L).Figure 4.6: Blo
ks World in the language of CCal
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% File 'bw-test.t'.:- in
lude 'bw.t'.:- 
onstantsa,b,
,d :: blo
k.:- planfa
ts::0: on(a,b), on(b,table), on(
,d), on(d,table);goals::1..100: on(a,table), on(b,a), on(
,table), on(d,
).Figure 4.7: A Blo
ks World planning problemThe symbol >> between the names of two sorts expresses that the se
ond is asubsort of the �rst, so that every obje
t that belongs to the se
ond sort also belongsto the �rst. �< is a �xed total order between the symbols.Figure 4.7 represents the planning problem given at the end of Se
tion 4.2.2.CCal
 �nds a model of BWm that satis�es the initial 
onditions0:On(A;B); 0:On(B;Table); 0:On(C;D); 0:On(D;Table); (4.30)and the goalm :On(A;Table); m :On(B;A); m :On(C;Table); m :On(D;C): (4.31)where m is the smallest number for whi
h su
h a model exists. CCal
 takes 
onse
-utively m = 1; 2; : : : and looks for an interpretation satisfying both the 
ompletionof BWm and formulas (4.30), (4.31). Su
h an interpretation will be �rst foundfor m = 2. The interpretation assigns the value t to0:Move(A;Table); 0:Move(C;Table); 1:Move(B;A); 1:Move(D;C):47



Note that some a
tions are exe
uted 
on
urrently.CCal
 has determined that at least two steps are needed and displayed thefollowing solution:
alling sato 3.1.2...run time (se
onds) 0.010: on(a,b) on(b,table) on(
,d) on(d,table)ACTIONS: move(a,table) move(
,table)1: on(a,table) on(b,table) on(
,table) on(d,table)ACTIONS: move(b,a) move(d,
)2: on(a,table) on(b,a) on(
,table) on(d,
)yes
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Chapter 5
New Extensions of Earlier Work
In this dissertation we show how to over
ome several essential limitations of thework on 
ausal logi
, language C and CCal
.5.1 Multi-valued FluentsMost formalisms for representing properties of a
tions limit their attention to propo-sitional 
uents, and this is true for C as well. Multi-valued 
uents, su
h as the lo-
ation of an obje
t, or the number of missionaries on a bank, 
an be represented insu
h formalisms by symbols with Boolean values, whi
h requires introdu
ing rulesthat relate these symbols to ea
h other. For instan
e, in Se
tions 4.2.1 and 4.2.2 wedes
ribed the lo
ation of an obje
t by Boolean 
onstants At(x; l) and On(b; l), andhad to express the existen
e and the uniqueness of a lo
ation by postulates (4.14),(4.15) and (4.23). Su
h 
ausal laws are needed quite often, whi
h is in
onvenient. Inthis respe
t, C is inferior to the language ADL (see Se
tion 2.4) whi
h does in
ludesymbols for multi-valued 
uents. 49



In Se
tion 6.1 we extend usual propositional logi
 by adopting a slightly moregeneral de�nition of an atom that allows expressions of the form 
= v, where v isan element of the \domain" of a symbol 
. For instan
e, we may write Lo
(Box )=L2 instead of At(Box ; L2). We extend 
ausal logi
 and C in a

ordan
e with thisextension.5.2 Elaborating A
tions by AttributesConsider M
Carthy's elaborations of the Missionaries and Cannibals Puzzle (Se
-tion 2.5). There is only one a
tion, 
rossing, in the basi
 problem. We 
an representthis a
tion by a symbol su
h as 
ross(boat,bank2,1,1) (1 missionary and 1 
anni-bal 
ross to Bank 2 using the boat). Some of M
Carthy's elaborations would requirethat 
ross be given more arguments. In one of the elaborations (Elaboration 17),it is ne
essary to distinguish between rowing fast and rowing slowly, whi
h wouldrequire an expression like 
ross(boat,bank2,1,1,fast). In another elaboration(Elaboration 6), only one missionary and one 
annibal 
an row, whi
h would requireto denote whi
h of the people on the boat 
an row.As M
Carthy [1998℄ noted (Se
tion 2.5), adding arguments to fun
tions andpredi
ates is what we want to avoid: if possible, we want to formalize elaborations byadding postulates. One way to a
hieve this goal is to distinguish between a
tions and\attributes." Attributes are used to elaborate the exe
ution of a
tions. For instan
e,we may denote the a
tion of 
rossing in a boat V by 
ross(V). On the other hand,the destination of this a
tion may be denoted by an attribute symbol to(V) whosevalue is a lo
ation; the number of a group G on a boat V 
rossing may be denotedby an attribute symbol howmany(V,G); the speed of a boat V may be denoted by an50



attribute symbol howfast(V).Su
h elaborations mentioned above will involve extending the formalism byadding new attribute symbols, instead of adding new arguments to the existinga
tion symbols. This allows us to re
e
t elaborations by adding postulates thatdes
ribe the new e�e
ts of the a
tion in terms of the newly introdu
ed attributes,rather than by modifying the existing des
ription.In Se
tion 6.2.7 we show how attributes 
an be represented in an extensionof C.5.3 De�ning New FluentsAttempts to de�ne new 
uents by 
ausal laws in C often do not lead to intuitivelyexpe
ted results. Suppose we add to the des
ription BW in Se
tion 4.2.2 new 
uentsNeighbor(b; b1), meaning that \one of the blo
ks b and b1 is on top of the other."One might be tempted to write the de�nition of Neighbor by the following 
ausallaws: 
aused Neighbor(b; b1) if On(b; b1) _On(b1; b)
aused :Neighbor(b; b1) if :Neighbor(b; b1): (5.1)The se
ond line of (5:1) abbreviates the set of 
ausal laws:i :Neighbor(b; b1)( :i :Neighbor (b; b1):As dis
ussed in Se
tion 3.4, rules like this represent, intuitively, the 
losed-worldassumption: by default, the 
uent Neighbor(b; b1) is assumed to be false.Let us 
all the extended des
ription with (5.1), BWN .Unfortunately, the des
ription (5.1) is not satisfa
tory: it does not express51



that every state satis�es the 
onditionNeighbor(b; b1) � On(b; b1) _On(b1; b); (5.2)or equivalently, that the models of D0 satisfy0 : Neighbor(b; b1) � 0 : On(b; b1) _On(b1; b); (5.3)as one would intuitively expe
t.To see why, 
onsider the literal 
ompletion formula of BW N0 for 0 :Neighbor (b; b1)and its negation:0 :Neighbor (b; b1)� 0:Neighbor (b; b1) _ (On(b; b1) _On(b1; b))0 ::Neighbor (b; b1)� 0::Neighbor (b; b1): (5.4)The se
ond equivalen
e is a tautology, and the impli
ation from the left to right ofthe �rst equivalen
e is also a tautology. Thus (5.4) is equivalent to0 : On(b; b1) _On(b1; b) � 0 : Neighbor(b; b1);whi
h is weaker than (5.3).The semanti
s of C needs to be 
orre
ted to avoid su
h anomaly. In Se
-tion 6.2.3, we show how this 
an be a
hieved by introdu
ing a new type of 
uent
onstants 
alled \stati
ally determined."5.4 Rigid ConstantsImagine that we want to enhan
e the des
ription of the Blo
ks World by spe
ifyingthe materials that the blo
ks are made of, say wood or metal, or by des
ribing thesize of the blo
ks. Su
h 
hara
teristi
s of blo
ks are not 
uents be
ause they do not52



depend on the state of the system. We 
all them rigid. Rigidity 
an be modeled inC using inertial 
uents: if no a
tion is assumed to a�e
t an inertial 
uent, then itsvalue never 
hanges. But this treatment looks somewhat unnatural.Modeling rigidity by 
uents is also 
omputationally ineÆ
ient. As des
ribedin Se
tion 6.2.2, in turning an a
tion des
ription into a 
ausal theory, CCal
 gen-erates atoms i :
 for 
uent 
onstants 
 and time stamps i. If the value of 
 does not
hange over time, then there is no need to generate 
opies of these atoms. This makesthe size of the translation more 
ompa
t, whi
h brings 
omputational eÆ
ien
y. InSe
tion 6.2.6, we introdu
e rigid 
onstants in an extension of C.5.5 Defeasible Causal LawsIn the CCal
 formalization of M
Carthy's elaborations of the Missionaries andCannibals Puzzle from [Lifs
hitz, 2000℄, it was ne
essary to make some 
ausal laws\defeasible." For instan
e the formalization of the basi
 problem 
ontains a propo-sition saying that the boat 
an hold two people:
onstraint 
apa
ity(boat; 2): (5.5)In one of the elaborations, it was required to 
hange this assumption: the boat 
anhold three people, instead of two. Rather than by removing the line above, the samee�e
t 
ould be obtained by adding 
ausal laws, in the spirit of elaboration toleran
e.However, sin
e language C 
annot represent defeasible 
ausal laws, that paperhad to rely on 
ausal logi
 dire
tly to be able to make (5.5) defeasible. Moreover inthe version of CCal
 used there, only a few propositions, su
h as 
onstraint andnonexe
utable, 
ould be made defeasible.53



In Se
tion 6.2.4, we illustrate how an enhan
ement of C over
omes the lim-itations: the semanti
s of defeasible 
ausal laws 
an be explained in terms of theenhan
ement of C; any 
ausal law 
an be made defeasible. Moreover CCal
 pro-vides a 
onvenient syntax for using defeasible 
ausal laws.5.6 Additive FluentsSome a
tion languages, in
luding C, allow us to talk about the e�e
t of the 
on
ur-rent exe
ution of a
tions. The 
ausal lawWalk (l) 
auses At(Monkey ; l)is understood in C to imply that At(Monkey ; l) holds after any event that involvesthe exe
ution of Walk(l), even if other a
tions are exe
uted 
on
urrently.To distinguish the events involving the 
on
urrent exe
ution of a
tions a1and a2 from the events that involve a1 but not a2, we 
an writea1 ^ a2 
auses : : : ;a1 ^ :a2 
auses : : : :In some 
ases, unfortunately, the 
auses 
onstru
t of C and similar languagesis not dire
tly appli
able to des
ribing the e�e
t of the 
on
urrent exe
ution ofa
tions. Consider, for instan
e, the e�e
t of the a
tion Buy(x; n) (
ustomer x buys nbooks) on the number of books available at a bookstore. The 
ausal lawBuy(x; n) 
auses Available(k�n) if Available(k) (5.6)is appli
able in the 
ase when no 
ustomer other than x is buying books at the sametime: k � n books are available after the event if there were k books in the store54



before the event. But (5.6) is not a

eptable if we are interested in the 
on
urrentexe
ution of su
h a
tions. For instan
e, a

ording to (5.6), the a
tions Buy(x1; 3)and Buy(x2; 5) 
annot be exe
uted 
on
urrently, although intuitively we expe
t thenumber to be de
remented by 8.Available is an example of an \additive" 
uent. An additive 
uent is a 
uentwith numeri
al values su
h that the e�e
t of several 
on
urrently exe
uted a
tionson it 
an be 
omputed by adding the e�e
ts of the individual a
tions. For example,the gross re
eipts of a store are represented by an additive 
uent: when several
ustomers pay to di�erent 
ashiers simultaneously, the gross re
eipts will in
reaseby the sum of the \
ontributions" of the individual 
ustomers. The voltage of abattery is an additive 
uent: the in
rease in voltage obtained by adding several 
ellsto a battery 
an be 
omputed by addition. In me
hani
s, the velo
ity of a parti
le isan additive 
uent, be
ause the net e�e
t of several for
es on this 
uent over a timeinterval equals the sum of the e�e
ts of the individual for
es. Additive 
uents areubiquitous; this may be the reason why adding numbers is su
h a useful operation.As noted above, the e�e
t of the 
on
urrent exe
ution of a
tions on an addi-tive 
uent is not 
overed by the \built-in" treatment of the 
on
urrent exe
ution ofa
tions in C. This problem was �rst observed in [Lifs
hitz, 2000℄ in 
onne
tion withthe elaborations of the Missionaries and Cannibals Puzzle that involve 
on
urrenta
tions. One of the postulates adopted in that paper is that if the number of mem-bers of a group (say, missionaries) in some lo
ation (say, the left bank of the river)equals x, and a vessel arrives with y members of the group aboard, the numberwill be
ome x + y. But this may be in
orre
t when several a
tions are exe
uted
on
urrently. If, for instan
e, a boat is taking y missionaries to the left bank while55



another boat is taking z missionaries to the right bank then the number will be
omex+y�z. To treat su
h examples 
orre
tly, we need to view the number of membersof a group in a lo
ation as an additive 
uent.In Chapter 8 we show how the new language 
an be used for representingadditive 
uents; in Chapter 9 we apply the new version of CCal
, whi
h 
an rep-resent additive 
uents and defeasible 
ausal laws, to formalizing a few elaborationsof MCP.5.7 Nonde�nite Causal TheoriesAs dis
ussed in Se
tion 3.4, it is straightforward to embed propositional logi
 into
ausal logi
. The other dire
tion, embedding 
ausal logi
 into propositional logi
, ismore diÆ
ult. Completion gives us a partial answer: if a theory is de�nite, it 
anbe turned into a propositional theory.In Chapter 10 we show how to turn arbitrary 
ausal theories into proposi-tional formulas. This pro
ess in
ludes 
ompletion as a spe
ial 
ase. It also allows usto turn any nonde�nite theory into an equivalent de�nite theory. Some of the the-orems about 
ausal logi
 
an be proved more easily by turning a 
ausal theory intoan equivalent propositional theory, rather than by applying the �xpoint de�nitiondire
tly. In Chapter 11 we show, for instan
e, how the idea 
an be used to provethe theorem on \splitting" 
ausal theories.Nonde�nite theories 
an be useful also in appli
ations to representing 
om-monsense knowledge. Although de�nite theories are widely appli
able, there are
ases where nonde�nite theories yield more natural formalizations. An a
tion do-main of this kind, due to Mar
 Dene
ker, is dis
ussed in [M
Cain, 1997, Se
tion56



7.5℄: Imagine that there are two gears, ea
h powered by a separate motor.There are swit
hes that toggle the motors on and o�, and there is abutton that moves the gears so as to 
onne
t or dis
onne
t them fromone another. The motors turn the gears in opposite (i.e., 
ompatible)dire
tions. A gear is 
aused to turn if either its motor is on or it is
onne
ted to a gear that is turning.A nonde�nite a
tion des
ription representing this example in C is shown inFigure 5.1. The expression default Fstands for 
aused F if F(\There is a 
ause for F if F holds").5.8 Extending CCal
M
Cain's CCal
 a

epts C as an input language, but it does not handle the ex-tended C presented in the next 
hapter whi
h over
omes the limitations dis
ussedhere. In Se
tion 6.5 we present the new version of CCal
 that implements theextended language.Besides the implementation of the theoreti
al extensions, the new CCal
provides more 
onvenient features for 
ompa
t representation. For instan
e, M
-Cain's CCal
 
ould not automati
ally evaluate arithmeti
al expressions in rules,57



Notation: x ranges over 1; 2.Simple 
uent 
onstants: Domains:MotorOn(x), Turning(x), Conne
ted BooleanA
tion 
onstants: Domains:Toggle(x);Push BooleanCausal Laws:inertial MotorOn(x)inertial Conne
tedToggle(x) 
auses MotorOn(x) if :MotorOn(x)Toggle(x) 
auses :MotorOn(x) if MotorOn(x)Push(x) 
auses Conne
ted if :Conne
tedPush(x) 
auses :Conne
ted if Conne
ted
aused Turning(x) if MotorOn(x)default :Turning(x)
aused Turning(1) � Turning(2) if Conne
tedFigure 5.1: Formalization of Two Gears in C
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and relied on the \is" predi
ate in underlying Prolog, so that to write a 
ausal lawsu
h as (5.6) one had to write something likebuy(X,N) 
auses available(K1) if available(K) & K1 is K-N.Another improvement is related to grounding. Rather than blindly repla
ingea
h s
hemati
 variable in 
ausal laws with every obje
t in the range of the 
orre-sponding sort, the new version of CCal
 allows us to limit grounding to instan
esof the variables that satisfy a given test. We will see an example in Se
tion 6.5.Other new features of CCal
 will be dis
ussed in Se
tion 6.5 also.
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Chapter 6
Multi-valued Causal Logi
,A
tion Language C+ andCCal
 2.0

To over
ome the diÆ
ulties dis
ussed in the previous 
hapter, we have extendedthe M
Cain{Turner 
ausal logi
, proposed a new a
tion language C+ based on thisextension, and redesigned and reimplemented CCal
 a

ordingly.6.1 Multi-valued Causal Logi
6.1.1 Multi-valued FormulasWe slightly extend formulas of the usual propositional logi
 to be able to representmulti-valued 
uents. Di�erently from propositional logi
, where ea
h symbol ismapped to either f or t, in \multi-valued" propositional logi
 de�ned in this se
tion,60



a symbol 
an be mapped to an element of a 
ertain �nite set of values.A (multi-valued propositional) signature is a set � of symbols 
alled 
on-stants, along with a nonempty �nite set Dom(
) of symbols, disjoint from �, assignedto ea
h 
onstant 
. We 
all Dom(
) the domain of 
. An atom of a signature � isan expression of the form 
=v (\the value of 
 is v") where 
 2 � and v 2 Dom(
).A formula of � is a propositional 
ombination of atoms.For instan
e, the following atoms may be used to des
ribe the lo
ation of anagent in an apartment:Lo
=Kit
hen;Lo
=LivingRoom ;Lo
=Bathroom ;Lo
=Bedroom (6.1)where Lo
 is a 
onstant with the domainfKit
hen ;LivingRoom ;Bathroom ;Bedroomg:An interpretation of � is a fun
tion that maps every element of � to anelement of its domain. An interpretation I satis�es an atom 
=v (symboli
ally,I j= 
=v) if I(
) = v. For instan
e, the fa
t that the agent is in the kit
hen 
an bedes
ribed by an interpretation satisfying the �rst of the atoms in (6.1), so that theothers are not satis�ed.The satisfa
tion relation is extended from atoms to arbitrary formulas a
-
ording to the usual truth tables for the propositional 
onne
tives.The following de�nitions are standard in logi
. Two formulas or sets offormulas are equivalent to ea
h other if they are satis�ed by the same interpretations.A model of a set � of formulas is an interpretation that satis�es all formulas in �.If � has a model, it is said to be 
onsistent, or satis�able. If every model of �satis�es a formula F then we say that � entails F and write � j= F .61



A Boolean 
onstant is one whose domain is the set of truth values ff; tg. ABoolean signature is one whose 
onstants are Boolean. If 
 is a Boolean 
onstant,we will sometimes use 
 as shorthand for the atom 
=t. When the syntax andthe semanti
s de�ned above are restri
ted to Boolean signatures and to formulasthat do not 
ontain f, they turn into the usual syntax and semanti
s of 
lassi
alpropositional formulas. In prin
iple, the domain of a 
onstant 
an be a singleton.Re
all that, a

ording to the de�nition, an atom is an equality whose left-hand side is a 
onstant 
, and whose right-hand side is an element of the domainof 
. An expression of the form 
 = d, where both 
 and d are 
onstants, will beunderstood as an abbreviation for the disjun
tion_v2Dom(
)\Dom(d)(
=v ^ d=v):The symbol 6= will be used to abbreviate the negation of an equality of either kind.6.1.2 Multi-valued Causal Logi
By a (multi-valued) 
ausal rule we mean an expression of the form F ( G (\F is
aused if G is true"), where F and G are multi-valued formulas of a given signature �.A (multi-valued) 
ausal theory is a �nite set of 
ausal rules. From now on, we willoften drop the word \multi-valued."As in the Boolean 
ase, the redu
t T I of T relative to I is the set of theheads of all rules in T whose bodies are satis�ed by I; we say that I is a model of Tif I is the unique model of T I .For example, take � = f
g; Dom(
) = f1; : : : ; ng62



for some positive integer n, and let the only rule of T be
=1( 
=1: (6.2)The interpretation I de�ned by I(
) = 1 is a model of T . Indeed,T I = f
=1g;so that I is the only model of T I . Furthermore, T has no other models. Indeed,for any interpretation J su
h that J(
) 6= 1, T J is empty, and I is a model of T Jdi�erent from J .It follows that 
ausal theory (6.2) entails 
=1.Consider now what happens if we add the rule
=2( > (6.3)to this theory. The redu
t of the extended theory relative to any interpretationin
ludes the atom 
=2. Consequently, the interpretation assigning 2 to 
 is the onlypossible model of the extended theory. It is easy to see that this is indeed a model.The extended theory does not entail 
 = 1; it entails 
 = 2. This exampleillustrates the nonmonotoni
ity of the logi
. Intuitively, rule (6.2) expresses that 1is \the default value" of 
, and rule (6.3) overrides this default.If the rule 
=2( 
=2 (6.4)is added to (6.2) instead of (6.3), we will get a 
ausal theory with two models. Thistheory entails 
=1 _ 
=2.
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6.1.3 Multi-valued CompletionAs in the M
Cain{Turner 
ausal logi
, a 
ausal theory is de�nite if the head ofevery rule of it is an atom or ?. For instan
e, 
ausal theory (6.2) is de�nite. Causaltheory (3.4) from Se
tion 3.3 is, stri
tly speaking, not de�nite, but it 
an be turnedinto a de�nite theory by repla
ing :q in the head of the last rule with the equivalentatom: p ( q;q ( q;q= f ( :q: (6.5)The \multi-valued 
ompletion" pro
ess des
ribed below extends the literal
ompletion for the M
Cain{Turner 
ausal theories. It redu
es the problem of �ndinga model of a de�nite 
ausal theory to the problem of �nding a model of a set offormulas.Take a de�nite 
ausal theory T of a signature �. We say that an atom 
=vof � is trivial if the domain of 
 is a singleton. For ea
h nontrivial atom A, the
ompletion formula for A is the formulaA � G1 _ � � � _Gnwhere G1; : : : ; Gn (n � 0) are the bodies of the rules of T with head A. The(multi-valued) 
ompletion of T is obtained by taking the 
ompletion formulas for allnontrivial atoms of �, along with the formula :F for ea
h 
onstraint ?( F in T .As in the M
Cain{Turner 
ausal logi
, the following proposition holds.Proposition 1 The models of a de�nite 
ausal theory are pre
isely the models ofits 
ompletion. 64



For instan
e, the 
ompletion of (6.2) is
=1� 
=1;
=v �? (v 2 Dom(
) n f1g) (6.6)if jDom(
)j > 1. Otherwise the atom 
= 1 is trivial, and the 
ompletion is empty.In both 
ases, the only model of the 
ompletion is de�ned by I(
) = 1. As dis
ussedin Se
tion 6.1.2, this is the only model of (6.2).After adding rule (6.3), the 
ompletion turns into
=1� 
=1;
=2�>;
=v �? (v 2 Dom(
) n f1; 2g):The only model of these formulas is de�ned by I(
) = 2.The 
ompletion of (6.5) is p� q;p= f�?;q � q;q= f�:q; (6.7)
whi
h 
orresponds to (3.5).The assertion of Proposition 1 would be in
orre
t if we did not restri
t the
ompletion pro
ess to nontrivial atoms. Consider, for instan
e, the 
ausal theorywhose signature 
onsists of one 
onstant 
 with the domain f0g, and whose set ofrules is empty. If the pro
ess of 
ompletion were extended to trivial atoms then the
ompletion of this theory would be 
=0 � ?, whi
h is in
onsistent.65



6.2 A
tion Language C+6.2.1 Syntax of C+Constants in C+ are divided into two groups: 
uent 
onstants and a
tion 
onstants.Furthermore, the 
uent 
onstants are assumed to be partitioned into simple andstati
ally determined. By a 
uent formula we mean a formula su
h that all 
onstantso

urring in it are 
uent 
onstants. An a
tion formula is a formula that 
ontains atleast one a
tion 
onstant and no 
uent 
onstants.A stati
 law is an expression of the form
aused F if G (6.8)where F and G are 
uent formulas. An a
tion dynami
 law is an expression of theform (6.8) in whi
h F is an a
tion formula and G is a formula. A 
uent dynami
law is an expression of the form
aused F if G after H (6.9)where F and G are 
uent formulas and H is a formula, provided that F does not
ontain stati
ally determined 
onstants. A 
ausal law is a stati
 law, an a
tiondynami
 law, or a 
uent dynami
 law. An a
tion des
ription is a �nite set of 
ausallaws. An a
tion des
ription D is de�nite if the head of every 
ausal law of D is anatom or ?.6.2.2 Semanti
s of C+Just as the semanti
s of C is de�ned in terms of the M
Cain{Turner 
ausal logi
,the semanti
s of C+ 
an be de�ned in terms of multi-valued 
ausal logi
.66



For any a
tion des
ription D and any nonnegative integer m, the 
ausaltheory Dm is de�ned as follows. As in C, the signature of Dm 
onsists of thepairs i :
 su
h that� i 2 f0; : : : ;mg and 
 is a 
uent 
onstant of D, or� i 2 f0; : : : ;m� 1g and 
 is an a
tion 
onstant of D.The domain of i :
 is the same as the domain of 
.The rules of Dm are i :F ( i :G (6.10)for every stati
 law (6.8) in D and every i 2 f0; : : : ;mg, and for every a
tion dynami
law (6.8) in D and every i 2 f0; : : : ;m� 1g;i+1:F ( (i+1:G) ^ (i :H) (6.11)for every 
uent dynami
 law (6.9) in D and every i 2 f0; : : : ;m� 1g;0 :
=v( 0:
=v (6.12)for every simple 
uent 
onstant 
 and every v 2 Dom(
).Note that the de�nition of Dm treats simple 
uent 
onstants and stati
allydetermined 
uent 
onstants in di�erent ways: rules (6.12) are in
luded only when 
is simple, so that the initial values of stati
ally determined 
uents are not assumedto be exogenous (see Se
tion 4.1.2). We will see in the next se
tion why this isuseful. Similarly, the assumption (4.9) that the exe
ution of an a
tion is exogenousis not built into the semanti
s of C+, so that we need to write it expli
itly if an67



a
tion is exogenous. We will see later in Se
tion 6.2.4 and Se
tion 8.3 when it isne
essary to lift the exogeneity assumption for a
tions.The de�nitions of states, transitions, histories are the same as in C (Se
-tion 4.1.3).Proposition 2 For any transition hs; e; s0i, s and s0 are states.We identify an interpretation I in the sense of Se
tion 6.1.1 with the set ofatoms that are satis�ed by this interpretation, that is to say, with the set of atomsof the form 
 = I(
). This 
onvention allows us to represent any interpretation ofthe signature of Dm in the form(0:s0) [ (0 :e0) [ (1 :s1) [ (1 :e1) [ � � � [ (m :sm) (6.13)where s0; : : : ; sm are interpretations of �fl, and e1; : : : ; em�1 are interpretationsof �a
t.Proposition 3 For any m > 0, an interpretation (6.13) of the signature of Dm isa model of Dm i� hs0; e0; s1; e1; : : : ; sm�1; em�1; smiis a history of D.6.2.3 Stati
ally Determined FluentsThe problem with de�ned 
uents dis
ussed in Se
tion 5.3 
an be 
orre
ted by 
las-sifying these 
uents as stati
ally determined. For instan
e, in the extended Blo
ksWorld domain BW N in Se
tion 5.3, if 
uents Neighbor(b; b1) are de
lared stati-
ally determined, then the extent of the Neighbor relation is de�ned by the equa-tion (5.2), as desired. To see this, note that the 
ompletion formulas of BW N0 for68



0:Neighbor (b; b1) and its negation are now0:Neighbor (b; b1)� 0:On(b; b1) _On(b1; b)0 ::Neighbor (b; b1)� 0::Neighbor (b; b1): (6.14)The se
ond equivalen
e is a tautology, and the �rst equivalen
e is exa
tly (5.3).The transition system des
ribed by BWN is isomorphi
 to the one des
ribedby BW : every state of the latter 
an be turned into the 
orresponding state of theformer by assigning to Neighbor(b; b1) the truth values de�ned by (5.2).The following theorem des
ribes a general method of de�ning 
uents in C+.Proposition 4 Let D be an a
tion des
ription whose signature is �, Q a set of stat-i
ally determined 
uent 
onstants su
h that �\Q = ;, and DQ an a
tion des
riptionwhi
h 
onsists of 
ausal laws of the form
aused q if Fwhere q 2 Q and F is a formula of �, and the 
ausal laws
aused :q if :q:for all q 2 Q. Then the transition system of D [DQ is isomorphi
 to the transitionsystem of D.6.2.4 Defeasible Causal LawsUsing stati
ally determined 
uents, any stati
 law 
an be made defeasible. A defea-sible stati
 law has the form
aused F if G unless ab (6.15)69



where ab is a stati
ally determined 
uent 
onstant. It stands for the pair of 
ausallaws 
aused F if G ^ :abdefault :ab (6.16)(Re
all that the se
ond law stands for 
aused :ab if :ab). Under ex
eptional
ir
umstan
es where ab is true, 
ausal law (6.15) be
omes ine�e
tive.For instan
e, a defeasible form of proposition (5.5) 
an be represented in thenew language by 
onstraint Capa
ity(Boat)=2 unless AbBoat :Similarly, any a
tion dynami
 law 
an be made defeasible: an a
tion dy-nami
 law (6.15) where ab is a Boolean a
tion 
onstant stands for the pair of 
ausallaws (6.16).A defeasible 
uent dynami
 law has the form
aused F if G after H unless ab (6.17)where ab is a Boolean a
tion 
onstant. It stands for the pair of 
ausal laws
aused F if G after H ^ :abdefault :ab: (6.18)Under ex
eptional 
ir
umstan
es where ab is true, 
ausal law (6.17) be
omes inef-fe
tive.For instan
e, in the Monkey and Bananas domain,PushBox (l) 
auses At(Box ; l) unless AbBox (6.19)70



expresses that pushing the box normally involves 
hanging the lo
ation of the box.Suppose we want to enhan
e the des
ription by postulating that the box is notmovable if it is too big. This 
an be done by adding
aused AbBox if BigBox : (6.20)If the box is too big, then AbBox is 
aused and this makes (6.19) ine�e
tive. On theother hand, intuitively, when there are no ex
eptions, the unless 
lause in (6.19)
an be disregarded. The following proposition makes the 
laim pre
ise:Proposition 5 (a) Let D be an a
tion des
ription, L a stati
 
ausal law, and aba Boolean stati
ally determined 
uent. If ab does not o

ur in the heads of any
ausal laws of D, then the transition system des
ribed by D [ fL unless abgis exa
tly the transition system des
ribed by D [ fLg [ f
aused :abg.(b) Let D be an a
tion des
ription, L a dynami
 
ausal law, and ab a Booleana
tion 
onstant. If ab does not o

ur in the heads of any 
ausal laws of D, thenthe transition system des
ribed by D [ fL unless abg is exa
tly the transitionsystem des
ribed by D [ fLg [ f
aused :ab after >g.Noti
e that this method of making 
ausal laws defeasible was not possiblein C: stati
ally determined 
uents were not available and a
tion 
onstant ab 
ouldnot be made non-exogenous due to the built-in exogeneity assumption (4.9) for alla
tions.6.2.5 Solving the Quali�
ation Problem in C+The quali�
ation problem is the problem of representing properties of a
tions in away that makes new 
onditions for the su

essful performan
e of an a
tion express-71



ible by adding new propositions. This is a spe
ial 
ase of the problem of elaborationtoleran
e.We 
an distinguish between two kinds of 
onditions for the su

essful per-forman
e of an a
tion [Reiter, 1991℄. It may happen that the a
tion is simply notexe
utable when the 
ondition is violated. Or it may happen that some of the usuale�e
ts of the a
tion do not hold in the resulting state even if the a
tion was exe
uted.A

ordingly, we 
an distinguish between two parts of the quali�
ation problem|onedeals with exe
utability quali�
ations, and the other with e�e
t quali�
ations.We 
an further distinguish between two kinds of exe
utability quali�
ations|those stated expli
itly, in terms of pre
onditions, and those expressed impli
itly by
onstraints on the states. For instan
e, the fa
t that the monkey 
annot walk if itis on the box 
an be expressed expli
itly by adding nonexe
utable proposition asin (4.16) (Se
tion 4.2.1); the fa
t that one 
annot buy more books than those avail-able in the bookstore (Se
tion 5.6) is expressed impli
itly by the assumption thatAvailable has nonnegative values. Exe
utability quali�
ations 
an be represented inboth C and C+.On the other hand, e�e
t quali�
ations 
an be expressed in C+, but not in C;the C+ solution involves the use of defeasible 
ausal laws whi
h C 
annot represent.As in the previous se
tion, the fa
t that a very big box a

ounts for an ex
eption tothe usual e�e
t of pushing a
tion 
an be represented by the 
ombination of 
ausallaw (6.19) that allows ex
eptions and 
ausal law (6.20) that spe
i�es an ex
eption.
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6.2.6 Rigid ConstantsA 
uent 
onstant 
 in the signature of an a
tion des
ription D is rigid (relativeto D) if, for every transition hs; e; s0i in the transition system represented by D,s0(
) = s(
). Intuitively, rigid 
onstants represent the 
uents whose values are nota�e
ted by any events.The expression rigid 
stands for the set of 
ausal laws
aused ? if :(
=v) after 
=vfor all v 2 Dom(
). It is 
lear that 
 is rigid relative to any a
tion des
ription
ontaining these laws.As noted in Se
tion 5.4, one of the reasons why rigid 
onstants are interestingis that, under some 
onditions, their presen
e allows us to make the 
ausal theoriesDm more 
ompa
t, whi
h 
an be 
omputationally advantageous. Let R be a set of
uent 
onstants that are rigid relative to D. Denote by DRm the 
ausal theory whose
onstants and 
ausal rules are obtained from the 
onstants and 
ausal rules of Dmby dropping the time stamps before ea
h 
onstant from R. For any interpretation Iof the signature of Dm, by IR we denote the interpretation of the signature of DRmde�ned by the formulas IR(
) = I(0 : 
) if 
 2 R;IR(i :
) = I(i :
) if 
 =2 R:Proposition 6 If(i) every 
onstant in R is stati
ally determined, and73



(ii) for every 
ausal law in D that 
ontains a 
onstant from R in the head, all
onstants o

urring in this law belong to R,then the mapping I 7! IR is a 1{1 
orresponden
e between the models of Dm andthe models of DRm.Thus dropping the time stamps in front of the rigid 
onstants from R doesnot a�e
t the meaning of Dm if, �rst, R 
ontains no simple 
onstants, and se
ond,no 
onstant from R \
ausally depends" on a 
onstant that does not belong to R.The following example shows that the assertion of Proposition 6 would bein
orre
t without the �rst 
ondition. Take D to berigid pdefault pwhere p is a Boolean simple 
uent, and let R = fpg. Then D1 is? ( (1 :p) ^ :(0 :p)? ( :(1 :p) ^ (0 :p)0 :p ( 0:p1:p ( 1:p0::p ( 0::pand DR1 is ? ( p ^ :p? ( :p ^ pp ( p:p ( :p:The interpretation fp = fg is a model of DR1 , but it does not have the form IR forany model I of D1. 74



The following example shows that the assertion of Proposition 6 would bein
orre
t without the se
ond 
ondition. Take D to be
aused p if qexogenous q;where p and q are stati
ally determined 
uent 
onstants, and let R = fpg. Then D1is 0 :p ( 0:q1:p ( 1:q0:q ( 0:q1:q ( 1:q:0:q ( :0:q:1:q ( :1:qand DR1 is p ( 0:qp ( 1:q0:q ( 0:q1:q ( 1:q:0:q ( :0:q:1:q ( :1:q:The interpretation fp = t; 0:q = f; 1:q = tg is a model of DR1 , but it does not havethe form IR for any model I of D1.6.2.7 A
tion AttributesSynta
ti
ally an attribute is a non-Boolean exogenous a
tion 
onstant. The domainof every attribute of an a
tion in
ludes the spe
ial value None, whi
h the attribute75



is required to take if and only if the a
tion is not exe
uted. For this purpose wepostulate 
aused ? if > after (attr =None) � a (6.21)for every attribute attr of a
tion a.An expression of the form always Fin C+ stands for 
aused ? if > after F:Thus (6.21) 
an be abbreviated asalways (attr =None) � a:Note that this treatment of attributes was not possible in C, sin
e everya
tion 
onstant in C was Boolean.6.3 Comparison with ADLTo 
larify the relation of C+ to the language ADL mentioned in Se
tion 2.4, we showhow Pednault's idea of \update 
onditions" 
an be in
orporated into the synta
ti
framework of Se
tion 6.2.1.As a preliminary step, 
onsider a multi-valued propositional signature �whose 
onstants have the same domain Dom . The elements of Dom will be 
alledvalues. The 
on
ept of a formula of a signature � 
an be extended as follows. Aterm is a 
onstant of �, a value, or a variable (from a �xed in�nitely 
ountableset). An extended atom is an expression of the form t = v where t is a term and76



v is a value. Extended formulas are formed from atoms using propositional 
on-ne
tives and quanti�ers, as in �rst-order logi
. We will sometimes identify a 
losedextended formula F with the formula in the sense of Se
tion 6.1.1 that is obtainedfrom F as follows: �rst, eliminate from F all quanti�ers by repla
ing ea
h subfor-mula of the form 8xG(x) with Vv G(v), where v ranges over Dom , and ea
h 9xG(x)with Wv G(v); se
ond, repla
e all o

urren
es of atoms of the form v = v with >,and all o

urren
es of atoms of the form v = w, where v is a value di�erent fromw, with ?. This 
onvention allows us, for instan
e, to talk about the satisfa
tionrelation between interpretations of � and 
losed extended formulas.Consider a multi-valued signature � partitioned into 
uent 
onstants �fl anda
tion 
onstants �a
t , su
h that all 
uent 
onstants have the same domain, and alla
tion 
onstants are Boolean. An ADL a
tion des
ription 
onsists of� a 
losed extended formula Pre
onda of signature �fl for every a
tion 
on-stant a, and� an extended formula Updatea
(x) of signature �fl, with no free variables otherthan x, for every a
tion 
onstant a and every 
uent 
onstant 
.An ADL a
tion des
ription is 
onsistent if, for every a
tion 
onstant a, every 
uent
onstant 
, and every pair of distin
t values v and w, formula Pre
onda entails:(Updatea
 (v) ^Updatea
 (w)):Let D be a 
onsistent ADL a
tion des
ription, s and s0 interpretations of �
 ,and a an a
tion 
onstant. We say that s0 is the result of exe
uting a in s a

ordingto D if s j= Pre
onda77



and, for every 
uent 
onstant 
,s0(
) = 8>><>>:v if s j= Updatea
(v);s(
) if s j= :9xUpdatea
(x):Now we will de�ne a translation from this version of ADL into C+. In the C+
ounterpart of an ADL a
tion des
ription D, all 
uent 
onstants of D are treatedas simple. The propositions of this C+ a
tion des
ription areinertial 
exogenous anonexe
utable a if :Pre
ondaa 
auses 
=v if Updatea
(v) (6.22)
for every 
uent 
onstant 
, a
tion 
onstant a, and value v.In the following theorem, we identify a Boolean a
tion 
onstant e with theevent that maps e to t and maps every other a
tion 
onstant to f.Theorem 1 For any 
onsistent ADL a
tion des
ription D, any interpretations s; s0of �fl, and any e 2 �a
t , s0 is the result of exe
uting e in s a

ording to D i�transition hs; e; s0i is a transition of the 
ounterpart of D in language C+.The version of ADL des
ribed above is signi�
antly less expressive than C+.ADL is mapped here into the subset of C+ that in
ludes no stati
ally determined
uent 
onstants; it has neither 
on
urrent a
tions nor non-inertial 
uents; there areno stati
 laws or a
tion dynami
 laws in it, and 
onsequently it does not solve therami�
ation problem.
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6.4 Eliminating Multi-valued ConstantsIn fa
t, the extension of 
ausal logi
 by multi-valued 
onstants des
ribed in this
hapter is not essential in the sense that multi-valued 
onstants 
an be eliminatedin favor of Boolean 
onstants: we 
an repla
e a multi-valued 
onstant 
 with a familyof Boolean 
onstants, one for ea
h element of Dom(
). In this se
tion we show howthis idea applies to multi-valued formulas and then extend it to multi-valued 
ausaltheories and to C+.6.4.1 Eliminating Multi-valued Constants from FormulasBegin with a multi-valued propositional signature �, and a 
onstant 
 2 �. By �
we denote the signature obtained from � by repla
ing 
onstant 
 with Boolean
onstants 
(v) for all v 2 Dom(
).Let � be a set of formulas of signature �, and �0 a set of formulas of sig-nature �
. We will say that �0 
orre
tly redu
es 
 in � (to a family of Boolean
onstants) if the following holds: an interpretation of �
 is a model of �0 i� it
orresponds to a model of �.Let elim
 be the formula_v 
(v)=t ^ v̂ 6=v0(
(v)= f _ 
(v0)= f) : (6.23)Noti
e that the models of elim
 are pre
isely the interpretations of �
 that 
orre-spond to an interpretation of �.For any formula F of �, by F
 we denote the formula obtained from F byrepla
ing ea
h o

urren
e of an atom 
=v with 
(v)=t. The elimination of 
 from �is the set of formulas fF
 : F 2 �g [ felim
g.79



Proposition 7 For any set � of formulas and any 
onstant 
, the elimination of 
from � 
orre
tly redu
es 
 in �.6.4.2 Eliminating Multi-valued Constants from Causal TheoriesBegin with a 
ausal theory T whose signature is �, and a 
onstant 
 2 �. We under-stand the notation �
 as in the previous se
tion. We will say that a 
ausal theory T 0with signature �
 
orre
tly redu
es 
 in T (to a family of Boolean 
onstants) if thefollowing holds: an interpretation of �
 is a model of T 0 i� it 
orresponds to a modelof T .General Elimination Method for Causal TheoriesThe general elimination of 
 from T is the 
ausal theory with signature �
 obtainedby repla
ing ea
h o

urren
e of an atom 
= v in T with 
(v) = t, and adding the
ausal rule elim
( >: (6.24)Proposition 8 For any 
ausal theory T and any 
onstant 
, the general eliminationof 
 from T 
orre
tly redu
es 
 in T .A drawba
k of this simple elimination method is that rule (6.24) is not de�-nite. For this reason, even in appli
ation to a de�nite theory, this pro
ess leads toa theory that is not de�nite. Sin
e de�niteness is useful, we next introdu
e anotherelimination method that preserves it.
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De�nite Elimination Method for Causal TheoriesThe de�nite elimination of 
 from T is the 
ausal theory with signature �
 obtainedby repla
ing ea
h o

urren
e of an atom 
= v in T with 
(v) = t, and adding the
ausal rules 
(v0)= f( 
(v)=t (6.25)for all v; v0 2 Dom(
) su
h that v 6= v0, and also adding?( v̂ 
(v)= f: (6.26)Proposition 9 For any 
ausal theory T and any 
onstant 
 su
h that (i) Dom(
)has at least two elements, and (ii) every head in whi
h 
 o

urs is an atom, thede�nite elimination of 
 from T 
orre
tly redu
es 
 in T .6.4.3 Eliminating Multi-valued Constants from C+A multi-valued 
onstant in an a
tion des
ription 
an be repla
ed by a family ofBoolean 
onstants using methods similar to those introdu
ed for 
ausal theories.We will say that an a
tion des
ription D0 with signature �
 
orre
tly redu
es
 in D (to a family of Boolean 
uent 
onstants) if the following holds.� s is a state of D i� s0 is a state of D0.� hs; e; s1i is a transition of D i� hs0; e0; s01i is a transition of D0.General Elimination Method for A
tion Des
riptionsThe general elimination of a 
uent or a
tion 
onstant 
 from D is the a
tion des
rip-tion with the signature �
 obtained by repla
ing ea
h o

urren
e of an atom 
=v81



in D with 
(v)=t, and adding the stati
 law
aused elim
 if > : (6.27)Proposition 10 For any a
tion des
ription D and any 
onstant 
, the generalelimination of 
 from D 
orre
tly redu
es 
 in D.De�nite Elimination Method for A
tion Des
riptionsThe de�nite elimination of a 
onstant 
 from D is the a
tion des
ription with a
tionsymbols �a
t
 and 
uent symbols �

 obtained by repla
ing ea
h o

urren
e of anatom 
=v in D with 
(v)=t, and adding the 
ausal laws
aused 
(v0)= f if 
(v)=t (6.28)for all v; v0 2 Dom(
) su
h that v 6= v0, and also adding the 
ausal law
aused ? if v̂ 
(v)= f : (6.29)Proposition 11 For any a
tion des
ription D and any 
onstant 
 su
h that (i)Dom(
) has at least two elements, and (ii) any head in whi
h 
 o

urs is an atom,the de�nite elimination of 
 from D 
orre
tly redu
es 
 in D.6.5 CCal
 2.0We have redesigned and reimplemented CCal
 a

ording to the extensions of the
ausal logi
 and C+ des
ribed above. The new CCal
 is available athttp : ==www:
s:utexas:edu=users=tag=

al
= :82



The input language of the new CCal
 provides a 
onvenient and 
on
ise syntaxfor des
ribing a
tion des
riptions in C+. The new version of CCal
 has beensu

essfully applied to 
hallenging problems in the theory of 
ommonsense knowl-edge [Campbell and Lifs
hitz, 2003℄, [Akman et al., 2004℄ and to the formalizationof multi-agent 
omputational systems [Artikis et al., 2003a; Artikis et al., 2003b;Chopra and Singh, 2003℄.Compare Figures 4.3|4.5 with Figures 6.1|6.3, a des
ription of the monkeyand bananas domain in the language of the new CCal
.Constant de
larations are now divided into two parts: obje
t de
larationsand 
onstant de
larations. Obje
t de
larations de�ne the extents of sorts; 
onstantde
larations de�ne 
uent and a
tion symbols, along with the values to whi
h thesymbols 
an be mapped. The set of values is spe
i�ed in parentheses, as in theexpression inertialFluent(lo
ation):The de
larationonBox,hasBananas :: inertialFluentis understood as shorthand foronBox,hasBananas :: inertialFluent(Boolean)Noti
e that we de
lare the a
tions exogenousA
tion to distinguish themfrom non-exogenous a
tions. Upon reading the de
laration
 :: exogenousA
tion;CCal
 adds exogenous 
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% File: 'monkey':- sortsthing;lo
ation.:- obje
tsmonkey,bananas,box :: thing;l1,l2,l3 :: lo
ation.:- variablesL :: lo
ation.:- 
onstantslo
(thing) :: inertialFluent(lo
ation);onBox,hasBananas :: inertialFluent;walk(lo
ation),pushBox(lo
ation),
limbOn,
limbOff,graspBananas :: exogenousA
tion.Figure 6.1: Monkey and Bananas in the language of the new CCal
|De
larationsto the a
tion des
ription automati
ally.Sin
e we 
an represent the lo
ation of an obje
t using lo
ation-valued 
uentsymbols, we do not need to write rules su
h as (4.14) and (4.15).The linepushBox(L) 
auses walk(L)is the a
tion dynami
 law that stands for
aused walk(L) if pushBox(L). 84



walk(L) 
auses lo
(monkey)=L.nonexe
utable walk(L) if lo
(monkey)=L.nonexe
utable walk(L) if onBox.pushBox(L) 
auses lo
(box)=L.pushBox(L) 
auses walk(L).nonexe
utable pushBox(L) if lo
(monkey)\=lo
(box).
limbOn 
auses onBox.nonexe
utable 
limbOn if lo
(M)\=lo
(box).nonexe
utable 
limbOn if onBox.
limbOff 
auses -onBox.nonexe
utable 
limbOff if -onBox.graspBananas 
auses hasBananas.nonexe
utable graspBananas if hasBananas.nonexe
utable graspBananas if lo
(monkey)\=lo
(bananas).nonexe
utable graspBananas if -onBox.no
on
urren
y.Figure 6.2: Monkey and Bananas in the language of the new CCal
|Causal laws
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:- querymaxstep :: 2..4;0: lo
(ali
e)=l1,lo
(bananas)=l2,lo
(box)=l3;maxstep: hasBananas(ali
e).Figure 6.3: Monkey and Bananas in the language of the new CCal
|PlanningproblemDue to this law saying that pushing the box involves walking, we do not need torepeat the des
ription of the e�e
ts and pre
onditions of pushing whi
h are also thee�e
ts and pre
onditions of walking.The expressionlo
(monkey)\=lo
(box)(Re
all that \= is the ASCII representation of 6=) is shorthand for-[\/L | lo
(monkey)=L & lo
(box)=L℄.Figure 6.3 is a 
ounterpart of Figure 4.5 in the language of the newCCal
. Aquery 
onsists of two 
omponents. One is an integer, 
alled maxstep, that spe
i�esthe length of the paths the query is about. It is similar to the maximum timeimpli
itly spe
i�ed in the goal 
ondition of Figure 4.5; its value determines how toturn the given a
tion des
ription into a sequen
e of 
ausal theories. The se
ond
omponent is a set of formulas 
onstraining the paths of interest.Figure 6.4 is a des
ription of the blo
ks world in the language of the newCCal
. Fun
tion 
onstant lo
 represents an operation that turns a blo
k into a
uent. This 
uent is inertial, and its value is a lo
ation. The operation denoted86



by move turns a blo
k into an a
tion|moving that blo
k. Operation destinationgives an attribute of that a
tion|the destination of the move. Upon pro
essing thede
laration of an attribute attr , CCal
 automati
ally in
ludes (6.21).In the last 
ausal law of Figure 6.4, a \where" 
lause, 
ontaining a test,is appended. The 
lause instru
ts CCal
 to limit grounding to instan
es of thes
hemati
 variables that satisfy the given test, whi
h produ
es less number ofgrounded instan
es: in all instan
es of the last 
ausal law that CCal
 generates, Band B1 are di�erent from ea
h other.Figure 6.5 shows a query on the domain des
ription in Figure 6.4, a 
oun-terpart for the query from Figure 4.7.Figure 6.6 is an extension of Figure 6.4. The word sdFluent in the de
lara-tion ofneighbor(blo
k,blo
k) stands for \stati
ally determined 
uent 
onstant." Re
allthat `++' is the ASCII representation of `_' in the language of CCal
.More features of the language of the new CCal
 will be presented in Se
-tion 7.3.6.6 Proving the Unsolvability of Planning Problems inCCal
For a planning problem des
ribed by a query with its maximum number of stepsspe
i�ed, CCal
 
an �nd, in prin
iple, a plan of that length if su
h a plan exists; ifit determines that a plan of the given length does not exist, it answers no. However,su
h queries 
annot help us establish that a problem 
annot be solved in any number87



% File: 'bw':- sortslo
ation >> blo
k.:- obje
tstable :: lo
ation.:- 
onstantslo
(blo
k) :: inertialFluent(lo
ation);move(blo
k) :: a
tion;destination(blo
k) :: attribute(lo
ation) of move(blo
k).:- variablesB,B1 :: blo
k;L :: lo
ation.% effe
t of moving a blo
kmove(B) 
auses lo
(B)=L if destination(B)=L.% a blo
k 
an be moved only when it is 
learnonexe
utable move(B) if lo
(B1)=B.% a blo
k 
an be moved only to a position that is 
learnonexe
utable move(B)if destination(B)=lo
(B1) & destination(B)\=table.% a blo
k 
an't be moved onto a blo
k that is being moved alsononexe
utable move(B) & move(B1) if destination(B)=B1.% two blo
ks 
an't be on the same blo
k at the same time
onstraint lo
(B)=lo
(B1) ->> lo
(B)=table where B �< B1.Figure 6.4: Blo
ks World in the language of the new CCal

88



% File: 'bw-test':- in
lude 'bw'.:- obje
tsa,b,
,d :: blo
k.:- query% initial 
ondition goal%% a 
 b d% b d a 
% --------- ---------maxstep :: 1..100;0: lo
(a)=b, lo
(b)=table, lo
(
)=d, lo
(d)=table;maxstep: lo
(a)=table, lo
(b)=a, lo
(
)=table, lo
(d)=
.Figure 6.5: A query in the Blo
ks World with four blo
ks
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% File: 'bw-neighbor':- in
lude 'bw'.:- 
onstantsneighbor(blo
k,blo
k) :: sdFluent.:- variablesB, B1 :: blo
k;L :: lo
ation.% definition of neighbor
aused neighbor(B,B1) if lo
(B)=B1 ++ lo
(B1)=B.default -neighbor(B,B1).Figure 6.6: De�nition of neighborof steps. For instan
e, every elaboration of MCP formalized in [Lifs
hitz, 2000℄ hasa solution, so that by spe
ifying the number of steps to try, CCal
 found one.However, some other elaborations in the M
Carthy's list are not solvable. Forexample, one elaboration asks whether it is possible to have a solution if there arefour missionaries and four 
annibals instead of three in ea
h group.A well-known general method of using invariants helps us prove the unsolv-ability of planning problems. As dis
ussed in [M
Carthy, 1998℄, we need to 
he
kthe following three 
onditions given a property I of states:� the initial state satis�es I,� every state that satis�es I is not a goal state,� in every transition hs; e; s0i where s satis�es I, s0 also satis�es I.In terms of transition systems, the 
onditions ensure that every state that is90



rea
hable from the initial state satis�es the invariant but the goal state does not,so that it is not possible to rea
h a goal state from the initial state. For instan
e,an invariant for the unsolvable problem mentioned above is that either the boat ison the �rst bank on whi
h there are more than 2 missionaries, or the boat is onthe se
ond bank on whi
h there are less than 3 missionaries. On
e a property Iis sele
ted, 
he
king that it satis�es the three 
onditions above 
an be redu
ed tothe satis�ability problem. CCal
 provides a 
onvenient syntax for doing this asshown in Figure 6.7. The line maxstep :: any instru
ts CCal
 that this queryis about unsolvability. The next two lines des
ribe the initial and the goal states.An invariant is spe
i�ed with invariant:.CCal
 
alls a SAT solver three times to 
he
k ea
h of these 
onditions (Initis the formula spe
i�ed with 0: in the query and Goal is the formula spe
i�ed withmaxstep:):(i) if Comp(D0) [ 0:Init [ 0:I is satis�able;(ii) if Comp(D0) [ 0:I [ 0:G is unsatis�able;(iii) if Comp(D1) [ 0:I [ :(1 :I) is unsatis�able.In 
he
king ea
h of 
onditions (ii) and (iii), if the theory is satis�able, then a SATsolver returns a model, whi
h is a 
ounterexample to the 
laim.6.7 ProofsThe proof of Proposition 4 is given in Se
tion 11.2.Proposition 1 The models of a de�nite 
ausal theory are pre
isely the models of91



% File: 'jm
3-test':- querymaxstep :: any;0: num(mi,bank1)=4, num(
a,bank1)=4;maxstep: num(mi,bank2)=4 & num(
a,bank2)=4;invariant:num(mi,bank1)+num(mi,bank2)=4 & num(
a,bank1)+num(
a,bank2)=4& (lo
(boat)=bank1 & num(mi,bank1)>2 ++lo
(boat)=bank2 & num(mi,bank2)<3).Figure 6.7: Four missionaries and four 
annibals|Unsolvable problemits 
ompletion.Proof Let T be a de�nite 
ausal theory. Assume that I is a model of T . It followsthat, for every rule of the form ?( F in T , I does not satisfy F , and thus satis�esevery formula in the 
ompletion of T that is obtained from a 
onstraint. It remainsto show that I satis�es the 
ompletion formula for every nontrivial atom A. Considertwo 
ases.Case 1: A 2 T I . Sin
e T is de�nite and I j= T I , T I is a set of atoms truein I. So I satis�es A, whi
h is the left-hand side of the 
ompletion formula for A.Sin
e A 2 T I , there is a rule with head A whose body is true in I. Hen
e I alsosatis�es the right-hand side of the 
ompletion formula for A.Case 2: A =2 T I . So there is no rule in T with head A whose body is true in I,whi
h shows that I does not satisfy the right-hand side of the 
ompletion formulafor A. It remains to show that I 6j= A. Sin
e T I is a set of atoms whose uniquemodel is I, every nontrivial atom true in I belongs to T I . Sin
e A is a nontrivialatom that does not belong to T I , we 
an 
on
lude that A is false in I.92



Proof in the other dire
tion is similar.Proposition 2 For any transition hs; e; s0i, s and s0 are states.Proof Let X = 0:s [ 0:e [ 1:s0 be a model of D1. We need to show that 0:s and0 : s0 are models of D0. By i :�fl we denote the set of all 
onstants of the form i : 
where 
 2 �fl.To show that 0 : s is a model of D0, observe that D0 is the part of D1
onsisting of rules (6.10) for stati
 laws with i = 0 and rules (6.12). The redu
tDX0 is a set of formulas over 0 : �fl and every formula from DX1 with a 
onstantfrom 0 : �fl belongs to DX0 . Sin
e X is the unique model of DX1 , we 
an 
on
ludethat 0:s is the unique model of DX0 . But DX0 = D0:s0 , so that 0:s is a model of D0.Next we show that 0:s0 is a model of D0. Let T be the part of D1 
onsistingof rules (6.10) for stati
 laws with i = 1, rules (6.10) for a
tion dynami
 laws withi = 0, and rules (6.11) with i = 0. Let � = TX . It is straightforward to verify that �is a set of formulas over 1:�fl and that every formula from DX1 with a 
onstant from1:�fl belongs to �. Sin
e X is the unique model of DX1 , we 
an 
on
lude that 1:s0 isthe unique model of �. Let �0 be the set of formulas over 0:�fl obtained from � byrepla
ing ea
h time stamp 1: with 0:. Then 0:s0 is the unique model of �0. We needto show that 0:s0 is also the unique model of D0:s00 . Observe �rst that every formulain D0:s00 that does not belong to �0 is an atom from 0 : s0 that 
ame to the redu
tfrom one of the rules (6.12) of D0. Hen
e 0 : s0 satis�es D0:s00 . Due to the presen
eof rules (6.12) in D0, any interpretation that satis�es D0:s00 must agree with 0:s0 onsimple 
uent 
onstants. On the other hand, the formulas in �0 that do not belongto D0:s00 do not 
ontain stati
ally determined 
onstants, be
ause their 
ounterparts93



in � 
ame from the heads of dynami
 laws. Consequently any interpretation thatsatis�es D0:s00 must agree with 0 : s0 on stati
ally determined 
uent 
onstants. Itfollows that 0:s0 is the unique model of D0:s00 , so that 0:s0 is a model of D0.Proposition 3 For any m > 0, an interpretation (6.13) of the signature of Dm isa model of Dm i� hs0; e0; s1; e1; : : : ; sm�1; em�1; smiis a history of D.Proof We understand the notation i :�fl as in the previous proof, and the meaningof i :�a
t is similar.Take a model X of Dm, represent it in the form (6.13), and take anyj 2 f0; : : : ;m� 1g. We need to show that 0 : sj [ 0 : ej [ 1 : sj+1 is a model ofD1. Let T be the subset of Dm 
onsisting of rules (6.10) for stati
 laws withi = j + 1, rules (6.10) for a
tion dynami
 laws with i = j, and rules (6.11) withi = j. Let � = TX . It is straightforward to verify that � is a set of formulasover j : �a
t [ j+1 : �fl, and that every formula from DXm with a 
onstant fromj : �a
t [ j+1 : �fl belongs to �. Sin
e X is the unique model of DXm , it followsthat j :ej [ j+1:sj+1 is the unique model of �. Let �0 be the set of formulas over0 :�a
t [ 1 :�fl obtained from � by repla
ing j : with 0 : and j + 1 : with 1 :. Then0:ej [ 1:sj+1 is the only interpretation of 0 :�a
t [ 1:�fl that satis�es �0.The proof of the previous proposition is easily adapted to show that sj is astate, whi
h is to say that 0:sj is a model of D0. That is, 0 :sj is the unique modelof D0:sj0 = D0:sj[ 0:ej[ 1:sj+10 . 94



It remains to observe that D0:sj[ 0:ej[ 1:sj+10 [ �0 = D0:sj[ 0:ej[ 1:sj+11 , so that0:sj [ 0:ej [ 1:sj+1 is the unique model of this set of formulas, and, 
onsequently,a model of D1.For the other dire
tion, assume that, for ea
h j 2 f0; : : : ;m� 1g, the triplehsj; ej ; sj+1i is a transition. We need to show that the 
orresponding interpreta-tion X of form (4.13) is a model of Dm.For ea
h j, let Tj be the subset of Dm 
onsisting of rules (6.10) for stati
laws with i = j + 1, rules (6.10) for a
tion dynami
 laws with i = j, and rules(6.11) with i = j. Noti
e that Dm = D0 [ T0 [ � � � [ Tm�1. Let �j = TXj . Of 
ourseDXm = DX0 [ �0 [ � � � [ �m�1.For any su
h j, sin
e hsj ; ej ; sj+1i is a transition, 0 :sj [ 0:ej [ 1:sj+1 is theunique model of ofD0:sj [ 0:ej [ 1:sj+11 = D0:sj0 [ T 0:sj [ 0:ej [ 1:sj+10 :Reasoning mu
h as before, it follows that 0:ej [ 1:sj+1 is the unique model ofT 0:sj [ 0:ej [ 1:sj+10 : This is equivalent to saying that j :ej [ j+1:sj+1 is the uniquemodel of T j:sj [ j:ej [ j+1:sj+1j = �j :From the previous proposition, we 
an 
on
lude also that 0:s0 is the uniquemodel of DX0 .Finally, sin
e DXm = DX0 [ �0 [ � � � [ �m�1, we 
an 
on
lude that X is theunique model of DXm , and thus a model of Dm.Proposition 5 95



(a) Let D be an a
tion des
ription, L a stati
 
ausal law, and ab a Boolean stati-
ally determined 
uent. If ab does not o

ur in the heads of any 
ausal laws ofD, then the transition system des
ribed by D [ fL unless abg is exa
tly thetransition system des
ribed by D [ fLg [ f
aused :abg.(b) Let D be an a
tion des
ription, L a dynami
 
ausal law, and ab a Booleana
tion 
onstant. If ab does not o

ur in the heads of any 
ausal laws of D, thenthe transition system des
ribed by D [ fL unless abg is exa
tly the transitionsystem des
ribed by D [ fLg [ f
aused :ab after >g.Proof(a) First we will 
he
k that the two transition systems have the same set of states,that is, (D [ fL unless abg)0 and (D [ fLg [ f
aused :abg)0 have the samemodels. Let X be a model of (D [ fL unless abg)0. i.e.,D0[ (
aused F if G ^ :ab)0[ (
aused :ab if :ab)0where L is 
aused F if G.It holds that X(0 : ab) = f. Otherwise (D [ fL unless abg)X0 does not
ontain 0 : ab and 
onsequently it 
ontradi
ts that X is the unique model of(D [ fL unless abg)X0 .It is easy to see that(D [ fL unless abg)X0 = DX0 [ fLgX0 [ f:0:abg= DX0 [ fLgX0 [ f
aused :abgX0= (D [ fLg [ f
aused :abg)X0 :96



Proof in the other dire
tion is similar.The same reasoning applies to show that the transition systems have the sameedges, i.e., (D [ fL unless abg)1 and (D [ fLg [ f
aused :abg)1 have thesame models.(b) The proof is similar to the proof of (a).
Proposition 6 If(i) every 
onstant in R is stati
ally determined, and(ii) for every 
ausal law in D that 
ontains a 
onstant from R in the head, all
onstants o

urring in this law belong to R,then the mapping I 7! IR is a 1{1 
orresponden
e between the models of Dm andthe models of DRm.Proof Using the fa
t that s0(
) = s(
) for every 
 2 R and for every transitionhs; e; s0i, it is easy to verify that if I is a model of Dm, then IR is a model of DRm. Inother words, the mapping I 7! IR is a fun
tion from the set of models of Dm intothe set of models of DRm. It is also easy to see that the fun
tion is 1{1. It remainsto show that the fun
tion is onto.Take any model J of DRm. De�ne the interpretation I of the signature of Dmas follows: I(i :
) = 8>><>>:J(
) if 
 2 R;J(i :
) otherwise:97



Then I(0 :
) = � � � = I(m :
) (6.30)for all 
 2 R, and IR = J . We will 
he
k that I is a model of Dm, that is to say,the only model of DIm.For any formula F of the signature of Dm, let FR be the result of droppingthe time stamps in front of all 
onstants from R in F . It is easy to see that I satis�esa formula F i� J satis�es FR. It follows that(DRm)J = fFR : F 2 DImg: (6.31)Sin
e J is a model of (DRm)J , it follows that I is a model of DIm. It remains to showthat DIm has no other models.Take any model I1 of DIm. By (6.31), IR1 is a model of (DRm)J . Sin
e J isthe only model of (DRm)J , IR1 = J . Let i0 be a number from f0; : : : ;mg. De�ne theinterpretation I2 of the signature of Dm as follows:I2(i :
) = 8>><>>:I1(i0 :
) if 
 2 R;I1(i :
) otherwise:We want to show that I2 is a model of DIm as well. Sin
e I1 is a model of DIm,I2 satis�es all formulas from DIm that do not 
ontain 
onstants from R. Considera formula from DIm that 
ontains at least one 
onstant from R. Sin
e all 
onstantsin R are stati
ally determined, this formula has the form i : F for some stati
 
ausallaw (6.8) in D and some time stamp i su
h that I satis�es i : G. By 
ondition(ii), all 
onstants o

urring in F , G belong to R. For every 
onstant 
 from R, Iassigns to i :
 and i0 :
 the same value; 
onsequently, I satis�es i0 : G, so that i0 : Fbelongs to DIm. It follows that I1 satis�es i0 : F . Sin
e I2 does not di�er from I198



on the 
onstants o

urring in this formula, it follows that I2 satis�es i0 : F . Forevery 
onstant 
 from R, I2 assigns to i :
 and i0 :
 the same value; 
onsequently, I2satis�es i : F . We have established that I2 indeed satis�es DIm.In view of this fa
t, it follows from (6.31) that IR2 satis�es (DRm)J . We 
an
on
lude that IR2 = J . So, for every 
 2 R, I2(0 : 
) = J(
), and 
onsequentlyI1(i0 :
) = J(
). Sin
e i0 was arbitrary, we have proved thatI1(0 :
) = � � � = I1(m :
) (6.32)for every 
 2 R. And sin
e IR = J = IR1 , it follows from (6.30) and (6.32) thatI1 = I. This shows that DIm has no models other than I.Theorem 1 For any 
onsistent ADL a
tion des
ription D, any interpretations s; s0of �fl, and any e 2 �a
t , s0 is the result of exe
uting e in s a

ording to D i�transition hs; e; s0i is a transition of the 
ounterpart of D in language C+.Proof Re
all that (6.22) stands for
aused 
=v if 
=v after 
=v
aused a=t if a=t
aused a= f if a= f
aused ? if > after a=t ^ :Pre
onda
aused 
=v if > after a=t ^Updatea
 (v):(Left-to-right) Assume that s0 is the result of exe
uting e in s a

ordingto D. For ea
h 
uent 
onstant 
, the formula 0 : 
= s(
) is in D0:s[0:e[1:s01 , and theformula 1 : 
 = s0(
) is in D0:s[0:e[1:s01 (
onsider two 
ases, depending on whethers j= Updatee
(v) for some v); for ea
h a
tion 
onstant a, the formula 0:a=e(a) is in99



D0:s[0:e[1:s01 ; no other formulas are in the redu
t. Consequently, 0 : s [ 0 : e [ 1 : s0is the only interpretation satisfying the redu
t, i.e., hs; e; s0i is a transition of D.(Right-to-left) Assume that hs; e; s0i is a transition of D. Then s j= Pre
ond e,be
ause otherwise ? would be in D0:s[0:e[1:s01 . Take a 
uent 
onstant 
. If, forsome v, s j= Updatee
(v), then 1:
=v is in D0:s[0:e[1:s01 , so that s0(
) = v. If, on theother hand, s j= :9xUpdatee
(x) then s0(
) = s(
). Indeed, suppose that s0(
) 6= s(
).Then no formula of the form 1 : 
 = v is in D0:s[0:e[1:s01 . But jDomj � 2, be
auses(
); s0(
) 2 Dom. Consequently, 1 : s0 
annot be the only interpretation satisfyingall formulas of the form 1:
=v in D0:s[0:e[1:s01 .For ea
h interpretation I of � there is a 
orresponding interpretation I
 of �
su
h that f or all atoms A 
ommon to both signaturesI j= A i� I
 j= A ;and for all v 2 Dom(
) I j= 
=v i� I
 j= 
(v)=t :The following lemma is easily proved by stru
tural indu
tion.Lemma 1 For any formula F and any interpretation I, I j= F i� I
 j= F
 .Proposition 7 For any set � of formulas and any 
onstant 
, the elimination of 
from � 
orre
tly redu
es 
 in �.Proof Follows from Lemma 1 and the fa
t that the models of elim
 are pre
iselythe interpretations of �
 that 
orrespond to an interpretation of �.100



Proposition 8 For any 
ausal theory T and any 
onstant 
, the general eliminationof 
 from T 
orre
tly redu
es 
 in T .Proof Let T
 be the general elimination of 
 from T . Be
ause of (6.24), any modelof T I
 , for any interpretation I of �
, 
orresponds to an interpretation of �. Considerany interpretations I; J of �, and the 
orresponding interpretations I
; J
 of �
. Itis easy to verify (using Lemma 1) thatJ j= T I i� J
 j= T I

 :The result follows easily from these observations.Proposition 9 For any 
ausal theory T and any 
onstant 
 su
h that (i) Dom(
)has at least two elements, and (ii) every head in whi
h 
 o

urs is an atom, thede�nite elimination of 
 from T 
orre
tly redu
es 
 in T .We begin the proof of Proposition 9 with a lemma.Lemma 2 Let T
 be the de�nite elimination of a 
onstant 
 from a 
ausal theory T .For any interpretations I; J of �, and the 
orresponding interpretations I
; J
 of �
,if I(
)=J(
), then J j= T I i� J
 j= T I

 .Proof From Lemma 1, T I

 = fF
 : F 2 T I g [ f 
(v)= f : v 6= I(
) g.(Left-to-right) Assume that J j= T I . By Lemma 1, J
 j= fF
 : F 2 T I g.Sin
e I(
)=J(
), J
 j= 
(v)= f for every v di�erent from I(
). Therefore J
 j= T I

 .(Right-to-left) Assume that J
 j= T I

 . Then J
 j= fF
 : F 2 T I g, and byLemma 1, J j= T I . 101



Proof of Proposition 9 Let T
 be the de�nite elimination of 
 from T . We mustshow that an interpretation is a model of T
 i� it 
orresponds to a model of T .(Left-to-right) For any interpretation I of �
, if T I
 is satis�able, thenby (6.26) at least one atom 
(v)=t belongs to I, and by (6.25) at most one su
hatom belongs to I. It follows that any model of T
 
orresponds to an interpretationof �. Assume that I
 is a model of T
. By Lemma 2, I j= T I . It remains to showthat it is the only one. Sin
e I
 is the unique model of T I

 , it follows that T I

 entails
(v) = t for v 2 Dom(
) su
h that I(
) = v. Sin
e any 
onsequent of T in whi
h 
o

urs is an atom, so is any 
onsequent of T
 in whi
h 
(v) o

urs. We 
an 
on
ludethat 
(v) = t belongs to T I

 . By Lemma 1, it follows that 
=v is in T I . Let J beany model of T I . Then J j= 
=v, and 
onsequently I(
) = J(
). By Lemma 2, itfollows that J
 j= T I

 . Sin
e I
 is the unique model of T I

 , J
=I
. ConsequentlyI=J . We proved that I is the only model of T I .(Right-to-left) Assume that I is a model of T . By Lemma 2, I
 j= T I

 . Sin
eany formula of T I in whi
h 
 o

urs must be an atom, and Dom(
) has at least twoelements, we 
an 
on
lude that 
=v is in T I , where v is the element of Dom(
)su
h that I j= 
=v. It follows by Lemma 1 that 
(v)=t is in T I

 . Moreover,by (6.25), 
(v0)= f is in T I

 for all v0 2 Dom(
) su
h that v0 6= v. So any modelof T I

 
orresponds to an interpretation of �. Let J be any interpretation su
h thatJ
 j= T I

 . Sin
e T I

 
ontains exa
tly one formula of the form 
(v)=t and 
ontains
(v0)= f for all v0 2 Dom(
) su
h that v0 6= v, it follows that I
(
(v))=J
(
(v)) forall v 2 Dom(
), or I(
) = J(
). By Lemma 2, it follows that J j= T I . Sin
e I is amodel of T , it follows that I=J . Consequently I
=J
. We proved that I
 is theonly model of T I

 . 102



Propositions 10 and 11 follow from Propositions 8 and 9 ea
h.
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Chapter 7
Representing the Zoo World inthe Language of the CausalCal
ulator
7.1 Introdu
tionResear
h on formalizing 
ommonsense knowledge has been mostly fo
used on \toyproblems," whi
h 
an be formalized by, say, several lines of axioms, as in the Monkeyand Bananas problem. On the other hand, 
ommonsense knowledge that humanshave in
ludes many thousands or maybe millions of fa
ts. In this sense we are not
lose to the goal yet.The work des
ribed in this 
hapter is intermediate between these two. Weformalize a domain whi
h requires several pages of axioms to formalize. Thus testingthe the formalization by hand is not feasible, so that an automated system su
h as104



CCal
 is essential to test the formalization.The test domain dis
ussed in this 
hapter, the Zoo World, is the one of the
hallenge problems proposed by Erik Sandewall in his Logi
 Modelling Workshop(LMW)1|an environment for 
ommuni
ating axiomatizations of a
tion domains ofnontrivial size. The Zoo World 
onsists of several 
ages and the exterior, gatesbetween them, and animals of several spe
ies, in
luding humans. A
tions in thisdomain in
lude moving within and between 
ages, opening and 
losing gates, andmounting and riding animals. More details 
an be found in the next se
tion, whi
h
ontains extensive quotes from the LMW des
riptions of the domain.In a

ordan
e with our goal, we have attempted to translate these des
rip-tions into the input language of CCal
 as 
losely as we 
ould, in
luding the elementsthat look somewhat arbitrary. One su
h element in the LMW des
ription of the ZooWorld has to do with the \o

upan
y restri
tion"|there 
an be at most one largeanimal in ea
h position. On the one hand, LMW spe
i�es that this restri
tion holdseven dynami
ally: a 
on
urrent move, where one animal moves into a position atthe same time as another animal moves out of it, is only possible if at least oneof the animals is small. On the other hand, the spe
i�
ation tells us that an at-tempt to mount an animal fails if the animal moves at the same time, in whi
h 
ase\the result of the a
tion is that the human moves to the position where the animalwas." Thus a failed mount is an ex
eption to the o

upan
y restri
tion. In viewof this fa
t, the o

upan
y restri
tion has to be formalized as a defeasible dynami
law. It is interesting to note that expressing su
h laws in C+ 
alls for the use ofnon-exogenous a
tion 
onstants|a new feature of this language, not available in its1http://www.ida.liu.se/ext/etai/lmw/ .105



an
estor C.We present our formalization of the Zoo World along with detailed 
ommentsin Se
tion 7.4, and show how we used CCal
 to test it in Se
tion 7.5.7.2 The Des
ription of the Zoo WorldThe following is the exa
t LMW des
ription of the Zoo World that we want toformalize:The ZOO is a s
enario world 
ontaining the main ingredients of a 
las-si
al zoo: 
ages, animals in the 
ages, gates between two 
ages as wellas gates between a 
age and the exterior. In the ZOO world there areanimals of several spe
ies, in
luding humans. A
tions in the world mayin
lude movement within and between 
ages, opening and 
losing gates,feeding the animals, one animal killing and eating another, riding ani-mals, et
.: : :A �nite surfa
e area 
onsists of a large number of positions. For ex-ample, one may let ea
h position be a square, so that the entire area islike a 
he
kerboard. However, the exa
t shape of the positions is not sup-posed to be 
hara
terized, and the number of neighbors of ea
h positionis left open, ex
ept that ea
h position must have at least one neighbor.The neighbor relation is symmetri
, of 
ourse, and the transitive 
losureof the neighbor relation rea
hes all positions.One designated lo
ation is 
alled the outside; all other lo
ations are
alled 
ages: : : The distin
tion between a `large' number of positions106



and a `small' number of lo
ations suggests in parti
ular that lo
ations
an be individually named under a unique names assumption, that everylo
ation is thus named, but on the other hand that at most a few of thepositions are named, and that the number of positions is left unspe
i�edin every s
enario.Ea
h position is in
luded in exa
tly one lo
ation. Informally, ea
h 
ageas well as the outside 
onsists of a set of positions, viewed for exampleas tiles on the 
oor. Two lo
ations are neighbors if there is one positionin ea
h that are neighbors.The s
enario also 
ontains a small number (in the same sense as above) ofgates. Informally, these are to be thought of as gates that 
an be openedand 
losed, and that allow passage between a 
age and the outside, orbetween two 
ages. Formally, ea
h gate is asso
iated with exa
tly twopositions that are said to be at its sides, and these positions must belongto di�erent lo
ations.: : : Some designated animals will need to be named, but the set of animalsin a s
enario may be large, and it may not be possible to know them allor to name them all. Animals may be born and may die o� over time.Ea
h animal belongs to exa
tly one of a number of spe
ies. All thespe
ies are named and expli
itly known. The membership of an animalin a spe
ies does not 
hange over time. The spe
ies human is alwaysde�ned, and there is at least one human-spe
ies animal in ea
h s
enario.Ea
h animal also has the boolean properties large and adult. Some107



spe
ies are large, some are not. Adult members of large spe
ies are largeanimals; all other animals are small (non-large).Ea
h animal has a position at ea
h point in time. Two large animals 
annot o

upy the same position, ex
ept if one of them rides on the other(see below).: : :Animals 
an move. In one unit of time, an animal 
an move to oneof the positions adja
ent to its present one, or stay in the position whereit is. Moves to non-adja
ent positions are never possible. Movement isonly possible to positions within the same lo
ation (for example, withinthe same 
age), and between those two positions that are to the side ofthe same gate, but only provided the gate is open. Several animals 
anmove at the same time.Movement a
tions must also not violate the o

upan
y restri
tion: atmost one large animal in ea
h position. This restri
tion also holds withinthe duration of moves, in the sense that a 
on
urrent move where animalA moves into a position at the same time as animal B moves out of it,is only possible if at least one of A and B is a small animal.This means in parti
ular that two large animals 
an not pass througha gate at the same time (neither in the same dire
tion nor oppositedire
tions).: : :The following a
tions 
an be performed by animals: : :� Move To Position. Can be performed by any animal, under the re-stri
tions des
ribed above, plus the restri
tion that a human riding108



an animal 
an not perform the Move-To-Position a
tion (
omparebelow).� Open Gate. Can be performed by a human when it is lo
ated in aposition to the side of the gate, and has the e�e
t that the gate isthen open until the next time a Close Gate a
tion is performed.� Close Gate. Can be performed by a human when it is lo
ated in aposition to the side of the gate, and has the e�e
t that the gate is
losed until the next time an Open Gate a
tion is performed.� Mount Animal. Can be performed by a human mounting a largeanimal, when the human is in a position adja
ent to the position ofthe animal. The a
tion fails if the animal moves at the same time,and in this 
ase the result of the a
tion is that the human moves tothe position where the animal was. If su

essful, the a
tion resultsin a state where the human rides the animal. This 
ondition holdsuntil the human performs a Geto� a
tion or the animal performs aThrowo� a
tion.When a human rides an animal, the human 
an not perform theMove a
tion, and his position is the same as the animal's positionwhile the animal moves.� Geto� Animal to Position. Can be performed by a human ridingan animal, to a position adja
ent to the animal's present positionprovided that the animal does not move at the same time. Fails ifthe animal moves, and in this 
ase the rider stays on the animal.� Throwo�. Can be performed by an animal ridden by a human, and109



results in the human no longer riding the animal and ending in aposition adja
ent to the animal's present position. The a
tion isnondeterministi
 sin
e the rider may end up in any su
h position.If the resultant position is o

upied by another large animal thenthe human will result in riding that animal instead.7.3 More on the Language of the Causal Cal
ulatorBelow we explain the features of the language of CCal
 whi
h have not beenexplained in Se
tion 6.5 but are used in the formalization of the Zoo World.1. Rigid 
onstants (Se
tion 6.2.6) 
an be de
lared as in the following example.:- 
onstantssp(animal) :: spe
ies.Fun
tion 
onstant sp represents an operation that turns an animal into its spe
ies.2. The arguments of 
onstants are supposed to be obje
ts; when a 
onstant appearsas an argument of another 
onstant, the former is understood as the value of the
onstant. For instan
e, the s
hemanonexe
utable move(ANML,pos(ANML))(\an animal 
annot move into its 
urrent position") has the same meaning asnonexe
utable move(ANML,P) if pos(ANML)=Pwhere P is a position variable.3. Ma
ros 
an be de
lared as in the following example.110



% two lo
ations are neighbors if there is one position in ea
h% that are neighbors:- ma
rosneighbor1(#1,#2) ->((#1)\=(#2) & [\/P \/P1 | lo
(P)=(#1) & lo
(P1)=(#2)& neighbor(P,P1)℄).(#1,#2,: : : are parameters for ma
ros.) Upon reading an input �le, CCal
 repla
esevery o

urren
e of a pattern in the left-hand side of -> with the 
orrespondinginstan
e of the right-hand side.7.4 Formalization of the Zoo WorldOur formalization of the Zoo World shown below is also available online2.We distinguish between the general assumptions about the Zoo World quotedin Se
tion 7.2 above, and spe
i�
 details, su
h as the \topography" of the zoo(in
luding the number of 
ages and gates), names of spe
ies other than human, andso forth. We formalize here the general assumptions only, and leave these detailsunspe
i�ed. A des
ription of all the spe
i�
s has to be added to our formalizationto get an input �le a

epted by CCal
. The spe
i�
 topography used in our
omputational experiments is des
ribed in Se
tion 7.5.The annotation (lmw) found in many 
omments below refers to the Logi
Modelling Workshop des
ription of the Zoo World quoted in Se
tion 7.2.%%% ZOO LANDSCAPE %%%2http://www.
s.utexas.edu/users/tag/

al
/zoo/ .111



:- sortsposition;lo
ation >> 
age;gate.:- variablesP,P1 :: position;L :: lo
ation;C :: 
age;G,G1 :: gate.:- 
onstants% Ea
h position is in
luded in exa
tly one lo
ation (lmw)lo
(position) :: lo
ation;neighbor(position,position) :: boolean;side1(gate) :: position;side2(gate) :: position;opened(gate) :: inertialFluent.
default -neighbor(P,P1).% Ea
h position must have at least one neighbor (lmw)112




onstraint [\/P1 | neighbor(P,P1)℄.% The neighbor relation is irreflexive
onstraint -neighbor(P,P).% The neighbor relation is symmetri
 (lmw)
onstraint neighbor(P,P1) ->> neighbor(P1,P).:- obje
ts% One designated lo
ation is 
alled the outside (lmw)outside :: lo
ation.% All other lo
ations are 
ages (lmw)
onstraint [\/C | L=C℄ where L\=outside.% Two positions are the sides of a gate:- 
onstantssides(position,position,gate) :: boolean.
aused sides(P,P1,G) if side1(G)=P & side2(G)=P1.
aused sides(P,P1,G) if side1(G)=P1 & side2(G)=P.default -sides(P,P1,G).% Ea
h gate is asso
iated with exa
tly two positions that are said to be% at its sides, and these positions must belong to different lo
ations113



% (lmw)
onstraint lo
(side1(G))\=lo
(side2(G)).(As in 2 of Se
tion 7.3, the argument of lo
 is supposed to be an obje
t,not a 
onstant. Here side1(G), side2(G) are understood to be the valueof ea
h 
onstant.)% No two gates have the same two sides
onstraint sides(P,P1,G) & sides(P,P1,G1) ->> G=G1.% Two positions are neighbors if they are the sides of a gate
onstraint sides(P,P1,G) ->> neighbor(P,P1).% Two positions in different lo
ations are neighbors only if they are the% two sides of a gate
onstraint lo
(P)\=lo
(P1) & neighbor(P,P1) ->> [\/G | sides(P,P1,G)℄.
%%% ANIMALS %%%:- sortsanimal >> human;spe
ies.:- variablesANML,ANML1 :: animal;114



H,H1 :: human;SP :: spe
ies.:- obje
ts% One of the spe
ies is human (lmw)humanSpe
ies :: spe
ies.:- 
onstants% Ea
h animal belongs to exa
tly one of a number of spe
ies (lmw)% Membership of an animal in a spe
ies does not 
hange over time (lmw)sp(animal) :: spe
ies;% Some spe
ies are large, some are not (lmw)largeSpe
ies(spe
ies) :: boolean;% Ea
h animal has a position at ea
h point in time (lmw)pos(animal) :: inertialFluent(position);% Boolean property of animals (lmw)adult(animal) :: boolean;mounted(human,animal) :: inertialFluent.default largeSpe
ies(SP).default adult(ANML).% Humans are a spe
ies 
alled humanSpe
ies115




aused sp(H)=humanSpe
ies.
onstraint sp(ANML)=humanSpe
ies ->> [\/H | ANML=H℄.:- ma
ros% Adult members of large spe
ies are large animals (lmw)large(#1) -> adult(#1) & largeSpe
ies(sp(#1)).% There is at least one human-spe
ies animal in ea
h s
enario (lmw)
onstraint [\/H | true℄.% Two large animals 
an not o

upy the same position, ex
ept if one of them% rides on the other (lmw)
onstraint pos(ANML)=pos(ANML1) & large(ANML) & large(ANML1)->> [\/H | (H=ANML & mounted(H,ANML1)) ++(H=ANML1 & mounted(H,ANML))℄ where ANML�<ANML1.(�< is a �xed total order.)%%% CHANGING POSITION %%%:- 
onstantsa

essible(position,position) :: sdFluent.
aused a

essible(P,P1)if neighbor(P,P1) & -[\/G | sides(P,P1,G) & -opened(G)℄.default -a

essible(P,P1). 116



% In one unit of time, an animal 
an move to one of the positions% a

essible from its present one, or stay in the position where it is.% Moves to non-a

essible positions are never possible (lmw)
onstraint pos(ANML)\=P1 after pos(ANML)=P & -(P=P1 ++ a

essible(P,P1)).(The proposition 
onstraint F afterG is an abbreviation for 
aused? if :F afterG:)% A 
on
urrent move where animal A moves into a position at the same time% as animal B moves out of it, is only possible if at least one of A and% B is a small animal. (lmw)% Ex
eptions for (failed) mount a
tions and 
ertain o

urren
es of% throwOff -- when thrown human ends up where another large animal was% (see the first two propositions in '%%% ACTIONS %%%')
onstraint -(pos(ANML)=P & pos(ANML1)\=P)after pos(ANML)\=P & pos(ANML1)=P & large(ANML) & large(ANML1)unless ab(ANML).% Two large animals 
annot pass through a gate at the same time% (neither in the same dire
tion nor opposite dire
tions) (lmw)
onstraint -(pos(ANML)=P1 & pos(ANML1)=P1)after pos(ANML)=P & pos(ANML1)=P & sides(P,P1,G)& large(ANML) & large(ANML1) where ANML�<ANML1.
onstraint -(pos(ANML)=P & pos(ANML1)=P1)after pos(ANML)=P1 & pos(ANML1)=P & sides(P,P1,G)& large(ANML) & large(ANML1) where ANML�<ANML1.117



% While a gate is 
losing, an animal 
annot pass through it
onstraint -opened(G) ->> pos(ANML)\=P1after pos(ANML)=P & sides(P,P1,G) & opened(G).
%%% ACTIONS %%%:- variablesA,A1 :: exogenousA
tion.:- 
onstantsmove(animal,position),open(human,gate),
lose(human,gate),mount(human,animal),getOff(human,animal,position),throwOff(animal,human) :: exogenousA
tion.:- ma
ros% A
tion #1 is exe
uted by animal #2doneBy(#1,#2) ->([\/P | #1==move(#2,P)℄ ++[\/G | #1==open(#2,G) ++ #1==
lose(#2,G)℄ ++[\/ANML | #1==mount(#2,ANML)℄ ++118



[\/ANML \/P | #1==getOff(#2,ANML,P)℄ ++[\/H | #1==throwOff(#2,H)℄).(Di�erent from \=" used in an atom, \==" is a 
omparison operator.)% A failed mount is not subje
t to the usual, rather stri
t,% movement restri
tion on large animalsmount(H,ANML) 
auses ab(H).% If the position a large human is thrown into was previously o

upied by% another large animal, the usual movement restri
tion doesn't applythrowOff(ANML,H) 
auses ab(H).(The two propositions above des
ribe ex
eptional 
ir
umstan
es for themovement restri
tion between large animals. )% Every animal 
an exe
ute only one a
tion at a timenonexe
utable A & A1 if doneBy(A,ANML1) & doneBy(A1,ANML1) where A�<A1.% Dire
t effe
t of move a
tionmove(ANML,P) 
auses pos(ANML)=P.% An animal 
an't move to the position where it is nownonexe
utable move(ANML,pos(ANML)).% A human riding an animal 
annot perform the move a
tion (lmw)nonexe
utable move(H,P) if mounted(H,ANML).119



% Effe
t of opening a gateopen(H,G) 
auses opened(G).% A human 
annot open a gate if he is not lo
ated at a position to the% side of the gate (lmw)nonexe
utable open(H,G) if -(pos(H)=side1(G) ++ pos(H)=side2(G)).% A human 
annot open a gate if he is mounted on an animalnonexe
utable open(H,G) if mounted(H,ANML).% A human 
annot open a gate if it is already openednonexe
utable open(H,G) if opened(G).% Effe
t of 
losing a gate
lose(H,G) 
auses -opened(G).% A human 
annot 
lose a gate if he is not lo
ated at a position to the% side of the gate (lmw)nonexe
utable 
lose(H,G) if -(pos(H)=side1(G) ++ pos(H)=side2(G)).% A human 
annot 
lose a gate if he is mounted on an animalnonexe
utable 
lose(H,G) if mounted(H,ANML).
120



% A human 
annot 
lose a gate if it is already 
losednonexe
utable 
lose(H,G) if -opened(G).% When a human rides an animal, his position is the same as the animal's% position while the animal moves (lmw)
aused pos(H)=P if mounted(H,ANML) & pos(ANML)=P.% If a human tries to mount an animal that doesn't 
hange position,% mounting is su

essful
aused mounted(H,ANML) if pos(ANML)=P after pos(ANML)=P & mount(H,ANML).% The a
tion fails if the animal 
hanges position, and in this 
ase the% result of the a
tion is that the human ends up in the position where% the animal was (lmw)
aused pos(H)=P if pos(ANML)\=P after pos(ANML)=P & mount(H,ANML).% A human already mounted on some animal 
annot attempt to mountnonexe
utable mount(H,ANML) if mounted(H,ANML1).% A human 
an only be mounted on a large animal
onstraint mounted(H,ANML) ->> large(ANML).% A human 
annot attempt to mount a small animal (lmw)nonexe
utable mount(H,ANML) if -large(ANML).121



% A large human 
annot be mounted on a human
onstraint mounted(H,H1) ->> -large(H).% A large human 
annot attempt to mount a humannonexe
utable mount(H,H1) if large(H).% An animal 
an be mounted by at most one human at a time
onstraint -(mounted(H,ANML) & mounted(H1,ANML)) where H�<H1.% A human 
annot attempt to mount an animal already mounted by a humannonexe
utable mount(H,ANML) if mounted(H1,ANML).% A human 
annot be mounted on a human who is mounted
onstraint -(mounted(H,H1) & mounted(H1,ANML)).% A human 
annot attempt to mount an animal if the human is already% mounted by a humannonexe
utable mount(H,ANML) if mounted(H1,H).% A human 
annot attempt to mount a human who is mountednonexe
utable mount(H,H1) if mounted(H1,ANML).% The getOff a
tion is su

essful provided that the animal does not move122



% at the same time. It fails if the animal moves, and in this 
ase the% rider stays on the animal (lmw)
aused pos(H)=P if pos(ANML)=P1 after pos(ANML)=P1 & getOff(H,ANML,P).
aused -mounted(H,ANML) if pos(ANML)=P1after pos(ANML)=P1 & getOff(H,ANML,P).% The a
tion 
annot be performed by a human not riding an animal (lmw)nonexe
utable getOff(H,ANML,P) if -mounted(H,ANML).% A human 
annot attempt to getOff to a position that is not a

essible% from the 
urrent positionnonexe
utable getOff(H,ANML,P) if -a

essible(pos(ANML),P).% The throwOff a
tion results in the human no longer riding the animal% and ending in a position adja
ent to the animal's present position.% It is nondeterministi
 sin
e the rider may end up in any position% adja
ent to the animal's present position (lmw)throwOff(ANML,H) may 
ause pos(H)=P.throwOff(ANML,H) 
auses -mounted(H,ANML).% If the resultant position is o

upied by another large animal then the% human will result in riding that animal instead (lmw)
aused mounted(H,ANML1) if pos(H)=pos(ANML1) & large(ANML1)123



after throwOff(ANML,H) where H\=ANML1.% The a
tion 
annot be performed by an animal not ridden by a human (lmw)nonexe
utable throwOff(ANML,H) if -mounted(H,ANML).% The a
tions getOff and throwOff 
annot be exe
uted 
on
urrentlynonexe
utable getOff(H,ANML,P) & throwOff(ANML,H).7.5 TestingTo test our formalization, we gave CCal
 queries and 
he
ked that its answersmat
hed our expe
tations. Queries related to a
tion domains and their CCal
representations are dis
ussed in [Giun
higlia et al., 2004, Se
tions 3.3, 6℄. Besidesthe representation of the Zoo World shown above, the CCal
 input in
luded thedes
ription of a spe
i�
 lands
ape. The zoo we used for testing is small. It in
ludes2 lo
ations|a 
age and the outside|that are separated by a gate and 
onsist of 4positions ea
h (Figure 7.1). All positions within the 
age are ea
h other's neighbors,as well as all outside positions. The input also in
luded information about thespe
i�
 animals mentioned in ea
h query.1. The gate is 
losed, and Homer, an adult human, is in position 6. His goal is tomount Jumbo, an adult elephant, whi
h is in position 3 and is not going to movearound. How many steps are required to a
hieve this goal?This question 
an be represented by the following CCal
 query::- query 124
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ageA outside

Figure 7.1: A zoo lands
apemaxstep :: 3..4;0: -opened(gateAO),pos(homer)=6;maxstep: mounted(homer,jumbo);T=<maxstep ->> (T: pos(jumbo)=3).(In the last line, T is a variable for the initial segment of integers|numbers from 0to 10.)CCal
 has determined that the length of the shortest solution is 4. It founda solution in whi
h Homer walks to the gate, opens it, walks into the 
age, and thenmounts Jumbo.2. The gate was 
losed, and Homer was outside; after two steps, he was inside.What 
an we say about his initial position?To answer this question, we asked CCal
 to �nd all models satisfying the 
onditions0: -opened(gateAO),lo
(pos(homer))=outside;2: lo
(pos(homer))=
ageA. 125



CCal
 has determined that Homer's only possible initial position is 7. Homeropened the gate and moved to position 4.3. Initially Homer was outside, and Snoopy, a dog, was inside the 
age, with thegate 
losed. Is it possible that they swit
hed their lo
ations in one step? in twosteps? If the elephant Jumbo is substituted for Snoopy, will the answers be thesame?What is essential here is that small animals, unlike elephants, are not a�e
ted bythe o

upan
y restri
tion (Se
tion 7.2); Homer and Snoopy 
an pass through thegate simultaneously. In response to the query:- querymaxstep :: 1..2;0: -opened(gateAO),lo
(pos(homer))=outside,lo
(pos(snoopy))=
ageA;maxstep:lo
(pos(homer))=
ageA,lo
(pos(snoopy))=outside.CCal
 reported that the length of the shortest solution is 2. In 
ase of Jumbo,CCal
 surprised us by dis
overing that the length of the shortest solution is 4, andnot 5 as we had thought. Homer opens the gate, mounts Jumbo (on the other side),dismounts (by either being thrown o� or getting o�), following whi
h Jumbo movesout of the 
age. When we told CCal
 that Homer never mounts Jumbo, CCal
agreed that the length of the shortest possible sequen
e of a
tions is 5.126



4. Can a large animal move into a position at the same time as another large animalmoves out of it?The answer is yes. Although the o

upan
y restri
tion applies within the durationof moves (Se
tion 7.2), this s
enario is possible in the pro
ess of a failed attemptof the �rst animal to mount the se
ond. There is also the possibility that the �rstanimal is thrown o� into the position just va
ated by the se
ond.To investigate this, we asked CCal
 whether the following is possible:[\/P | (0: -(pos(homer)=P)) &(1: pos(homer)=P) &(0: pos(jumbo)=P) &(1: -(pos(jumbo)=P))℄;0: mounted(homer,silver).(Silver is a horse.) CCal
 found a solution in whi
h Silver throws o� Homer. Thenwe repla
ed the last line of the query with0: [/\ANML| -throwOff(ANML,homer)℄.CCal
 found a solution in whi
h Homer tried to mount Jumbo. On the other hand,a horse 
annot possibly move into a position at the same time as an elephant movesout of it. A

ordingly, CCal
 determined that there is no model satisfying the
ondition[\/P | (0: -(pos(silver)=P)) &(1: pos(silver)=P) &(0: pos(jumbo)=P) &(1: -(pos(jumbo)=P))℄. 127



5. In position 1, Jumbo throws o� Homer. What are the possible positions of Jumboand Homer after that?This question illustrates the nondeterministi
 
hara
ter of the Throwo� a
tion (Se
-tion 7.2). The given assumption 
an be represented by the 
ondition0: pos(jumbo)=1,throwOff(jumbo,homer).A

ording to CCal
, in the models satisfying this 
ondition Homer is thrown intopositions 2, 3 and 4; Jumbo always stays in position 1.
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Chapter 8
Des
ribing Additive Fluents andA
tions in C+
8.1 Con
urrent Exe
ution of A
tions in C+Consider a transition system representing the e�e
t of buying a book on the numberof books that the person owns (Figure 8.1). It uses two 
uent 
onstants|Has(A)(the number of books that Ali
e has) and Has(B) (the number of books that Bobhas)|with the domain f0; : : : ; Ng, where N is a �xed nonnegative integer, andtwo Boolean a
tion 
onstants|Buy(A) (Ali
e buys a book) and Buy(B) (Bob buysa book). Every state is represented by two equations showing the values of the
uent 
onstants. Every event is represented by the set of a
tion 
onstants that aremapped to t. The loops are labeled by the trivial event ; (no a
tions are exe
uted).The horizontal edges are labeled by the event in whi
h Ali
e buys a book and Bobdoesn't; along ea
h of the verti
al edges, Bob buys a book and Ali
e doesn't. The129
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fBuy(B)g fBuy(B)g

fBuy(B)g

Has(B)=NHas(A)=0 fBuy(A)g fBuy(A)gHas(B)=NHas(A)=1 Has(B)=NHas(A)=N ;; ...

Buy(B)g
Buy(B)g ......

..
... ... ...;

;
;

Figure 8.1: A transition systemdiagonal edges 
orrespond to Ali
e and Bob buying books 
on
urrently.The transition system 
an be des
ribed by the following a
tion des
ription:inertial Has(x)exogenous Buy(x)Buy(x) 
auses Has(x)=k+1 if Has(x)=knonexe
utable Buy(x) if Has(x)=N (8.1)
where x 2 fA;Bg and k 2 f0; :::; N � 1g.This a
tion des
ription does not say expli
itly that the trivial event ; has noe�e
t on the values of Has(A) and Has(B), or that event fBuy(A)g does not a�e
tthe value of Has(B). Nevertheless, every edge of the transition system labeled ; is a130



loop, and every edge labeled fBuy(A)g is horizontal, be
ause of the �rst line of (8.1)that expresses, under the semanti
s of C+, the persisten
e property of Has(x).Similarly, a
tion des
ription (8.1) does not say anything about the 
on
urrentexe
ution of a
tions Buy(A) and Buy(B). But the edges labeled fBuy(A);Buy(B)gin Figure 8.1 are dire
ted diagonally, in a

ordan
e with our 
ommonsense expe
-tations. This fa
t illustrates the 
onvenien
e of the approa
h to 
on
urren
y in
or-porated in the semanti
s of C+.However, as dis
ussed in Se
tion 5.6, this built-in me
hanism is not dire
tlyappli
able to the e�e
ts of a
tions on additive 
uents, su
h as the number of booksavailable in the bookstore in the presen
e of the 
on
urrent exe
ution of buyinga
tions. In this 
hapter we extend C+ with the additional notation that resolvesthis diÆ
ulty. We introdu
e here a synta
ti
 
onstru
t, in
rements, that allows usto des
ribe the e�e
ts of a
tions on additive 
uents. Semanti
ally this 
onstru
t istreated as \synta
ti
 sugar" on top of C+: the propositions involving that 
onstru
tare viewed as abbreviations for 
ausal laws of C+. The interpretation of in
rementsdes
ribed below has been used to extend CCal
 to 
over additive 
uents.8.2 In
rement LawsIn our proposed extension of C+, some of the simple 
uent 
onstants 
an be des-ignated as additive. The domain of every additive 
uent 
onstant is assumed tobe a �nite set of numbers. We understand \numbers" as (symbols for) elements ofany set with an asso
iative and 
ommutative binary operation + that has a neutralelement 0.1 E�e
ts of a
tions on additive 
uents are des
ribed in an extended C+ by1The additive group of integers is the main example we are interested in, and this is the 
asethat has been implemented. The max operation on an ordered set with the smallest element is131




ausal laws of a new kind|\in
rement laws." A

ordingly, we modify the de�nitionof a 
ausal law shown in Se
tion 6.2.1 in two ways. First, in 
ausal laws of theforms (6.8) and (6.9) formula F is not allowed to 
ontain additive 
uent 
onstants.Se
ond, we extend the 
lass of 
ausal laws by in
luding in
rement laws|expressionsof the form a in
rements 
 by n if G (8.2)where� a is a Boolean a
tion 
onstant,� 
 is an additive 
uent 
onstant,� n is a number, and� G is a formula that 
ontains no Boolean a
tion 
onstants.We will drop `if G' in (8.2) if G is >.In the next se
tion we de�ne the semanti
s of the extended C+ by des
ribinga translation that eliminates in
rement laws in favor of additional a
tion 
onstants.As an example, 
onsider the e�e
ts of a
tions Buy(A), Buy(B) on the num-ber of books available in the bookstore where Ali
e and Bob are buying books. Ades
ription of these e�e
ts in extended C+ is shown in Figure 8.2 (as before, N is a�xed nonnegative integer). The transition system represented by the translation ofFigure 8.2 in the non-extended language C+ is depi
ted in Figure 8.3 (with the aux-iliary a
tion 
onstants dropped from the edge labels). The 
ausal laws in Figure 8.2do not say expli
itly that the trivial event ; has no e�e
t on the value of Available, orthat the 
on
urrent exe
ution of a
tions Buy(A) and Buy(B) de
rements the valueanother interesting 
ase. 132



Notation: x ranges over fA;Bg.A
tion 
onstants: Domains:Buy(x) BooleanAdditive 
uent 
onstant: Domain:Available f0; : : : ; NgCausal laws:Buy(x) in
rements Available by �1exogenous Buy(x)Figure 8.2: An a
tion des
ription in extended C+
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........................................................................................................................................................................



.. ...................................... ...................................... ...................................... ......................................
...................................... ...................................... ...................................... ......................................

Available = 0Available = 1Available = 2;; ... .fBuy(A),Buy(B)g
Available = N fBuy(A),Buy(B)g;

fBuy(A),Buy(B)g
. ... .. ..
fBuy(A)gfBuy(A)g fBuy(B)gfBuy(B)gfBuy(B)gfBuy(A)gfBuy(A)g fBuy(B)g

;

Figure 8.3: The transition system des
ribed by Figure 8.2133



of this 
uent by 2. Nevertheless, every edge of the 
orresponding transition systemlabeled ; is a loop, and every edge labeled fBuy(A);Buy(B)g goes up 2 levels, ina

ordan
e with our 
ommonsense expe
tations. This happens be
ause Figure 8.2
lassi�es Available as an additive 
uent 
onstant.The 
ausal laws in this a
tion des
ription do not say expli
itly that a
tionsBuy(x) are not exe
utable when Available = 0, and that a
tions Buy(A), Buy(B)
annot be exe
uted 
on
urrently when Available = 1. This is taken 
are of by oursemanti
s of in
rement laws, in view of the fa
t that the domain of Available doesnot 
ontain negative numbers.8.3 Translating In
rement LawsLet D be an a
tion des
ription in extended C+. In 
onne
tion with the in
rementlaws (8.2) in D, the following terminology will be used: about the Boolean a
tion
onstant a, the additive 
uent 
onstant 
 and the number n in (8.2) we will say thata is a 
-
ontributing 
onstant, and that n is a 
ontribution of a to 
.The auxiliary a
tion 
onstants introdu
ed in the translation are expressionsof the form Contribution(a; 
), where 
 is an additive 
uent 
onstant, and a is a
-
ontributing a
tion 
onstant. The domain of Contribution(a; 
) 
onsists of all
ontributions of a to 
 and number 0.To translate the in
rement laws from D, we(i) repla
e ea
h in
rement law (8.2) in D with the a
tion dynami
 law
aused Contribution(a; 
)=n if a=t ^G; (8.3)
134



(ii) for every auxiliary 
onstant Contribution(a; 
), add the a
tion dynami
 law
aused Contribution(a; 
)=0 if Contribution(a; 
)=0; (8.4)(iii) add the 
uent dynami
 laws
aused 
=v +Pa va if > after 
=v ^ Va Contribution(a; 
)=va (8.5)for every additive 
uent 
onstant 
, every v 2 Dom(
), and every fun
tiona 7! va that maps ea
h 
-
ontributing 
onstant a to an element of the domainof Contribution(a; 
) so that v +Pa va is in the domain of 
.The sum and the multiple 
onjun
tion in (8.5) range over all 
-
ontributing 
on-stants a.Causal law (8.3) interprets in
rement law (8.2) as the assertion that exe
ut-ing a (possibly along with other a
tions) 
auses 
onstant Contribution(a; 
) to getthe value n, under some 
onditions 
hara
terized by formula G. Causal laws (8.4)say that the value of this 
onstant is 0 by default, that is to say, when another valueis not required by any in
rement law. Causal laws (8.5) say that the value of anadditive 
uent 
onstant after an event 
an be 
omputed as the sum of the value ofthis 
onstant prior to the event and the 
ontributions of all a
tions to this 
onstant.The result of translating in
rement laws from Figure 8.2 is shown in Fig-ure 8.4. In this 
ase, the translation des
ribed above introdu
es two auxiliary a
tion
onstants: Contribution(Buy(A);Available) and Contribution(Buy(B);Available).The domain of ea
h of them has 2 elements: the 
ontribution�1 of Buy(x) to Availableand number 0.The edges of the transition system des
ribed by Figure 8.4, and the 
orre-sponding events, 
an be 
omputed using the methods presented in Se
tion 6.1.3.135



Notation: x ranges over fA;Bg.A
tion 
onstants: Domains:Buy(x) BooleanContribution(Buy(x);Available) f�1; 0gAdditive 
uent 
onstant: Domain:Available f0; : : : ; NgCausal laws:
aused Contribution(Buy(x);Available)=�1 if Buy(x)=t
aused Contribution(Buy(x);Available)=0 if Contribution(Buy(x);Available)=0
aused Available=v+v1+v2 if > after Available=v ^Contribution(Buy(A);Available)=v1 ^Contribution(Buy(B);Available)=v2for all v 2 f0; : : : ; Ng and v1; v2 2 f�1; 0g su
h that v + v1 + v2 � 0exogenous Buy(x)Figure 8.4: The result of translating in
rement laws from Figure 8.2

136



Every event assigns values to ea
h a
tion 
onstant, in
luding the auxiliary 
on-stants Contribution(Buy(x);Available). For instan
e, the labels;; fBuy(A)g; fBuy(B)g; fBuy(A);Buy(B)gin Figure 8.3 represent the following events E0; : : : ; E3 respe
tively:E0(Buy(A)) = f; E0(Contribution(Buy(A);Available)) = 0;E0(Buy(B)) = f; E0(Contribution(Buy(B);Available)) = 0;E1(Buy(A)) = t; E1(Contribution(Buy(A);Available)) = �1;E1(Buy(B)) = f; E1(Contribution(Buy(B);Available)) = 0;E2(Buy(A)) = f; E2(Contribution(Buy(A);Available)) = 0;E2(Buy(B)) = t; E2(Contribution(Buy(B);Available)) = �1;E3(Buy(A)) = t; E3(Contribution(Buy(A);Available)) = �1;E3(Buy(B)) = t; E3(Contribution(Buy(B);Available)) = �1:
(8.6)

For spe
i�
 values of N , the set of edges 
an also be generated me
hani
ally,by running CCal
. The translation of Figure 8.2 into the input language of CCal
is shown in Figure 8.5. When instru
ted to �nd the edges of the 
orrespondingtransition system for n equal to 2, CCal
 displays 8 solutions, in the followingformat:Solution 4:0: available=2 137



% File: 'available':- sortsperson.:- obje
tsa, b :: person.:- variablesX :: person.:- 
onstantsavailable :: additiveFluent(0..n);buy(person) :: exogenousA
tion.buy(X) in
rements available by -1.Figure 8.5: The des
ription from Figure 8.2 in the language of CCal
ACTIONS: buy(a) buy(b)1: available=0
8.4 Reasoning about MoneyAs an appli
ation of these ideas to automated 
ommonsense reasoning, 
onsider thefollowing example:I have $6 in my po
ket. A newspaper 
osts $1, and a magazine 
osts $3.Can I buy two newspapers and one magazine? Or one newspaper andtwo magazines? 138



% File: 'buying':- sortsagent;resour
e >> item.:- variablesAg :: agent;Res :: resour
e;It :: item;M,N :: 0..maxAFValue.:- obje
tsbuyer,seller :: agent;money :: resour
e.:- 
onstantspri
e(item) :: 0..maxAFValue;has(agent,resour
e) :: additiveFluent(0..maxAFValue);buy(item) :: exogenousA
tion;howmany(item) :: attribute(0..maxAFValue) of buy(item).buy(It) in
rements has(buyer,It) by N if howmany(It)=N.buy(It) de
rements has(seller,It) by N if howmany(It)=N.buy(It) in
rements has(seller,money) by M*Nif howmany(It)=N & pri
e(It)=M where M*N =< maxAFValue.buy(It) de
rements has(buyer,money) by M*Nif howmany(It)=N & pri
e(It)=M where M*N =< maxAFValue.Figure 8.6: File buying: Buying and selling
139



% File: 'buying-test':- maxAFValue :: 7.:- in
lude 'buying'.:- obje
tsnewspaper,magazine :: item.pri
e(newspaper)=1.pri
e(magazine)=3.% I have $6 in my po
ket. A newspaper 
osts $1, and a magazine% 
osts $3. Do I have enough money to buy 2 newspapers and a magazine?% A newspaper and 2 magazines?:- querylabel :: 1;maxstep :: 1;0: has(buyer,money) = 6,buy(newspaper),howmany(newspaper) = 2,buy(magazine),howmany(magazine) = 1.:- querylabel :: 2;maxstep :: 1;0: has(buyer,money) = 6,buy(newspaper),howmany(newspaper) = 1,buy(magazine),howmany(magazine) = 2.:- show has(buyer,money).Figure 8.7: File buying-test: Do I have enough 
ash?140



These questions are about the exe
utability of some 
on
urrently exe
uted a
tions,and the answers are determined by the e�e
ts of these a
tions on an additive 
uent|the amount of money that I have.Figure 8.6 des
ribes the relevant properties of buying and selling in the inputlanguage of the new CCal
. There are obje
ts of four sorts in this domain: agents,resour
es, items (to be pur
hased) and (nonnegative) integers; items are a subset ofresour
es. The buyer and the seller are agents; money is a resour
e; 0; : : : ; maxIntare integers. The pri
e of an item is an integer. The number of units of a resour
ethat an agent has is an integer-valued additive 
uent. Buying is an exogenous a
tion.The four 
ausal laws that follow these de
larations are self-explanatory; de
rementsis an abbreviation de�ned in terms of in
rements.Figure 8.7 expresses the two questions stated at the beginning of this se
tion.The �rst question is whether the transition system 
ontains an edge that begins ina state in whi
h the buyer has $6, and whose label in
ludes buying two newspapersand one magazine. CCal
 responds to this query by �nding su
h an edge.2| ?- query 1.% Shifting atoms and 
lauses... done. (0.00 se
onds)% After shifting: 2156 atoms (in
luding new atoms), 8134 
lauses% Writing input 
lauses... done. (0.35 se
onds)% Calling mChaff spelt3... done.% Reading output file(s) from SAT solver... done.% Solution time: 0.11 se
onds (prep 0.09 se
onds, sear
h 0.02 se
onds)0: has(buyer,money)=62This example involves the 
on
urrent exe
ution of two a
tions, but in general the CCal
implementation of additive 
uents does not impose any spe
i�
 restri
tion on the number of a
tionsthat 
an be exe
uted 
on
urrently. 141



ACTIONS: buy(newspaper,howmany=2) buy(magazine,howmany=1)1: has(buyer,money)=1Its reply to a similar question about one newspaper and two magazines is negative:| ?- query 2.% Shifting atoms and 
lauses... done. (0.01 se
onds)% After shifting: 2156 atoms (in
luding new atoms), 8134 
lauses% Writing input 
lauses... done. (0.34 se
onds)% Calling mChaff spelt3... done.% Reading output file(s) from SAT solver... done.% Solution time: 0.11 se
onds (prep 0.09 se
onds, sear
h 0.02 se
onds)No solution with maxstep 1.
8.5 Reasoning about MotionSome additive 
uents mentioned in the introdu
tion|for instan
e, the velo
ity of aparti
le|are real-valued, rather than integer-valued. CCal
 
annot deal with realnumbers yet, and its input language does not allow us to express properties of su
h
uents.But let's imagine a movable obje
t that is immune to this 
ompli
ation|the spa
e
raft Integer. Far away from stars and planets, the Integer is not a�e
tedby any external for
es. As its proud name suggests, the mass of the spa
e
raft isan integer. For every integer t, the 
oordinates and all three 
omponents of theInteger's velo
ity ve
tor at time t are integers; the for
es applied to the spa
e
raftby its jet engines over the interval (t; t + 1), for any integer t, are 
onstant ve
tors142



whose 
omponents are integers as well. If the 
rew of the Integer attempts to violateany of these 
onditions, the jets fail to operate!The motion of the Integer is des
ribed in Figure 8.8. The three 
uents of theform pos(axis) represent the 
urrent position of the Integer. The additive 
uentsvel(axis) are the 
omponents of its velo
ity. A

ording to Newton's Se
ond Law,the a

eleration 
reated by �ring a jet 
an be 
omputed by dividing the for
e by themass of the spa
e
raft. The �rst proposition in Figure 8.8 expresses this fa
t withoutmentioning the a

eleration expli
itly, in terms of the 
hange in the velo
ity overa unit time interval. Symbol // stands for integer division; the se
ond propositiontells us that �ring a jet is impossible if this division gives a non-zero remainder.The third proposition says that the position of the spa
e
raft at time t+1 
anbe 
omputed by adding its average velo
ity over the interval (t; t+ 1) to its positionat time t. Be
ause the a

eleration over this interval is 
onstant, the average velo
ityis 
omputed as the arithmeti
 mean of the velo
ities at times t and t+1. We do notin
lude any assumptions about the 
ase when the division by 2 involved in 
omputingthis arithmeti
 mean produ
es a fra
tion. The semanti
s of the language of CCal
guarantee a
tually that �ring jets to a
hieve this result would be impossible.Finally, to make planning for the Integer more interesting, we use the 
on-stant maxFor
e to limit the power of the jets.To test our representation, we instru
t CCal
 to answer the following ques-tion (Figure 8.9):The mass of the Integer is 1. The Integer has two jets, and the for
ethat 
an be applied by ea
h jet along ea
h axis is at most 2. The 
urrentposition of the Integer is (�1; 0; 1), and its 
urrent velo
ity is (0; 1; 1).143



% File: 'spa
e
raft':- sortsinteger;axis;jet.:- obje
ts-maxAFValue..maxAFValue :: integer;x,y,z :: axis;jet1,jet2 :: jet.:- variablesAx :: axis;J :: jet;F,V,V1,P :: integer.:- 
onstantspos(axis) :: simpleFluent(integer);vel(axis) :: additiveFluent(integer);fire(jet) :: exogenousA
tion;for
e(jet,axis) :: attribute(integer) of fire(jet).fire(J) in
rements vel(Ax) by V // mass if for
e(J,Ax) = V.nonexe
utable fire(J) if for
e(J,Ax) mod mass \= 0.
aused pos(Ax) = P+((V+V1)//2) if vel(Ax) = V1after vel(Ax) = V & pos(Ax) = P where (V+V1) mod 2 = 0,P+((V+V1)//2) >= -maxAFValue,P+((V+V1)//2) =< maxAFValue.nonexe
utable fire(J) if abs(for
e(J,Ax)) > maxFor
e.Figure 8.8: File spa
e
raft: The spa
e
raft Integer144



% File: 'spa
e
raft-test':- maxAFValue :: 7.:- ma
rosmass -> 1;maxFor
e -> 2.:- in
lude 'spa
e
raft'.:- querymaxstep :: 1;0: (pos(x) = -1 & pos(y) = 0 & pos(z) = 1);0: (vel(x) = 0 & vel(y) = 1 & vel(z) = 1);1: (pos(x) = 0 & pos(y) = 3 & pos(z) = 1).:- show pos(Ax); vel(Ax).Figure 8.9: File spa
e
raft-test: How to get there?How 
an it get to (0; 3; 1) within 1 time unit?Here is one of the nine answers produ
ed by CCal
:Solution 1:0: pos(x)=-1 pos(y)=0 pos(z)=1 vel(x)=0 vel(y)=1 vel(z)=1ACTIONS: fire(jet1,for
e(x)=1,for
e(y)=2,for
e(z)= -2)fire(jet2,for
e(x)=1,for
e(y)=2,for
e(z)=0)1: pos(x)=0 pos(y)=3 pos(z)=1 vel(x)=2 vel(y)=5 vel(z)=-1
145



8.6 Additive A
tion ConstantsBesides additive 
uent 
onstants, we 
an introdu
e \additive a
tion 
onstants," asfollows. Some of the a
tion 
onstants 
an be designated as additive. Their domains,just as the domains of additive 
uent 
onstants, are assumed to 
onsist of numbers.Additive a
tion 
onstants are not allowed in formula F in a
tion dynami
 laws (6.9).An in
rement law is now de�ned as an expression of the form (8.2), where� a is a Boolean a
tion 
onstant,� 
 is an additive 
uent 
onstant or an additive a
tion 
onstant,� n is a number,� G is an a
tion formula that 
ontains neither Boolean a
tion 
onstants noradditive a
tion 
onstants.In the translation of in
rement laws (8.2) des
ribed in Se
tion 8.3, in the 
ase when
 is an additive a
tion 
onstant, 
lause (iii) is modi�ed as follows:(iii0) add the a
tion dynami
 laws
aused 
=Xa va if â Contribution(a; 
)=vafor every fun
tion a 7! va that maps ea
h 
-
ontributing 
onstant a to anelement of the domain of Contribution(a; 
) so that Pa va is in the domain of
.These 
ausal laws say that the value of an additive a
tion 
onstant during an event
an be 
omputed as the sum of the 
ontributions of all a
tions to this a
tion 
onstantduring that event. 146
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Available = 0Available = 1Available = 2 ... ...fBuy(A),Buy(B)g,. Available = N
Sold=2Sold=1

fBuy(B)g,fBuy(B)g,fBuy(B)g,fBuy(B)g, fBuy(A),Buy(B)g,
fBuy(A)g,Sold=1fBuy(A)g,.. ...

fBuy(A),Buy(B)g,
fBuy(A)g,
fBuy(A)g,Sold=1 Sold=1Sold=0Sold=0Sold=0

;,;,;,
;,Sold=0 Sold=1Sold=1 Sold=1Sold=1

Sold=2
Sold=2Figure 8.10: A transition system with an additive a
tion 
onstantHere is an example of the use of additive a
tion 
onstants for representing
ommonsense knowledge. In Se
tion 8.2 we des
ribed how the number of booksavailable in the bookstore is a�e
ted by a
tions of 
ustomers. We 
an ask, on theother hand, how the a
tions of 
ustomers determine the total number of booksthat are being sold to them at a parti
ular moment; in the 
ase of 2 
ustomers, thatnumber is either 0, 1 or 2. The number of books that are being sold is asso
iated withan event o

urring between two su

essive states, and not with a state. A

ordingly,we represent that number by an additive a
tion 
onstant, rather than an additive
uent 
onstant. Extend the a
tion des
ription shown in Figure 8.2 by the additivea
tion 
onstant Sold with the domain f0; 1; 2g, and by the 
ausal lawBuy(x) in
rements Sold by 1:The transition system represented by this extension of Figure 8.2 is shown in Fig-ure 8.10. 147



8.7 Improving PlansIn satis�ability planning, when a plan without 
on
urrent a
tions is desired, it isusual to make the pro
ess of plan generation more eÆ
ient by allowing a subset ofa
tions to be exe
uted 
on
urrently as long as that subset is \serializable." In su
h aplan, the a
tions that are s
heduled for the same time period 
an be instead exe
uted
onse
utively, in any order. For example, the restri
tions on blo
ks world plans in�le bw.t (Figure 4.6) ensure serializability. The 2-step plan shown in Se
tion 6.5 
anbe turned into a 4-step sequential plan by ordering the a
tions move(a,table) andmove(
,table) in an arbitrary way, and then ordering move(b,a) and move(d,
)in an arbitrary way.Generating serializable solutions is a 
omputationally useful tri
k, but thereis a diÆ
ulty asso
iated with it. As observed in [Kautz and Walser, 1999℄, whenthe shortest possible serializable plan is found, we 
annot generally expe
t that asequential plan obtained from it by serialization will be optimal in the sense ofthe number of steps. Consider, for instan
e, the blo
ks world ben
hmark problemlarge.
 from [Kautz and Selman, 1996℄ and [Niemel�a, 1999℄. The problem involves 15blo
ks. The shortest serializable solution to this problem 
onsists of 8 steps. Su
h asolution, found by CCal
 using sato as the sear
h engine, in
ludes 52 moves; therewill be only 38 moves, however, if relsat is used instead. The shortest serializablesolution to large.
 found by smodels 2.25 on the basis of the formalization givenin [Niemel�a, 1999℄ 
onsists of 29 moves. But all these numbers are a
tually mu
hlarger than ne
essary: as dis
ussed below, there exists a serializable solution tolarge.
 that has length 8 and 
onsists of 18 moves.Let's de�ne the 
ost of a solution to a blo
ks world planning problem to be148



% File: 'bw-
ost':- in
lude 'bw'.:- 
onstants
ost :: additiveFluent(0..maxAFValue).move(B) in
rements 
ost by 1.Figure 8.11: File bw-
ost: Computing the 
ost of a planthe total number of move a
tions in it. In the 
ase of a serializable plan, this isthe same as the length of a sequential plan obtained from it by serialization. Usingthe additive 
uent me
hanism, we 
an easily 
hara
terize the 
ost of a plan in thelanguage of CCal
 (Figure 8.11). Then CCal
 
an be used to 
he
k whether the
ost of a plan that it has found is minimal. For instan
e, in Figure 8.12 we instru
tCCal
 to �nd a serializable solution to large.
 whose length is 8 and whose 
ost isat most 18. It produ
es the following plan:% Calling mChaff...% Solution time: 9.23 se
onds (prep 2.51 se
onds, sear
h 6.72 se
onds)0: 
ost=0ACTIONS: move(
,destination=table) move(i,destination=table)move(k,destination=table)1: 
ost=3ACTIONS: move(b,destination=table) move(h,destination=table)149



% File: 'bw-
ost-test':- maxAFValue :: 19.:- ma
roslength -> 8;maxCost -> 18.:- in
lude 'bw-
ost'.:- variablesN :: 0..maxAFValue.:- obje
tsa,b,
,d,e,f,g,h,i,j,k,l,m,n,o :: blo
k.:- querymaxstep :: (length-1)..length;0: 
ost=0, lo
(m)=table, lo
(l)=m, lo
(a)=l, lo
(b)=a, lo
(
)=b,lo
(o)=table, lo
(n)=o, lo
(d)=n, lo
(e)=d, lo
(j)=e,lo
(k)=j, lo
(f)=table, lo
(g)=f, lo
(h)=g, lo
(i)=h;maxstep: 
ost=<maxCost, lo
(e)=j, lo
(a)=e, lo
(n)=a, lo
(i)=d,lo
(h)=i, lo
(m)=h, lo
(o)=m, lo
(k)=g, lo
(
)=k, lo
(b)=
,lo
(l)=b.:- show 
ost.Figure 8.12: File: bw-
ost-test: Finding an e
onomi
al solution to large.
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move(j,destination=table)2: 
ost=6ACTIONS: move(e,destination=j) move(k,destination=g)3: 
ost=8ACTIONS: move(a,destination=e) move(
,destination=k)move(d,destination=table)4: 
ost=11ACTIONS: move(b,destination=
) move(i,destination=d)5: 
ost=13ACTIONS: move(h,destination=i) move(l,destination=b)move(n,destination=a)6: 
ost=16ACTIONS: move(m,destination=h)7: 
ost=17ACTIONS: move(o,destination=m)8: 
ost=18yes If we make maxCost equal to 17 then CCal
 tells us that the problem is not151



Length of serializable plan Smallest possible 
ost8 189 1610 1511 1512 1513 1414 14Figure 8.13: Trade-o� between length and 
ost in solutions to large.
solvable.It is interesting to note that large.
 has sequential solutions whose lengthis less than 18. Su
h solutions 
annot be obtained, however, by serializing short
on
urrent solutions. This kind of trade-o� between the length of a serializablesolution and the length of the 
orresponding sequential solution was demonstratedby Kautz and Walser [1999℄ in the logisti
s domain. We have used CCal
 toinvestigate this phenomenon in the 
ase of problem large.
. A

ording to the resultsshown in Figure 8.13, the length of the shortest sequential solution is 14, but su
ha plan 
annot be obtained from a serializable plan whose length is less than 13.8.8 Properties of Additive ConstantsBy examining Figure 8.3 in isolation from its symboli
 des
ription in Figure 8.2 we
an see that the 
onstant Available exhibits some features typi
al for additive 
uent
onstants.Consider, for instan
e, the edges that start at the vertex Available = 2and are labeled by the events fBuy(A)g and fBuy(B)g. Ea
h of them leads to152



the vertex Available = 1, so that ea
h of these two events, when it o

urs in thestate Available=2, in
rements the value of Available by �1. In a

ordan
e with theintuitive idea of an additive 
uent, we 
an expe
t that the \union" of these events,when it o

urs in the same state, will in
rement the value of Available by (�1)+(�1).And this is true, be
ause the edge in Figure 8.3 that starts at the vertex Available=2and is labeled fBuy(A);Buy(B)g leads to the vertex Available=0.Proposition 12 below generalizes this observation to a 
lass of a
tion des
rip-tions in the language C+ extended as des
ribed in Se
tions 8.2, 8.3. By D we denoteany a
tion des
ription in this language.About events e0, e1,...,en (n � 0) in the transition system represented by Dwe say that e0 is a disjoint union of e1,...,en if, for every Boolean a
tion 
onstant a,� if e0(a) = t then there exists a unique i > 0 su
h that ei(a) = t; for this i,e0(a0) = ei(a0) for every non-Boolean a
tion 
onstant a0;� if e0(a)= f then, for all i > 0, ei(a)= f.In the rest of this se
tion we assume that the set of numbers is a 
ommutativegroup.Proposition 12 Let 
 be an additive 
uent 
onstant, let s, s0; :::; sn (n � 0) bestates, and let e0; :::; en be events su
h that e0 is a disjoint union of e1; : : : ; en. If,for all i 2 f0; : : : ; ng, the transition system represented by D 
ontains an edge thatleads from s to si and is labeled ei thens0(
)� s(
) = nXi=1(si(
)� s(
)):
153



The spe
ial 
ase 
orresponding to n = 0 tells us that additive 
uent 
onstantsare not a�e
ted by \trivial" events. In this sense, they are similar to the 
uent
onstants for whi
h inertia is postulated.Corollary 1 Let e be an event su
h that for every Boolean a
tion 
onstant a,e(a) = f. If the transition system represented by D 
ontains an edge that leadsfrom a state s to a state s0 and is labeled e then, for any additive 
uent 
onstant 
,s0(
) = s(
).The spe
ial 
ase 
orresponding to n = 1 implies that the e�e
ts of any set ofa
tions on an additive 
uent is deterministi
:Corollary 2 If the transition system represented by D 
ontains an edge that leadsfrom a state s to a state s0 and is labeled e, and an edge that leads from s to astate s1 and is also labeled e, then, for any additive 
uent 
onstant 
, s0(
) = s1(
).Here are the 
ounterparts of the three fa
ts stated above for additive a
tion
onstants:Proposition 13 Let 
 be an additive a
tion 
onstant, let s be a state, and lete0; :::; en (n � 0) be events su
h that e0 is a disjoint union of e1; : : : ; en. If, forall i 2 f0; : : : ; ng, the transition system represented by D 
ontains an edge thatstarts at s and is labeled ei then e0(
) = nXi=1 ei(
):Corollary 3 Let e be an event o

urring in the transition system represented by D.If, for every Boolean a
tion 
onstant a, e(a) = f then, for any additive a
tion 
on-stant 
, e(
) = 0. 154



Corollary 4 Let s be a state, and let e0, e1 be events su
h that for every non-additive a
tion 
onstant a, e0(a) = e1(a). If the transition system represented by D
ontains an edge that starts at s and is labeled e0, and an edge that starts at s andis labeled e1, then, for any additive a
tion 
onstant 
, e0(
) = e1(
).8.9 Dis
ussionIn this 
hapter we showed how an implemented, de
larative language for des
ribinga
tions 
an be used to talk about the e�e
ts of a
tions on additive 
uents. This wasa

omplished by extending the syntax of the a
tion language C+ from [Giun
higliaet al., 2004℄ by in
rement laws and by showing how to treat these laws as abbre-viations.It is interesting to note that this treatment of additive 
uents would havebeen impossible if, instead of C+, we used its prede
essor C. Non-Boolean, non-exogenous a
tion 
onstants su
h as Contribution(a; 
), and a
tion dynami
 lawssu
h as (8.3) and (8.4) are among the features of C+ that were not available in C.In literature on planning, 
uents with numeri
al values are often referred toas \resour
es" [Koehler, 1998℄. The 
on
urrent exe
ution of the a
tions that involveresour
es is usually limited to the \serializable" 
ase, when all ways of sequen
ingthe 
on
urrent a
tions are well-de�ned and equivalent. This 
ondition is not satis-�ed, however, for many uses of additive 
uents, in
luding the spa
e travel example(Se
tion 8.5). For instan
e, in the spa
e
raft example, �ring the jets in one dire
tionand then in the other dire
tion is not the same as �ring them 
on
urrently. Thisexample shows that �ring jets is not serializable.155



8.10 ProofsProposition 12 Let 
 be an additive 
uent 
onstant, let s, s0; :::; sn (n � 0) bestates, and let e0; :::; en be events su
h that e0 is a disjoint union of e1; : : : ; en. If,for all i 2 f0; : : : ; ng, the transition system represented by D 
ontains an edge thatleads from s to si and is labeled ei thens0(
)� s(
) = nXi=1(si(
)� s(
)):
Proof Assume that hs; e0; s0i,hs; e1; s1i,: : : ,hs; en; sni are transitions. Consider theredu
t D0:s [ 0:ei [ 1:si1 where i > 0. Sin
e (8.3) and (8.4) are the only 
ausal lawsin D that 
ontain 
onstants of the form Contribution(a; 
) in the heads, there existsa unique va su
h that 0 : Contribution(a; 
) = va 2 D0:s [ 0:ei [ 1:si1 for every 0 :Contribution(a; 
) (Otherwise hs; ei; sii would not be a transition). If there is a
ausal law (8.3) in D su
h that ei(a) = t, ei j= G, s j= H, then va = n, a 
ontributionof a to 
. Otherwise va = 0. Sin
e 0 : ei satis�es every atom 0 :Contribution(a; 
),(0 :ei)(0 :Contribution(a; 
)) = va. Let 
i =Pa va.Note that (8.5) is the only 
ausal law in D that 
ontains 
 in the head. Sothe redu
t 
ontains a unique atom1:
 = (0:s)(0 :
) +Xa (0 :ei)(0 :Contribution(a; 
))for 
onstant 1 : 
. Sin
e 1 : si satis�es the atom, it follows that si(
) = s(
) + 
i, or
i = si(
)� s(
).Now 
onsider the redu
t D0:s [ 0:e0 [ 1:s01 . Again sin
e (8.3) and (8.4) are theonly 
ausal laws in D that 
ontain 
onstants of the form Contribution(a; 
) in the156



heads, there exists a unique va su
h that 0:Contribution(a; 
) = va 2 D0:s [ 0:e0 [ 1:s01for every 0:Contribution(a; 
). Noti
e that� va = (0 : ei)(0 :Contribution(a; 
)) for any ei su
h that ei(a) = t if e0(a) = t(indeed there is a unique su
h ei), and� va = 0 if e0(a) = f.(Indeed, suppose e0(a) = t. There exists a unique ei su
h that ei(a) = t. If thereis a 
ausal law (8.3) in D su
h that e0(a) = t, e0 j= G, s j= H, then ei(a) = t,ei j= G also. So 0 : Contribution(a; 
) = n belongs to both D0:s [ 0:e0 [ 1:s01 andD0:s [ 0:ei [ 1:si1 . If e0(a) = t, but either e0 6j= G or s 6j= H, then either ei 6j= G or s 6j=H. So a

ording to (8.4), 0 :Contribution(a; 
) = 0 belongs to both D0:s [ 0:e0 [ 1:s01and D0:s [ 0:ei [ 1:si1 .)Sin
e 0:e0 satis�es the atoms, it follows that, for every a,(0 :e0)(0 :Contribution(a; 
)) = (0:ei)(0 :Contribution(a; 
))for any ei su
h that ei(a) = t if e0(a) = t and(0:e0)(0 :Contribution(a; 
)) = 0if e0(a) = f.Note that (8.5) is the only 
ausal law in D that 
ontains 
 in the head. Sothe redu
t 
ontains a unique atom1:
 = (0:s)(0 :
) +Xa (0 :e0)(0 :Contribution(a; 
))for 
onstant 1:
. 157



We see thatXa (0 :e0)(0 :Contribution(a; 
)) = Xe0(a)=t(0 :e0)(0 :Contribution(a; 
))= X1�i�n Xei(a)=t(0 :ei)(0 :Contribution(a; 
))= X1�i�n 
i = X1�i�n(si(
) � s(
))Sin
e 1:s0 satis�es the atom, it follows thats0(
) = s(
) + X1�i�n(si(
)� s(
))
The proof of Proposition 13 is similar to the proof of Proposition 12.
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Chapter 9
Elaborations of the Missionariesand Cannibals Puzzle
As dis
ussed in Se
tion 2.5, M
Carthy used elaborations of the Missionaries andCannibals Puzzle to illustrate the idea of elaboration toleran
e. Lifs
hitz [2000℄showed how to formalize M
Carthy's elaborations of MCP in an early version ofCCal
. His representation did not introdu
e names for individual missionaries or
annibals; rather, a state was des
ribed in terms of the number of members of ea
hgroup on ea
h bank of the river. As noted in Se
tion 5.6, the \diÆ
ult" 
on
urren
yidenti�ed in that paper has led to the investigation of additive 
uents (Chapter 8).Our formalization presented in this 
hapter over
omes several limitations ofLifs
hitz's formalization thanks to the improvements of the language of CCal
.This in
ludes the implementations of additive 
uents, defeasible 
ausal laws, andattributes. Rather than presenting all elaborations, we list some of them whi
hillustrate these points. 159



9.1 Formalization of the Basi
 ProblemAs in [Lifs
hitz, 2000℄, we start with formalizing the parts that are 
ommon for allelaborations. File 
ommon1 des
ribes the a
tion of 
rossing using an attribute thatdenotes the destination.% File '
ommon1':- sortsvessel;lo
ation. % obje
ts of these sorts should be defined elsewhere:- variablesV :: vessel;L,L1 :: lo
ation.:- 
onstantslo
(vessel) :: inertialFluent(lo
ation);
ross(vessel) :: exogenousA
tion;to(vessel) :: attribute(lo
ation) of 
ross(vessel).
ross(V) 
auses lo
(V)=L if to(V)=L unless ab1(V,L).nonexe
utable 
ross(V) if to(V)=lo
(V) unless ab2(V).The line 160



to(vessel) :: attribute(lo
ation) of 
ross(vessel)de
lares that to is an attribute of a
tion 
ross whose value is a lo
ation. Theattribute des
ribes the destination of 
rossing.All 
ausal laws in the �le are made defeasible. In ea
h elaboration later, ifne
essary, some of the laws here will be retra
ted.File 
ommon2 extends 
ommon1 by introdu
ing new attributes, howmany(vessel,group),that denote how many members of various groups are 
rossing. As dis
ussed in Se
-tion 5.6, the number of members of a group G in a lo
ation L should be treated asan additive 
uent to handle \diÆ
ult" 
on
urren
y. afValue is a prede�ned sort inCCal
 that ranges over numbers an additive 
uent 
an take.% File '
ommon2':- in
lude '
ommon1'.:- sortsgroup. % group obje
ts should be defined elsewhere:- variablesN,N1 :: afValue;G :: group.:- 
onstantsnum(group,lo
ation) :: additiveFluent(afValue);howmany(vessel,group) :: attribute(afValue) of 
ross(vessel).161




ross(V) in
rements num(G,L) by N if to(V)=L & howmany(V,G)=Nunless ab3(V,G,L).
ross(V) de
rements num(G,L) by N if lo
(V)=L & howmany(V,G)=Nunless ab4(V,G,L).File basi
 des
ribes the spe
i�
s about the original Missionaries and Canni-bals Puzzle, in
luding obje
ts su
h as the boat, banks, and groups, and 
onstraintssu
h as missionaries should not be outnumbered. This �le will be in
luded in allelaborations. Again, all assertions in it are made defeasible.% File 'basi
':- in
lude '
ommon2'.:- obje
tsboat :: vessel;bank1, bank2 :: lo
ation;mi,
a :: group.:- 
onstants
apa
ity(vessel) :: 1..maxCapa
ity.exogenous 
apa
ity(V) unless ab5(V).:- ma
ros 162



outnumbered(#1,#2) % #1 missionaries are-> (#2 > #1) & (#1 > 0). % outnumbered by #2 
annibals% missionaries should not be outnumbered in any lo
ation
onstraint -outnumbered(num(mi,L),num(
a,L)) unless ab6(L).% additional pre
onditions for 
rossing:% someone should be in the boatnonexe
utable 
ross(V) if howmany(V,mi)+howmany(V,
a)=0 unless ab7(V).% but not too manynonexe
utable 
ross(V)if howmany(V,mi)+howmany(V,
a) > 
apa
ity(V) unless ab8(V).% missionaries should not be outnumbered on the waynonexe
utable 
ross(V) if outnumbered(howmany(V,mi),howmany(V,
a))unless ab9(V).% boat 
apa
ity
onstraint 
apa
ity(boat)=2 unless ab10.To test this formalization, we use the following �le basi
-test. Test �lesfor other elaborations whi
h ask to �nd plans are similar to this one.% File 'basi
-test': original MCP163



:- maxAFValue :: 3.:- ma
rosmaxCapa
ity -> 2.:- in
lude 'basi
'.:- querymaxstep :: 10..11;0: num(mi,bank1)=3, num(
a,bank1)=3, num(mi,bank2)=0, num(
a,bank2)=0,lo
(boat)=bank1;maxstep: num(mi,bank2)=3, num(
a,bank2)=3.The dire
tive maxAFValue spe
i�es the maximum value an additive 
uent
an take. It also instru
ts CCal
 that additive 
uents will be used.The query instru
ts CCal
 to try to �nd a plan of length 10 and if there isno su
h plan, try length 11. Sin
e the shortest step solution for the basi
 probleminvolves at least 11 steps, CCal
 answered that there is no plan of length 10, andreturned a plan of length 11. The solution returned by CCal
, along with solutionsfor other elaborations, is shown in Appendix A.9.2 Two BoatsBefore presenting formalizations of M
Carthy's elaborations, let us 
onsider a simpleelaboration in whi
h we allow one more boat whi
h holds only one person. This164



modi�
ation is more diÆ
ult to formalize than the original form of MCP. Besidesthe diÆ
ulty des
ribed in Se
tion 5.6, there are other diÆ
ulties. Consider theoriginal form of the problem, and imagine that there is a single 
annibal with theboat on the left bank. Our postulates should make it impossible, of 
ourse, for two
annibals to 
ross in this state. In the absen
e of a se
ond boat, we don't have toworry about this: two 
annibals leaving would have made the number of 
annibalson the left bank negative, whi
h is impossible. With two boats, this reasoning doesnot apply any more, be
ause a 
annibal 
rossing simultaneously in the oppositedire
tion would make the number of 
annibals on the left bank equal to 0, whi
his a legal value. To prohibit su
h a
tions, we need to say that the total numberof members of a group leaving a lo
ation does not ex
eed the number of membersof the group in that lo
ation. This is expressed in the formalization below usingadditive a
tion 
onstant departing(G,L): the total number of members of group Gwho are departing from lo
ation L.Another problem whi
h is similar to the above has to do with a 
onstraint onthe number of missionaries and 
annibals during an event. Imagine that there aretwo missionaries and two 
annibals on the left bank, and only one of the missionariesis leaving. This should be prohibited and indeed if there were only one boat, thiswould be a
hieved by the �rst 
onstraint proposition in File basi
. However,with two boats, if the third missionary arrives into the lo
ation simultaneously,the 
onstraint proposition does not prohibit the event. Besides the 
onstraint onthe number of groups in a lo
ation in ea
h state, we need to represent a similar
onstraint during an event. Below this is expressed using staying(G,L), a ma
rode�ned in terms of departing(G,L). 165



% File 'departing':- 
onstantsdeparting(group,lo
ation) :: additiveA
tion(afValue).:- ma
rosstaying(#1,#2) -> num(#1,#2)-departing(#1,#2).
ross(V) in
rements departing(G,L) by N if lo
(V)=L & howmany(V,G)=Nunless ab11(V,G,L).% the number of people departing from a lo
ation does not ex
eed the number% of people therealways departing(G,L)=<num(G,L) unless ab13(G,L).% the missionaries staying in a lo
ation should not be outnumbered by% the 
annibals there.always staying(mi,L)\=0 ->> staying(mi,L)>=num(
a,L) unless ab12(L).File two-boats below in
ludes departing, and introdu
es one more boat,boat1, that holds at most one person. Given a query similar to basi
-test above,CCal
 has determined that a solution requires at least 7 steps, and returned a planof that length.% File 'two-boats' 166



:- ma
rosmaxInt -> 3.:- in
lude 'basi
'; 'departing'.:- obje
tsboat1 :: vessel.
aused 
apa
ity(boat1)=1 unless ab14.9.3 Four Missionaries and Four CannibalsThere are four missionaries and four 
annibals. The problem is now unsolvable.We simply use a query of the new form available in CCal
, whi
h was givenin Se
tion 6.69.4 Boat Can Carry ThreeThe boat 
an 
arry three. Five pairs 
an 
ross, but not six. The assumption in Filebasi
 that the boat 
an 
arry only two people should be retra
ted.% File 'jm
4': M
Carthy's Elaboration No. 4% retra
t 
onstraint 
apa
ity(boat)=2 unless ab10.167



:- in
lude 'basi
'.
aused ab10.
onstraint 
apa
ity(boat)=3 unless ab14.CCal
 has determined that at least 11 steps are required if there are �vepairs, and returned a plan of that length. It also veri�ed that no solution exists nomatter how many steps are given if there are six pairs.% File 'jm
4-test':- maxAFValue :: 6.:- ma
rosmaxCapa
ity -> 3.:- in
lude 'jm
4'.% Five pairs 
an 
ross.:- querylabel :: 1;maxstep :: 10..11;0: num(mi,bank1)=5, num(
a,bank1)=5, num(mi,bank2)=0, num(
a,bank2)=0,lo
(boat)=bank1;maxstep: 168



num(mi,bank2)=5, num(
a,bank2)=5.% Six pairs 
an't 
ross.:- querylabel :: 2;maxstep :: any;0: num(mi,bank1)=6, num(
a,bank1)=6, num(mi,bank2)=0, num(
a,bank2)=0,lo
(boat)=bank1;maxstep:num(mi,bank2)=6, num(
a,bank2)=6;invariant:num(mi,bank1)+num(mi,bank2)=6 & num(
a,bank1)+num(
a,bank2)=6& (lo
(boat)=bank1 & num(mi,bank1)>=4++ lo
(boat)=bank2 & num(mi,bank2)=<3).9.5 Converting CannibalsThree missionaries alone with a 
annibal 
an 
onvert him into a missionary. Lif-s
hitz [2000℄ noted:Do we allow 
rossing the river and 
onverting a 
annibal to o

ur inparallel? Can a solution begin, for instan
e, with two 
annibals 
rossingto Bank 2 while the third 
annibal is being 
onverted into a missionaryon Bank 1? If yes, this is an example of \diÆ
ult" 
on
urren
y (Se
tion5) that the approa
h of this paper does not allow.169



Here we do allow the 
on
urren
y of this kind. The problem 
an be solvedin 9 steps, one step shorter than the solution reported in [Lifs
hitz, 2000℄.% File 'jm
11': M
Carthy's elaboration No. 11:- in
lude 'basi
'; 'departing'.:- 
onstants
onvert(lo
ation) :: exogenousA
tion.
onvert(L) in
rements num(mi,L) by 1 unless ab14(L).
onvert(L) de
rements num(
a,L) by 1 unless ab15(L).% 
onverting is possible only if there are three missionaries and only one% 
annibal in the bankalways 
onvert(L) ->> (staying(mi,L)>=3 & staying(
a,L)=1) unless ab16(L).9.6 Walking on WaterOne of the missionaries is Jesus Christ, who 
an walk on water. This is similar, butnot quite equivalent to the elaboration in Se
tion 9.2.We treat j
 as a singleton subset of group mi. The fa
t that j
 is a subset ofmi is expressed by the postulates that prohibit the states in whi
h the number of j
is greater than the number of mi in the same lo
ation, and that prohibit the eventsin whi
h the number of j
 
rossing is greater than the number of mi 
rossing.170



Sin
e walking and 
rossing may be exe
uted at the same time, this is anotherinstan
e of \diÆ
ult" 
on
urren
y. CCal
 has determined that the shortest stepsolution involves at least 7 steps, and returned a plan of that length.% File 'jm
10': M
Carthy's Elaboration No. 10:- in
lude 'basi
'; 'departing'.:- obje
tsj
 :: group.:- 
onstantswalk :: exogenousA
tion;walk_to :: attribute(lo
ation) of walk.% j
 is a subgroup of missionaries
onstraint num(j
,L)=<num(mi,L) unless ab14(L).nonexe
utable 
ross(V) if howmany(V,j
)>howmany(V,mi) unless ab15(V).% j
 
an be present at most one lo
ation
onstraint num(j
,L)=1 ->> num(j
,L1)=0 where L\=L1.nonexe
utable walk if howmany(V,j
)>0 unless ab17(V).% 
annot walk to the same lo
ationnonexe
utable walk_to=L if num(j
,L)>0 unless ab18(L).171



walk in
rements num(mi,L) by 1 if walk_to=L unless ab19(L).walk de
rements num(mi,L) by 1 if walk_to=L1 & L\=L1 unless ab20(L,L1).walk in
rements num(j
,L) by 1 if walk_to=L unless ab21(L).walk de
rements num(j
,L) by 1 if walk_to=L1 & L\=L1 unless ab22(L,L1).walk in
rements departing(mi,L) by 1 if walk_to=L1 & L\=L1 unless ab23(L,L1).walk in
rements departing(j
,L) by 1 if walk_to=L1 & L\=L1 unless ab23(L,L1).9.7 The BridgeThere is a bridge, wide enough for two to 
ross at on
e. This is another instan
e of\diÆ
ult" 
on
urren
y sin
e using the bridge and the boat 
on
urrently a�e
ts thenumber of people in a lo
ation at the same time.CCal
 returned a shortest step solution that involves 4 steps, one stepshorter than the solution reported in [Lifs
hitz, 2000℄.% File 'jm
13': M
Carthy's elaboration No. 13:- in
lude 'basi
'; 'departing'.:- 
onstantsuseBridge :: exogenousA
tion;useBridge_from, 172



useBridge_to :: attribute(lo
ation) of useBridge;useBridge_howmany(group) :: attribute(afValue) of useBridge.useBridge in
rements num(G,L) by Nif useBridge_to=L & useBridge_howmany(G)=N unless ab14(G,L).useBridge de
rements num(G,L) by Nif useBridge_from=L & useBridge_howmany(G)=N unless ab15(G,L).useBridge in
rements departing(G,L) by Nif useBridge_from=L & useBridge_howmany(G)=N unless ab16(G,L).nonexe
utable useBridge if useBridge_from=L & useBridge_to=L1unless ab17(G,L) where -((L=bank1 & L1=bank2) ++ (L=bank2 & L1=bank1)).always useBridge ->> useBridge_howmany(mi)+useBridge_howmany(
a)>0 &useBridge_howmany(mi)+useBridge_howmany(
a)=<2unless ab18.
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Chapter 10
Loop Formulas for Causal Logi


By adding so-
alled \loop formulas" to 
ompletion, Lin and Zhao ensured thatthe answer sets of a normal logi
 program are exa
tly the models of the modi�ed
ompletion. This idea has been extended to more general 
lasses of logi
 programs,su
h as programs that allow 
lassi
al negation, in�nite programs, and programs withnested expressions [Lee and Lifs
hitz, 2003; Lee, 2005℄. In this 
hapter we show howto redu
e the general 
ase of 
ausal theories to propositional formulas using the ideaof loop formulas.For simpli
ity, we limit our attention to Boolean 
ausal theories, that is, to
ausal theories in the sense of Se
tion 3.3. From Proposition 8 (Se
tion 6.4.2) weknow that, in prin
iple, any 
ausal theory 
an be redu
ed to a theory of this kind.10.1 Review of the Lin/Zhao TheoremLet � be a normal program (Se
tion 3.1). The positive dependen
y graph of � isthe dire
ted graph su
h that 174



p q r sFigure 10.1: The dependen
y graph of �1� its verti
es are the atoms o

urring in �, and� its edges go from p1 to p2; : : : pm for ea
h rule (3.1) of �.A nonempty set L of atoms is 
alled a loop of � if, for every pair p1, p2 ofatoms in L, there exists a path from p1 to p2 in the positive dependen
y graph of �su
h that all verti
es in this path belong to L. A loop is 
alled trivial if the loop
onsists of a single atom su
h that there is no edge from the atom to itself in thepositive dependen
y graph.1For example, 
onsider the following program �1:p qq pr ss rp not rr not p:The positive dependen
y graph of �1, shown in Figure 10.1, has six loops: fpg, fqg,frg, fsg, fp; qg, fr; sg.1The example of a singleton loop shows that a loop of � does not ne
essarily 
orrespond toa loop (or 
y
le) of the positive dependen
y graph of � in the sense of graph theory. Lin andZhao [2004℄ did not allow paths of length 0.
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For any set Y of atoms, the external support formula for Y is the disjun
tionof the 
onjun
tions B ^ F (10.1)for all rules (3.2) of � su
h that� p1 2 Y , and� B \ Y = ;.We denote this external support formula by ES�;Y . The (disjun
tive) loop formulaof a loop L for � is the formula _L � ES�;L:2 (10.2)By LF (�) we denote the set of formulas (10.2) for all nontrivial loops L of �.Theorem [Lin and Zhao, 2004, Theorem 1℄ For any normal program �, a set ofatoms is an answer set of � i� it is a model of Comp(�) [ LF (�).If we in
lude loop formulas for trivial loops, we 
an reformulate the theoremas follows without referring to 
ompletion. In the following we identify � with apropositional theory by identifying `not ' with `:', `;' with `^', `;' with `_', and ` 'with impli
ation.Corollary [Lee, 2005℄ For any normal program �, a set of atoms is an answer setof � i� it is a model of� ^ ^L is a loop of ��_L � ES�;L�:2When W is applied to a set L as in the ante
edent of this formula, it stands for the disjun
tionof all elements of L. 176



10.2 Loop Formulas for Causal Theories in Canoni
alForm10.2.1 Main Theorem for Canoni
al TheoriesRe
all that a (Boolean) 
ausal rule is an expression of the formF ( G;where F , G are propositional formulas.If the head of a 
ausal rule is a 
onjun
tion, then the rule 
an be broken intosimpler rules: repla
ing a rule F ^G( Hin a 
ausal theory by the rules F ( H; G( Hdoes not 
hange the set of models. This fa
t allows us to repla
e any rule in a
ausal theory by several rules whose heads are 
lauses. We will 
all su
h 
ausalrules 
anoni
al.A 
anoni
al 
ausal theory is a �nite set of 
anoni
al 
ausal rules.Let T be a 
anoni
al 
ausal theory. The head dependen
y graph of T is thedire
ted graph su
h that� its verti
es are the literals of �, and� for ea
h rule l1 _ � � � _ ln ( F of T , it has an edge from ea
h li to ea
h ljwhere j 6= i, 1 � i; j � n.33l denotes the literal 
omplementary to literal l.177



:qp q:p :qT2
p q:p T3Figure 10.2: The head dependen
y graphs of T2, T3Thus head dependen
y graphs of 
ausal theories di�er from positive dependen
ygraphs of logi
 programs in two ways. First their verti
es are literals, and not onlyatoms. Se
ond, the edges of a graph 
ome from the heads of the rules.For instan
e, the head dependen
y graphs of T2 and T3 (Se
tion 3.3) areshown in Figure 10.2.1.Similarly to logi
 programs, a nonempty 
onsistent set L of literals is 
alleda loop of T if, for every pair l1, l2 of literals in L, there exists a path from l1 to l2 inthe head dependen
y graph of T su
h that all verti
es in this path belong to L. Aloop is 
alled trivial if the loop 
onsists of a single literal su
h that there is no edgefrom the literal to itself in the head dependen
y graph.For instan
e, T2 has six loops: fpg, f:pg, fqg, f:qg, fp; qg, f:p;:qg, amongwhi
h the �rst four are trivial.The following fa
t easily follows from the de�nition of a loop. Given a set Lof literals, L is the set of literals 
omplementary to literals in L.Fa
t 1 For any 
anoni
al 
ausal theory T , if a set L of literals is a loop of T , L isa loop of T also.For any set Y of atoms, the external support formula for Y is the disjun
tion178



of the 
onjun
tions G ^ ^l2FnY lfor all rules F ( G of T su
h that� F \ Y 6= ;, and� F \ Y = ;.We denote the external support formula by EST;Y .Given a 
anoni
al 
ausal theory T , propositional theory Tr b(T ) 
onsists of(i) the impli
ations G � Ffor all rules F ( G in T ,(ii) the impli
ations _Y � EST;Y (10.3)for all 
onsistent sets Y of literals of �.Propositional theory Tr 
(T ) is de�ned in the same way ex
ept that instead of for-mulas (10.3),� theory Tr 
(T ) in
ludes ^L � EST;L (10.4)for all loops L of T .When L is a loop, we 
all formula (10.4) the 
onjun
tive loop formula of L for T .Theorem 2 For any 
anoni
al 
ausal theory T and any interpretation X of thesignature of T , the following 
onditions are equivalent to ea
h other:179



(a) X is a model of T .(b) X is a model of Tr b(T ).(
) X is a model of Tr 
(T ).Sin
e 
onditions (b) and (
) of Theorem 2 are equivalent to ea
h other, anyintermediate 
ondition between the two is also equivalent to (a){(
). In parti
ularwe 
onsider the following translations, Trd and Tr e, whi
h are de�ned in the sameway as Tr b ex
ept that instead of formulas (10.3),� theory Trd(T ) in
ludes ^Y � EST;Yfor all nonempty 
onsistent sets Y of literals of �.4� theory Tr e(T ) in
ludes _L � EST;L (10.5)for all loops L of T .When L is a loop, we 
all formula (10.5) the disjun
tive loop formula of L for T .Corollary 5 For any 
anoni
al 
ausal theory T and any interpretation X of thesignature of T , the following 
onditions are equivalent to ea
h of 
onditions (a){(
)of Theorem 2:(d) X is a model of Trd(T ).(e) X is a model of Tr e(T ).4The requirement that Y be 
onsistent 
an be dropped sin
e the impli
ation is trivially true inthis 
ase. 180



Noti
e that the set of formulas in ea
h of the 
onditions (b){(e) 
onsists of twoparts. The �rst is a modular translation of T into propositional logi
: it reads ea
hrule of T as an impli
ation. On the other hand, the se
ond part is a non-modulartranslation. For instan
e, to �nd loops and to write the 
onsequents of (10.4), onehas to look at the whole theory.For example, 
onsider T2 from Se
tion 3.3. The theory is not de�nite, sothat we 
annot use the literal 
ompletion method to �nd its models. But 
ondition(
) of Theorem 2 tells us that the models of T2 are exa
tly the models of(p _ :q) ^ (:p _ q)^ (p � q) ^ (q � p) ^ (:p � :q) ^ (:q � :p) ^ (p ^ q � ?) ^ (:p ^ :q � ?):Theory T3 from Se
tion 3.3 is another example to whi
h we 
annot apply literal
ompletion. A

ording to Theorem 2, the models of T3 are exa
tly the models of(p _ :q) ^ (:p _ q) ^ (p _ q) ^ (p � q _ :q) ^ (q � p _ :p)^(:p � :q) ^ (:q � :p) ^ (p ^ q � >) ^ (:p ^ :q � ?):Note that all translations (b)|(e) involve the exponential number of loopsin the worst 
ase, and this may be seen as a defe
t of the translations. However,assuming a 
onje
ture from the theory of 
omputational 
omplexity whi
h is widelybelieved to be true, we 
an show that any equivalent transformation from 
ausaltheories to propositional formulas without introdu
ing new atoms involves a signif-i
ant in
rease in size, in the worst 
ase. This is a 
onsequen
e of a similar result forlogi
 programs proved by Lifs
hitz and Razborov [2004℄, in 
ombination with thelemma from [Giun
higlia et al., 2004, Se
tion 8.3℄.
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10.2.2 Completion and Tight Causal TheoriesWe 
an extend the literal 
ompletion method to 
anoni
al theories, not ne
essarilyde�nite, as follows. The (literal) 
ompletion of a 
anoni
al theory T , denoted byComp(T ), is the 
onjun
tion of T with the impli
ationsl � EST;flgfor all literals l of the signature of T . Note that this de�nition is a generalization ofthe literal 
ompletion of de�nite theories (Se
tion 3.4).Sin
e every singleton set of literals is a (trivial) loop, Comp(T ) 
an be viewedas the 
onjun
tion of T with loop formulas of all trivial loops of T . Thus it is 
learthat Tr 
(T ) implies Comp(T ), but not vi
e versa. The following is a 
orollary toTheorem 2 (Se
tion 10.2.1):Corollary 6 For any 
anoni
al theory T , if X is a model of T then it is a modelof Comp(T ).As in the 
ase of logi
 programs (see Se
tion 3.1), we 
an de�ne a \tight"
ausal theory, for whi
h the impli
ation in the other dire
tion also holds. Ourde�nition is based on the notion of a loop. For a 
anoni
al 
ausal theory T , we willsay that T is tight if all loops of T are trivial. It is 
lear that any de�nite theoryis tight. On the other hand, theories T2 and T3 (Se
tion 3.3) are not tight. Thefollowing example is a nonde�nite theory whi
h is tight:p _ :q ( >r _ q ( >:r ( :r:182



Sin
e Comp(T ) and Tr 
(T ) are the same if T is tight, we get the following
orollary to Theorem 2, whi
h generalizes the proposition from Se
tion 3.4.Corollary 7 For any tight 
anoni
al 
ausal theory T and any interpretation X ofthe signature of T , X is a model of T i� X is a model of Comp(T ).For tight theories, the translations from the previous se
tion give polynomial-size propositional formulas.10.2.3 Turning Nonde�nite Theories into De�nite TheoriesA 
orollary of Theorem 2 tells us that any nonde�nite theory 
an be turned intoan equivalent de�nite theory. Let T be a 
anoni
al 
ausal theory of a signature �.For every rule F ( G of T , the 
orresponding set of de�nite rules DR(F ( G) isde�ned as follows:DR(F ( G) = (l ( G ^ ^l02Fnflg l0 : l 2 F)if jF j > 1; DR(F ( G) = fF ( Gg otherwise.The set of de�nite rules 
orresponding to T is the union of DR(r) for allrules r in T : DR(T ) = [r2T DR(r):Note that DR(T ) = T when T is de�nite.
183



For example, for T3 from Se
tion 3.3, DR(T3) isp ( q:q ( :p:p ( :qq ( pp ( :qq ( :p;and its only model is fp; qg, whi
h is the only model of T3 also.For T2 from Se
tion 3.3, whi
h has no models, DR(T2) isp ( q:q ( :p:p ( :qq ( p; (10.6)
whi
h has two models, fp; qg and f:p;:qg.A

ording to Proposition 5 from [Giun
higlia et al., 2004℄, adding a 
onstraint?( F (Se
tion 3.3) to a 
ausal theory T does not introdu
e new models, but simplyeliminates the models of T that does not satisfy F . Thus we get the following as a
orollary to Theorem 2.Corollary 8 For any 
anoni
al 
ausal theory T , the following 
onditions are equiv-alent to ea
h other:(a) X is a model of T .(b) X is a model of DR(T )[f?( :(WY � EST;Y ) : Y is a 
onsistent set of literals of �g.184



(
) X is a model of DR(T )[f?( :(VL � EST;L) : L is a nontrivial loop of Tg.(d) X is a model of DR(T )[ f?( :(VY � EST;Y ) : Y is a nonempty 
onsistent set of literals of �g.(e) X is a model of DR(T )[f?( :(WL � EST;L) : L is a nontrivial loop of Tg.For example, the 
onstraints that express the 
onjun
tive loop formulas ofnontrivial loops for T2 are ?( :(p ^ q � ?)?( :(:p ^ :q � ?): (10.7)Corollary 8 tells us that the models of T2 are exa
tly the models of the 
ausal theorywhi
h 
onsists of (10.6) and (10.7).As another example, 
onsider the a
tion des
ription shown in Figure 5.1.Re
all that it is nonde�nite be
ause of the last 
ausal law, whi
h is translated intoa set of 
ausal rules:i :Turning(1) � i :Turning(2)( i :Conne
ted : (10.8)A

ording to Corollary 8, the 
ausal theory 
orresponding to Figure 5.1 
an beturned into a de�nite theory with the same set of models by repla
ing the rule (10.8)with the following rules 5:i ::Turning(x) ( i ::Turning(x1) ^ i :Conne
ted (x 6= x1)i :Turning(x) ( i :Turning(x1) ^ i :Conne
ted (x 6= x1)? ( :�Vx i :Turning(x) � Wx i :MotorOn(x)�: (10.9)5The �rst rule 
an be dropped without 
hanging the set of models.185



10.2.4 Transitive ClosureThe 
omparison of the de�nition of a loop in logi
 programs and in 
ausal logi

an guide us in translating a representation from one formalism to the other. Forexample, the dependen
y graph of p  q and the dependen
y graph of p( q aredi�erent: while the former has an edge from p to q, the latter has no edges. Onthe other hand, q � p( > has two edges: one from p to q, and the other from :qto :p. In logi
 programming the following set of rules des
ribes the transitive 
losuret
 of a binary relation p on a set A:p(x; y) for any pair x; y 2 A su
h that p(x; y) holdst
(x; y) p(x; y)t
(x; z) p(x; y); t
(y; z): (10.10)One might be tempted to write the 
orresponding representation in 
ausallogi
 as follows:p(x; y) ( > for any pair x; y 2 A su
h that p(x; y) holdst
(x; y) ( p(x; y)t
(x; z) ( p(x; y) ^ t
(y; z):p(x; y) ( :p(x; y):t
(x; y) ( :t
(x; y): (10.11)
Note that the 
ompletion of (10.10) is equivalent to the 
ompletion of (10.11).If p is a
y
li
, then t
 in (10.11) des
ribes the transitive 
losure 
orre
tly. Other-wise, the representation may allow spurious models that do not 
orrespond to thetransitive 
losure. 186



The presen
e of the spurious models is related to the \
y
li
 
ausality" in thethird rule of (10.11). The loop formulas for (10.11) are not equivalent to the loopformulas for (10.10). In (10.10) the third rule tells us that the positive dependen
ygraph has edges that go from t
(x; z) to t
(y; z), while in (10.11) the 
orrespondingrule does not 
ontribute to the edges of the head dependen
y graph. Indeed, (10.11)has trivial loops only.This problem 
an be 
orre
ted by moving t
(y; z) in the third rule from thebody to the head, to ensure that the head dependen
y graph 
ontains the 
orre-sponding edges: t
(y; z) � t
(x; z)( p(x; y):6The modi�ed 
ausal theory may have more loops than (10.10), but the loopformulas for these extra loops are tautologies, be
ause ea
h of the loops 
ontainsat least one negative literal, and there is a rule :
 ( :
 in the theory for everyatom 
. Thus it is easy to see that the loop formulas for the modi�ed 
ausal theoryare equivalent to the loop formulas for (10.10). The translation of the 
ausal logi
representation of transitive 
losure to the 
orresponding logi
 program provides analternative proof of Theorem 2 from [Do�ganda�g et al., 2004℄, whi
h shows the 
or-re
tness of the modi�ed 
asual theory for representing transitive 
losure. A

ordingto Corollary 8, t
 
an also be des
ribed by de�nite theories using the translationfrom Se
tion 10.2.3.6A

ording to Proposition 2 of [Lee, 2004℄, we 
an also write p(x; y) ^ t
(y; z) � t
(x; z)( >:Sin
e p(x; y) does not 
ontribute to any loops, moving p(x; y) from the head to the body does not
hange loop formulas. The 
ase is similar with the se
ond rule of (10.11).
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10.3 Loop Formulas for Arbitrary Causal TheoriesWe 
an extend Theorem 2 to arbitrary 
ausal theories, not ne
essarily 
anoni
al.An example of a non-
anoni
al 
ausal theory is given in Se
tion 10.2.3; the theoryis non-
anoni
al be
ause some rules have equivalen
es in the heads.About an o

urren
e of a literal l in a formula, we say that it is singular if l isa positive literal pre
eded by :, and that it is regular otherwise. Given a formula F ,NNF (F ) denotes the negation normal form of F , that is, the formula obtained fromF by distributing : over ^ and _ until it applies to atoms only.Let T be a 
ausal theory of a signature �. The head dependen
y graph of Tis the dire
ted graph su
h that� its verti
es are the literals of �, and� it in
ludes an edge from a vertex l to a vertex l0 if there is a rule F ( G in Tsu
h that l o

urs regularly in NNF (F ), and l0 o

urs regularly in NNF (F ).This de�nition redu
es to the earlier de�nition (Se
tion 10.2.1) when T is 
anoni
al.Given a formula F and a 
onsistent set Y of literals, by FY we denote theformula obtained from F by repla
ing� ea
h o

urren
e of atom a su
h that a 2 Y by ?, and� ea
h o

urren
e of atom a su
h that :a 2 Y by >.By TY we denote the theory obtained from T by repla
ing all rules F ( G in Twith FY ( G. Note that in the pro
ess of 
onstru
ting TY we transform only theheads of the rules. 188



In appli
ation to 
anoni
al 
ausal theories, this operation is 
losely relatedto external support formula:Proposition 14 Let T be a 
anoni
al 
ausal theory of a signature �, and X aninterpretation of � that satis�es T . For any 
onsistent set Y of literals of �, Xsatis�es EST;Y i� X does not satisfy TY .The translations Tr b, Tr 
, Trd, Tr e from Se
tion 10.2 
an be extended toarbitrary 
ausal theories as follows: propositional theory Tr b(T ) 
onsists of(i) the impli
ations G � Ffor all rules F ( G in T , and(ii) the impli
ations _Y � :TY (10.12)for all 
onsistent sets Y of literals of �.In the 
ase when T is 
anoni
al, this de�nition di�ers from the de�nitionfrom Se
tion 10.2.1 only in that in formulas (10.12) we use TY instead of EST;Y . Inview of Proposition 14 this di�eren
e is not essential.The translations Tr 
, Tr d, and Tr e are de�ned in the same way ex
ept thatinstead of formulas (10.12),� theory Tr 
(T ) in
ludes ^L � :TL (10.13)for all loops L of T , 189



� theory Trd(T ) in
ludes ^Y � :TYfor all nonempty 
onsistent sets Y of literals of �,� theory Tr e(T ) in
ludes _L � :TL (10.14)for all loops L of T .Theorem 3 For any 
ausal theory T and any interpretation X of the signatureof T , the following 
onditions are equivalent to ea
h other:(a) X is a model of T .(b) X is a model of Tr b(T ).(
) X is a model of Tr 
(T ).Corollary 9 For any 
ausal theory T and any interpretation X of the signatureof T , the following 
onditions are equivalent to ea
h of 
onditions (a){(
) of Theo-rem 3:(d) X is a model of Trd(T ).(e) X is a model of Tr e(T ).The idea above 
an also be used to prove theorems about the relationshipbetween logi
 programs and 
ausal logi
. For instan
e, the proof of Proposition 2from [Lee, 2004℄, whi
h shows how to embed disjun
tive logi
 programs into 
ausallogi
, is given by turning both logi
 programs and 
ausal theories into propositionaltheories and showing that these propositional theories are equivalent to ea
h other.190



10.4 ProofsIn this se
tion, we prove Proposition 14 and Theorem 3. These two theorems implyTheorem 2.We will sometimes identify a 
ausal theory T with the 
orresponding proposi-tional theory, and say that an interpretation satis�es T if it satis�es the propositionaltheory.10.4.1 Proof of Proposition 14Proposition 14 Let T be a 
anoni
al 
ausal theory of a signature �, and X aninterpretation of � that satis�es T . For any 
onsistent set Y of literals of �, Xsatis�es EST;Y i� X does not satisfy TY .Proof (Left-to-right) Assume that X j= EST;Y . Then there is a ruleF ( G (10.15)in T su
h that X j= G;X \ (F n Y ) = ;F \ Y 6= ;; andF \ Y = ;: (10.16)It follows that X 6j= FY , and 
onsequently, X 6j= TY .(Right-to-left) Assume that X 6j= TY . We �rst show that X satis�es FY ( Gfor every rule F ( G that does not satisfy (10.16).� For every rule F ( G su
h that X 6j= G, X \ (F n Y ) 6= ;, or F \ Y 6= ;, Xsatis�es FY ( G trivially. 191



� For every rule F ( G su
h that F \Y = ;, sin
e X satis�es T , it follows thatX 6j= G, or X \ (F n Y ) 6= ;. In either 
ase, it is easy to 
he
k that X satis�esFY ( G.It follows that there exists a rule that satis�es (10.16). Therefore X j= EST;Y .10.4.2 Proof of Theorem 3The proof of Theorem 3 uses the following lemma, proved in Se
tion 10.4.3.Main Lemma Let T be a 
ausal theory of a signature �, X an interpretation of �that satis�es T , and Y a nonempty 
onsistent set of literals of �. If X does notsatisfy TL for any loop L that is 
ontained in Y , then X does not satisfy TY .The proof of Theorem 3 uses the following fa
ts as well.Fa
t 2 For any 
ausal theory T and any interpretation X of the signature of T ,X j= T i� X j= TX .This is immediate by stru
tural indu
tion.Fa
t 3 Let F be a formula, T a 
ausal theory, X an interpretation of the signatureof T , and Y a 
onsistent set of literals.(i) X j= FY i� (X n Y ) [ Y j= F:(ii) X j= TY i� (X n Y ) [ Y j= TX :Part (i) is immediate by stru
tural indu
tion. Part (ii) follows from (i).Theorem 3 For any 
ausal theory T and any interpretation X of the signatureof T , the following 
onditions are equivalent to ea
h other:192



(a) X is a model of T .(b) X is a model of Tr b(T ).(
) X is a model of Tr 
(T ).Proof From (b) to (
) is 
lear.From (a) to (b): Let X be a model of T . From the de�nition of a model, itfollows that X satis�es T . Let Y be any 
onsistent set of literals su
h that Y \X 6= ;.Sin
e X is a model of T , (X nY )[Y , whi
h is di�erent from X, does not satisfy TX .By Fa
t 3, it follows that X does not satisfy TY .From (
) to (a): Assume that X satis�es T , and, for every loop L of T thatis 
ontained in X, X does not satisfy TL. First, by Fa
t 2, X j= TX . Let Y be anyinterpretation that is di�erent from X. We will show that Y 6j= TX . Let Z = X nY .Sin
e Z is nonempty, and X 6j= TL for any loop L that is 
ontained in Z, by themain lemma, it follows that X 6j= TZ , whi
h is equivalent to (X nZ)[Z 6j= TX , i.e.,Y 6j= TX by Fa
t 2. Therefore X is the unique interpretation satisfying TX .10.4.3 Proof of the Main LemmaLemma 3 Let T be a 
ausal theory of a signature �, X an interpretation of � thatsatis�es T , Y a 
onsistent set of literals of �, and L a nonempty subset of Y su
hthat the head dependen
y graph of T has no edge from a literal in L to a literalin Y n L. If X does not satisfy TL, then X does not satisfy TY .Proof Assume that X does not satisfy TL. There exists a ruleH  B193



in T su
h that X satis�es B, but does not satisfy HL. By Fa
t 3,(X n L) [ L 6j= H: (10.17)On the other hand, X j= H (10.18)be
ause X satis�es T . From (10.17) and (10.18), it follows that at least one literalin L o

urs regularly in NNF (H).Next we will show that X 6j= TY . Sin
e the head dependen
y graph of T hasno edge from a literal in L to a literal in Y n L, it follows that there is no literall 2 Y n L su
h that l o

urs regularly in NNF (H). It follows from (10.17) that(X n Y ) [ Y 6j= H;whi
h is equivalent to X 6j= HY by Fa
t 3. Therefore, X 6j= TY .Main Lemma Let T be a 
ausal theory of a signature �, X an interpretation of �that satis�es T , and Y a nonempty 
onsistent set of literals of �. If X does notsatisfy TL for any loop L that is 
ontained in Y , then X does not satisfy TY .Proof In view of Lemma 3, it is suÆ
ient to show that there exists a loop L su
hthat the head dependen
y graph of T has no edge from a literal in L to a literalin Y n L. We will show the existen
e of su
h loops.Let G be the subgraph of the head dependen
y graph of T indu
ed by Y ,and let G0 be the graph obtained from G by 
ollapsing the strongly 
onne
ted
omponents of G (that is, the verti
es of G0 are the strongly 
onne
ted 
omponentsof G and G0 has an edge from vertex V to vertex V 0 if G has an edge from a literal194



in V to a literal in V 0). Sin
e Y is nonempty, there is at least one loop in Y .Consequently, there is at least one vertex in G0.It follows that there exists a terminal vertex in G0. Let L be that vertex. Itis 
lear that there is no edge from a literal in L to a literal in Y n L in the headdependen
y graph of T .
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Chapter 11
Splitting Causal Theories

The splitting set theorem [Lifs
hitz and Turner, 1994℄ allows us, under 
ertain 
on-ditions, to split a logi
 program into two parts and determine how the answer sets ofthe �rst part are a�e
ted by adding the se
ond part. In this 
hapter, we extend thisidea to 
ausal logi
. The proof of the theorem uses Theorem 3 from the previous
hapter. In Se
tion 11.2, we illustrate the usefulness of the splitting set theorem byusing it to prove a proposition regarding the use of stati
ally determined 
uents inC+.11.1 Splitting Set Theorem for Causal Logi
Let us 
onsider T1 (Se
tion 3.3). Without the �rst rule, the theory 
onsists of therules of the signature fqg, that is, q ( q:q ( :q: (11.1)
196



This theory, assuming its signature is fqg, has two models: fqg, f:qg. If we sele
tfqg, and \plug in the value" to the �rst rule, then the resulting theory 
onsists of arule of the signature fpg, that is p( >: (11.2)This theory, assuming its signature is fpg, has one model: fpg. The union of thetwo models, fqg [ fpg, 
oin
ides with the model of T1.On the other hand, if we sele
t f:qg, the theory isp( ?; (11.3)whi
h has no models.The example gives us an idea how a 
ausal theory 
an be \split." Morepre
isely, we have the following result, whi
h is similar to the splitting set theoremfor logi
 programs [Lifs
hitz and Turner, 1994℄.Let T be a 
ausal theory of a signature �. A subset U of � is a splittingset for T if, for every rule F ( G in T su
h that F 
ontains a 
onstant from U ,all 
onstants o

urring in F or G belong to U also. The bottom of T relative to asplitting set U , denoted by bU (T ), is the 
ausal theory of the signature U 
onsistingof all rules F ( G from T su
h that all 
onstants o

urring in F or G belong to U .By tU (T ) (the top of T relative to U) we denote the 
ausal theory of the signature� that 
onsists of all rules of T not in
luded in bU (T ).For example, fqg is a splitting set for T1; the bottom of T1 relative to fqg,bfqg(T1), is theory (11.1) with the signature fqg; the top of T1 relative to fqg,tfqg(T1), 
onsists of the �rst rule of T1 with the signature fpg.Let F be a formula of the signature �, U a subset of �, and X a set of atoms
 = v su
h that 
 2 U . By eU (F;X) we denote the formula obtained from F by197



repla
ing ea
h o

urren
e of atom 
=v with 
 2 U by > if it belongs to X and by? otherwise. For a 
ausal theory T of the signature �, by eU (T;X) we denote the
ausal theory of the signature � nU that 
onsists of the rules eU (F;X)( eU (G;X)for all rules F ( G of T .For example, the theory efqg(tfqg(T1; fqg) is (11:2); the theory efqg(tfqg(T1; f:qg)is (11:3).Theorem 4 Let T be a 
ausal theory whose signature is �, and U a splitting setfor T . An interpretation of � is a model of T i� it 
an be written as X [ Y whereX is a model of bU (T ) and Y is a model of eU (tU (T );X).A

ording to Theorem 4, the model of T1 
an be written as fqg [ fpg wherefqg is a model of bfqg(T1) and fpg is a model of efqg(tfqg(T1); fqg).11.2 Proof of Proposition 4Proposition 4 Let D be an a
tion des
ription whose signature is �, Q a setof stati
ally determined 
uent 
onstants su
h that � \ Q = ;, and DQ an a
tiondes
ription whi
h 
onsists of 
ausal laws of the form
aused q if Fwhere q 2 Q and F is a formula of �, and the 
ausal laws
aused :q if :q:for all q 2 Q. Then the transition system of D [DQ is isomorphi
 to the transitionsystem of D. 198



Proof First, take the signature U = 0 : � as a splitting set of (D [ DQ)0. ThenbU ((D [ DQ)0) is D0 and tU ((D [ DQ)0) is (DQ)0. By Theorem 4, any model of(D [DQ)0 
an be written as X [ Y where X is a model of D0 and Y is a model ofeU ((DQ)0;X). Sin
e �\Q = ;, it is easy to 
he
k that given X, eU ((DQ)0;X) has aunique model of the signature 0:Q (
onsider the 
ompletion of eU ((D [DQ)0;X)).Thus it follows that there is a 1{1 
orresponden
e between the states of D and thestates of D [DQ.Now take the signature U = 0:� [ 1:� as a splitting set of (D[DQ)1. ThenbU ((D [ DQ)1) is D1 and tU ((D [ DQ)1) is (DQ)1. By Theorem 4, any model of(D [ DQ)1 
an be written as X [ Y where X is a model of D1 and Y is a modelof eU ((DQ)1;X). Sin
e � \ Q = ;, it is easy to 
he
k that given X, eU ((DQ)1;X)has a unique model of the signature 0 :Q [ 1 :Q (again, 
onsider the 
ompletion ofeU ((D [DQ)1;X)). Thus it follows that there is a 1{1 
orresponden
e between thetransitions of D and the transitions of D [DQ.11.3 Related WorkThe splitting set theorem presented in this 
hapter is 
losely related to is the splittingset theorem for default logi
 presented in [Turner, 1996℄. Sin
e a Boolean 
ausaltheory 
an be viewed as a default theory in the sense of [Reiter, 1980℄ by identifyinga 
ausal rule F ( G with the default : GF[Giun
higlia et al., 2004, Proposition 10℄, one 
an also derive a splitting set theoremfor 
ausal logi
 from Turner's theorem. However, a straightforward derivation would199



require that ea
h body of a rule be either a formula of the signature U or thesignature � n U , whi
h our splitting set theorem does not require. Moreover, ourtheorem is not limited to Boolean theories.11.4 Proof of the Splitting Set TheoremLemma 4 For any 
ausal theory T whose signature is �, and any splitting set Ufor T , every loop L of T is either a loop of bU (T ) or a loop of tU (T ) over � n U .Proof Easily follows from the fa
t that the head dependen
y graph of T has noedge from a literal of U to a literal of � n U .Lemma 5 Let T be a 
ausal theory whose signature is �, U a splitting set for T ,and X an interpretation of � that satis�es T .(i) For every loop L of bU (T ),X j= bU (T )L i� X j= TL:(ii) For every loop L of T n bU (T ) over � n U ,X j= (T n bU (T ))L i� X j= TL:Proof Follows from Lemma 4.Lemma 6 Let T be a 
ausal theory whose signature is �, U a splitting set for T ,and X an interpretation of U . For any loop L of tU (T ) over � n U ,eU (tU (T );X)L = eU (tU (T )L;X):200



Proof Clear from the de�nitions of eU and TL.Theorem 4 Let T be a 
ausal theory whose signature is �, and U a splitting setfor T . An interpretation of � is a model of T i� it 
an be written as X [ Y whereX is a model of bU (T ) and Y is a model of eU (tU (T );X).Proof (Left-to-right) Assume that Z is a model of T . We will show that Z = X[Yfor two sets X and Y of literals su
h that X is a model of bU (T ), and Y is a modelof eU (tU (T );X). Take X to be the set of literals of U that belong to Z and Y tobe the set of literals of � n U that belong to Z. It is 
lear that Z = X [ Y . ByTheorem 3, Z j= T and Z 6j= TL for every loop L of T .First we will show that X is a model of bU (T ). Sin
e Z j= T and the signatureof bU (T ) is U , it follows that X j= bU (T ):Sin
e Z 6j= TL for every loop L of bU (T ), by Lemma 5 (i), it follows thatX 6j= bU (T )Lfor every loop L of bU (T ). Therefore, by Theorem 3, X is a model of bU (T ).Next we will show that Y is a model of eU (tU (T );X). Sin
e X [Y j= tU (T ),by the de�nition of eU , Y j= eU (tU (T );X):On the other hand, sin
e Z 6j= TL for every loop L of T , by Lemma 5 (ii),X [ Y 6j= tU(T )Lfor every loop L of tU (T ) over � n U . By the de�nition of eU ,Y 6j= eU (tU (T )L;X);201



or by Lemma 6, Y 6j= eU (tU (T );X)L;for the same loops. Therefore, by Theorem 3, Y is a model of eU (tU (T );X).(Right-to-left) Assume that X is a model of bU (T ) and Y is a model ofeU (tU (T );X). Then we need to show that X [ Y is a model of T .It is 
lear that X satis�es bU (T ). From Y j= eU (tU (T );X), it holds thatX [ Y j= tU (T ):Therefore X [ Y j= bU (T ) [ tU (T ) = T .Next we will show that X [ Y 6j= TL for every loop L of T . Take any loop Lof T . By lemma 4, L is a loop of either bU (T ) or a loop of tU(T ) over � n U .� If L is a loop of bU (T ), then by Theorem 3, X 6j= bU (T )L. By Lemma 5 (i),X 6j= TL.� If L is a loop of tU(T ) over � n U , then by Theorem 3,Y 6j= eU (tU (T );X)L;and by Lemma 6, Y 6j= eU (tU (T )L;X):By the de�nition of eU , it follows thatX [ Y 6j= tU(T )L;and by Lemma 5 (ii), X [ Y 6j= TL:Therefore Z is a model of T by Theorem 3.202



Chapter 12
Con
lusion

12.1 Summary of ContributionsThe main 
ontributions of this dissertation are as follows.� We identi�ed several essential limitations of the M
Cain{Turner 
ausal logi
and a
tion language C in appli
ation to des
ribing 
ommonsense knowledgeabout a
tions, and proposed multi-valued 
ausal logi
 and language C+, whi
hover
ome these limitations. Language C+, a high level notation for multi-valued 
ausal theories, 
an represent non-propositional 
uents, de�ned 
uents,rigid 
onstants, and defeasible 
ausal laws. Despite many advan
ed features,it has a simple and elegant formal semanti
s.� We redesigned and reimplemented CCal
 to a

ount for these extensions.The input language of the new CCal
 provides a 
onvenient and 
on
isesyntax for writing a
tion des
riptions in the de�nite fragment of C+.� We identi�ed the 
on
ept of an additive 
uent and proposed a method for203



des
ribing additive 
uents in C+. We extended CCal
 a

ordingly to 
overadditive 
uents, and applied it to several examples of 
ommonsense reasoning.� We tested expressive possibilities of C+ by formalizing a
tion domains of non-trivial size, mu
h more 
ompli
ated than \toy problems."� By formalizing M
Carthy's elaborations of the Missionaries and CannibalsPuzzle, we showed that, to a 
ertain degree, the goal of elaboration toleran
eis met by the input language of the extended CCal
. Ea
h enhan
ement wasobtained from the basi
 formalization by simply adding more postulates.� We showed how to turn an arbitrary 
ausal theory, not ne
essarily de�nite, intoa set of formulas in propositional logi
 using the 
on
ept of a loop formula. Asa 
orollary we showed that any nonde�nite theory 
an be turned into a de�nitetheory. The result provides a way to extend CCal
 to deal with arbitrary
ausal theories.12.2 Topi
s for Future WorkThe following is a list of topi
s for future work that would improve upon the resultsof this dissertation.� We have not yet 
onsidered how to in
orporate sensing a
tions|a
tions thata�e
t the agent's knowledge but have no e�e
t on the world, and we have notshown how to in
orporate probabilisti
 reasoning in C+.� Used as a planner, CCal
 does not rely on domain-spe
i�
 
ontrol knowledge.It has been noted that de
larative 
ontrol knowledge sometimes drasti
ally204



improves the performan
e of planners. Although CCal
 
an solve predi
tionand postdi
tion problems with in
omplete information, it does not handle\
onformant planning"|generating plans that are guaranteed to su

eed within
omplete initial 
onditions.� CCal
 has mainly been a resear
h tool used to test the expressiveness ofits input language. For CCal
 to be used as a more pra
ti
al system, theimplementation should 
onsider eÆ
ien
y and optimization more seriously.� The 
urrent version of CCal
 does not operate with real numbers, and eveninteger arithmeti
 is implemented in a way that be
omes ineÆ
ient when largeintegers are needed. It may be possible to lift these limitations by develop-ing an interfa
e with sear
h engines other than SAT solvers, su
h as thosebased on linear programming, as in [Wolfman and Weld, 1999℄, or on integerprogramming, as in [Kautz and Walser, 1999℄.� Our translation of an arbitrary 
ausal theory into formulas in propositionallogi
 (or into a de�nite theory) 
an be used to extend CCal
 to handle nondef-inite theories. We may be able to identify a useful sub
lass of 
ausal theories,whi
h is more general than the 
lass of de�nite theories but still 
an be 
om-puted eÆ
iently. One su
h extension was proposed in [Do�ganda�g et al., 2004℄.Also there is a need to better understand how loops 
an be 
omputed.� CCal
 may serve as a general-purpose reasoning tool whi
h is far more ex-pressive than many other reasoning systems. For instan
e, CCal
 may beused to formalize the behavior of software/hardware systems, whi
h would al-low \deep reasoning" about their behavior. This will lead to many interesting205



appli
ations su
h as online help systems, for whi
h an elaboration tolerantformalism 
an be useful for maintaining knowledge bases. CCal
 may beapplied to formalizing and testing work
ows, a series of tasks performed byvarious 
ooperative and 
oordinated agents to a
hieve a desired goal.
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Appendix A
Solutions for Elaborations ofMCP found by CCal


A.1 Solution for the Basi
 Problem| ?- loadf 'basi
-test'.% loading file /v/filer3/v2q021/appsmurf/

al
/ma
ros.std% loading file /v/filer3/v2q021/appsmurf/m
p/basi
-test% loading file /v/filer3/v2q021/appsmurf/

al
/additive% loading file /v/filer3/v2q021/appsmurf/

al
/arithmeti
% loading file /v/filer3/v2q021/appsmurf/m
p/basi
% loading file /v/filer3/v2q021/appsmurf/m
p/
ommon2% loading file /v/filer3/v2q021/appsmurf/m
p/
ommon1% in transition mode...% 130 atoms, 246 rules, 809 
lauses (92 new atoms)% Grounding time: 3.53 se
onds% Completion time: 0.56 se
onds% Total time: 4.09 se
ondsyes| ?- query 0. 207



% Shifting atoms and 
lauses... done. (0.02 se
onds)% After shifting: 2004 atoms (in
luding new atoms), 7685 
lauses% Writing input 
lauses... done. (0.56 se
onds)% Calling mChaff spelt3... done.% Reading output file(s) from SAT solver... done.% Solution time: 1.11 se
onds (prep 0.09 se
onds, sear
h 1.02 se
onds)No solution with maxstep 10.% Shifting atoms and 
lauses... done. (0.03 se
onds)% After shifting: 2202 atoms (in
luding new atoms), 8449 
lauses% Writing input 
lauses... done. (0.62 se
onds)% Calling mChaff spelt3... done.% Reading output file(s) from SAT solver... done.% Solution time: 2.3 se
onds (prep 0.10 se
onds, sear
h 2.20 se
onds)
apa
ity(boat)=20: num(mi,bank1)=3 num(mi,bank2)=0 num(
a,bank1)=3 num(
a,bank2)=0lo
(boat)=bank1ACTIONS: 
ross(boat,to=bank2,howmany(mi)=1,howmany(
a)=1)1: num(mi,bank1)=2 num(mi,bank2)=1 num(
a,bank1)=2 num(
a,bank2)=1lo
(boat)=bank2ACTIONS: 
ross(boat,to=bank1,howmany(mi)=1,howmany(
a)=0)2: num(mi,bank1)=3 num(mi,bank2)=0 num(
a,bank1)=2 num(
a,bank2)=1lo
(boat)=bank1ACTIONS: 
ross(boat,to=bank2,howmany(mi)=0,howmany(
a)=2)3: num(mi,bank1)=3 num(mi,bank2)=0 num(
a,bank1)=0 num(
a,bank2)=3208



lo
(boat)=bank2ACTIONS: 
ross(boat,to=bank1,howmany(mi)=0,howmany(
a)=1)4: num(mi,bank1)=3 num(mi,bank2)=0 num(
a,bank1)=1 num(
a,bank2)=2lo
(boat)=bank1ACTIONS: 
ross(boat,to=bank2,howmany(mi)=2,howmany(
a)=0)5: num(mi,bank1)=1 num(mi,bank2)=2 num(
a,bank1)=1 num(
a,bank2)=2lo
(boat)=bank2ACTIONS: 
ross(boat,to=bank1,howmany(mi)=1,howmany(
a)=1)6: num(mi,bank1)=2 num(mi,bank2)=1 num(
a,bank1)=2 num(
a,bank2)=1lo
(boat)=bank1ACTIONS: 
ross(boat,to=bank2,howmany(mi)=2,howmany(
a)=0)7: num(mi,bank1)=0 num(mi,bank2)=3 num(
a,bank1)=2 num(
a,bank2)=1lo
(boat)=bank2ACTIONS: 
ross(boat,to=bank1,howmany(mi)=0,howmany(
a)=1)8: num(mi,bank1)=0 num(mi,bank2)=3 num(
a,bank1)=3 num(
a,bank2)=0lo
(boat)=bank1ACTIONS: 
ross(boat,to=bank2,howmany(mi)=0,howmany(
a)=2)9: num(mi,bank1)=0 num(mi,bank2)=3 num(
a,bank1)=1 num(
a,bank2)=2lo
(boat)=bank2ACTIONS: 
ross(boat,to=bank1,howmany(mi)=1,howmany(
a)=0)209



10: num(mi,bank1)=1 num(mi,bank2)=2 num(
a,bank1)=1 num(
a,bank2)=2lo
(boat)=bank1ACTIONS: 
ross(boat,to=bank2,howmany(mi)=1,howmany(
a)=1)11: num(mi,bank1)=0 num(mi,bank2)=3 num(
a,bank1)=0 num(
a,bank2)=3lo
(boat)=bank2yesA.2 Solution for Two Boats% Calling mChaff spelt3... done.% Reading output file(s) from SAT solver... done.% Solution time: 1.05 se
onds (prep 0.24 se
onds, sear
h 0.81 se
onds)
apa
ity(boat)=2 
apa
ity(boat1)=10: num(mi,bank1)=3 num(mi,bank2)=0 num(
a,bank1)=3 num(
a,bank2)=0lo
(boat)=bank1 lo
(boat1)=bank1ACTIONS: 
ross(boat,to=bank2,howmany(mi)=0,howmany(
a)=2)
ross(boat1,to=bank2,howmany(mi)=0,howmany(
a)=1) departing(mi,bank1)=0departing(mi,bank2)=0 departing(
a,bank1)=3 departing(
a,bank2)=01: num(mi,bank1)=3 num(mi,bank2)=0 num(
a,bank1)=0 num(
a,bank2)=3lo
(boat)=bank2 lo
(boat1)=bank2ACTIONS: 
ross(boat,to=bank1,howmany(mi)=0,howmany(
a)=1)
ross(boat1,to=bank1,howmany(mi)=0,howmany(
a)=1) departing(mi,bank1)=0departing(mi,bank2)=0 departing(
a,bank1)=0 departing(
a,bank2)=22: num(mi,bank1)=3 num(mi,bank2)=0 num(
a,bank1)=2 num(
a,bank2)=1210



lo
(boat)=bank1 lo
(boat1)=bank1ACTIONS: 
ross(boat,to=bank2,howmany(mi)=2,howmany(
a)=0)
ross(boat1,to=bank2,howmany(mi)=1,howmany(
a)=0) departing(mi,bank1)=3departing(mi,bank2)=0 departing(
a,bank1)=0 departing(
a,bank2)=03: num(mi,bank1)=0 num(mi,bank2)=3 num(
a,bank1)=2 num(
a,bank2)=1lo
(boat)=bank2 lo
(boat1)=bank2ACTIONS: 
ross(boat,to=bank1,howmany(mi)=1,howmany(
a)=0)
ross(boat1,to=bank1,howmany(mi)=1,howmany(
a)=0) departing(mi,bank1)=0departing(mi,bank2)=2 departing(
a,bank1)=0 departing(
a,bank2)=04: num(mi,bank1)=2 num(mi,bank2)=1 num(
a,bank1)=2 num(
a,bank2)=1lo
(boat)=bank1 lo
(boat1)=bank1ACTIONS: 
ross(boat,to=bank2,howmany(mi)=2,howmany(
a)=0)
ross(boat1,to=bank2,howmany(mi)=0,howmany(
a)=1) departing(mi,bank1)=2departing(mi,bank2)=0 departing(
a,bank1)=1 departing(
a,bank2)=05: num(mi,bank1)=0 num(mi,bank2)=3 num(
a,bank1)=1 num(
a,bank2)=2lo
(boat)=bank2 lo
(boat1)=bank2ACTIONS: 
ross(boat,to=bank1,howmany(mi)=0,howmany(
a)=1)
ross(boat1,to=bank1,howmany(mi)=0,howmany(
a)=1) departing(mi,bank1)=0departing(mi,bank2)=0 departing(
a,bank1)=0 departing(
a,bank2)=26: num(mi,bank1)=0 num(mi,bank2)=3 num(
a,bank1)=3 num(
a,bank2)=0lo
(boat)=bank1 lo
(boat1)=bank1ACTIONS: 
ross(boat,to=bank2,howmany(mi)=0,howmany(
a)=2)
ross(boat1,to=bank2,howmany(mi)=0,howmany(
a)=1) departing(mi,bank1)=0departing(mi,bank2)=0 departing(
a,bank1)=3 departing(
a,bank2)=0211



7: num(mi,bank1)=0 num(mi,bank2)=3 num(
a,bank1)=0 num(
a,bank2)=3lo
(boat)=bank2 lo
(boat1)=bank2A.3 Solution for Four Missionaries and Four Cannibals% Verifying that the problem is not solvable...% Verifying the given invariant...% Shifting atoms and 
lauses... done. (0.00 se
onds)% After shifting: 326 atoms (in
luding new atoms), 1186 
lauses% Writing input 
lauses... done. (0.08 se
onds)% Calling mChaff spelt3... done.% Reading output file(s) from SAT solver... done.% Solution time: 0.09 se
onds (prep 0.03 se
onds, sear
h 0.06 se
onds)No solution with maxstep 1.% Verified the invariant.% Verifying that initial state satisfies the invariant...% Shifting atoms and 
lauses... done. (0.00 se
onds)% After shifting: 44 atoms (in
luding new atoms), 91 
lauses% Writing input 
lauses... done. (0.04 se
onds)% Calling mChaff spelt3... done.% Reading output file(s) from SAT solver... done.% Solution time: 0.02 se
onds (prep 0.02 se
onds, sear
h 0.00 se
onds)
apa
ity(boat)=2 212



0: num(mi,bank1)=4 num(mi,bank2)=0 num(
a,bank1)=4 num(
a,bank2)=0lo
(boat)=bank2
% Initial state satisfies the invariant.% Verifying that every goal state does not satisfy the invariant...% Shifting atoms and 
lauses... done. (0.00 se
onds)% After shifting: 44 atoms (in
luding new atoms), 91 
lauses% Writing input 
lauses... done. (0.04 se
onds)% Calling mChaff spelt3... done.% Reading output file(s) from SAT solver... done.% Solution time: 0.02 se
onds (prep 0.01 se
onds, sear
h 0.01 se
onds)No solution with maxstep 0.% Every goal state does not satisfy the invariant.% Verified that the problem is not solvable for any number of steps.A.4 Solution for the Boat Carrying ThreeA.4.1 Five Pairs% Calling mChaff spelt3... done.% Reading output file(s) from SAT solver... done.% Solution time: 10.32 se
onds (prep 0.25 se
onds, sear
h 10.07 se
onds)
apa
ity(boat)=30: num(mi,bank1)=5 num(mi,bank2)=0 num(
a,bank1)=5 num(
a,bank2)=0213



lo
(boat)=bank1ACTIONS: 
ross(boat,to=bank2,howmany(mi)=1,howmany(
a)=1)1: num(mi,bank1)=4 num(mi,bank2)=1 num(
a,bank1)=4 num(
a,bank2)=1lo
(boat)=bank2ACTIONS: 
ross(boat,to=bank1,howmany(mi)=1,howmany(
a)=0)2: num(mi,bank1)=5 num(mi,bank2)=0 num(
a,bank1)=4 num(
a,bank2)=1lo
(boat)=bank1ACTIONS: 
ross(boat,to=bank2,howmany(mi)=0,howmany(
a)=3)3: num(mi,bank1)=5 num(mi,bank2)=0 num(
a,bank1)=1 num(
a,bank2)=4lo
(boat)=bank2ACTIONS: 
ross(boat,to=bank1,howmany(mi)=0,howmany(
a)=1)4: num(mi,bank1)=5 num(mi,bank2)=0 num(
a,bank1)=2 num(
a,bank2)=3lo
(boat)=bank1ACTIONS: 
ross(boat,to=bank2,howmany(mi)=3,howmany(
a)=0)5: num(mi,bank1)=2 num(mi,bank2)=3 num(
a,bank1)=2 num(
a,bank2)=3lo
(boat)=bank2ACTIONS: 
ross(boat,to=bank1,howmany(mi)=1,howmany(
a)=1)6: num(mi,bank1)=3 num(mi,bank2)=2 num(
a,bank1)=3 num(
a,bank2)=2lo
(boat)=bank1ACTIONS: 
ross(boat,to=bank2,howmany(mi)=3,howmany(
a)=0)214



7: num(mi,bank1)=0 num(mi,bank2)=5 num(
a,bank1)=3 num(
a,bank2)=2lo
(boat)=bank2ACTIONS: 
ross(boat,to=bank1,howmany(mi)=0,howmany(
a)=1)8: num(mi,bank1)=0 num(mi,bank2)=5 num(
a,bank1)=4 num(
a,bank2)=1lo
(boat)=bank1ACTIONS: 
ross(boat,to=bank2,howmany(mi)=0,howmany(
a)=3)9: num(mi,bank1)=0 num(mi,bank2)=5 num(
a,bank1)=1 num(
a,bank2)=4lo
(boat)=bank2ACTIONS: 
ross(boat,to=bank1,howmany(mi)=1,howmany(
a)=0)10: num(mi,bank1)=1 num(mi,bank2)=4 num(
a,bank1)=1 num(
a,bank2)=4lo
(boat)=bank1ACTIONS: 
ross(boat,to=bank2,howmany(mi)=1,howmany(
a)=1)11: num(mi,bank1)=0 num(mi,bank2)=5 num(
a,bank1)=0 num(
a,bank2)=5lo
(boat)=bank2A.4.2 Six Pairs% Verifying that the problem is not solvable...% Verifying the given invariant...% Shifting atoms and 
lauses... done. (0.00 se
onds)% After shifting: 513 atoms (in
luding new atoms), 2013 
lauses% Writing input 
lauses... done. (0.20 se
onds)% Calling mChaff spelt3... done.% Reading output file(s) from SAT solver... done.215



% Solution time: 0.19 se
onds (prep 0.06 se
onds, sear
h 0.13 se
onds)No solution with maxstep 1.% Verified the invariant.% Verifying that initial state satisfies the invariant...% Shifting atoms and 
lauses... done. (0.00 se
onds)% After shifting: 62 atoms (in
luding new atoms), 146 
lauses% Writing input 
lauses... done. (0.13 se
onds)% Calling mChaff spelt3... done.% Reading output file(s) from SAT solver... done.% Solution time: 0.05 se
onds (prep 0.04 se
onds, sear
h 0.01 se
onds)
apa
ity(boat)=30: num(mi,bank1)=6 num(mi,bank2)=0 num(
a,bank1)=6 num(
a,bank2)=0lo
(boat)=bank1
% Initial state satisfies the invariant.% Verifying that every goal state does not satisfy the invariant...% Shifting atoms and 
lauses... done. (0.00 se
onds)% After shifting: 62 atoms (in
luding new atoms), 146 
lauses% Writing input 
lauses... done. (0.12 se
onds)% Calling mChaff spelt3... done.% Reading output file(s) from SAT solver... done.216



% Solution time: 0.04 se
onds (prep 0.04 se
onds, sear
h 0.00 se
onds)No solution with maxstep 0.% Every goal state does not satisfy the invariant.% Verified that the problem is not solvable for any number of steps.A.5 Solution for Converting Cannibals% Calling mChaff spelt3... done.% Reading output file(s) from SAT solver... done.% Solution time: 9.34 se
onds (prep 2.24 se
onds, sear
h 7.10 se
onds)
apa
ity(boat)=20: num(mi,bank1)=3 num(mi,bank2)=0 num(
a,bank1)=3 num(
a,bank2)=0lo
(boat)=bank1ACTIONS: 
ross(boat,to=bank2,howmany(mi)=0,howmany(
a)=2)departing(mi,bank1)=0 departing(mi,bank2)=0 departing(
a,bank1)=2departing(
a,bank2)=01: num(mi,bank1)=3 num(mi,bank2)=0 num(
a,bank1)=1 num(
a,bank2)=2lo
(boat)=bank2ACTIONS: 
ross(boat,to=bank1,howmany(mi)=0,howmany(
a)=1) 
onvert(bank1)departing(mi,bank1)=0 departing(mi,bank2)=0 departing(
a,bank1)=0departing(
a,bank2)=12: num(mi,bank1)=4 num(mi,bank2)=0 num(
a,bank1)=1 num(
a,bank2)=1lo
(boat)=bank1 217



ACTIONS: 
ross(boat,to=bank2,howmany(mi)=2,howmany(
a)=0)departing(mi,bank1)=2 departing(mi,bank2)=0 departing(
a,bank1)=0departing(
a,bank2)=03: num(mi,bank1)=2 num(mi,bank2)=2 num(
a,bank1)=1 num(
a,bank2)=1lo
(boat)=bank2ACTIONS: 
ross(boat,to=bank1,howmany(mi)=1,howmany(
a)=0)departing(mi,bank1)=0 departing(mi,bank2)=1 departing(
a,bank1)=0departing(
a,bank2)=04: num(mi,bank1)=3 num(mi,bank2)=1 num(
a,bank1)=1 num(
a,bank2)=1lo
(boat)=bank1ACTIONS: 
ross(boat,to=bank2,howmany(mi)=2,howmany(
a)=0)departing(mi,bank1)=2 departing(mi,bank2)=0 departing(
a,bank1)=0departing(
a,bank2)=05: num(mi,bank1)=1 num(mi,bank2)=3 num(
a,bank1)=1 num(
a,bank2)=1lo
(boat)=bank2ACTIONS: 
ross(boat,to=bank1,howmany(mi)=1,howmany(
a)=0)departing(mi,bank1)=0 departing(mi,bank2)=1 departing(
a,bank1)=0departing(
a,bank2)=06: num(mi,bank1)=2 num(mi,bank2)=2 num(
a,bank1)=1 num(
a,bank2)=1lo
(boat)=bank1ACTIONS: 
ross(boat,to=bank2,howmany(mi)=1,howmany(
a)=1)departing(mi,bank1)=1 departing(mi,bank2)=0 departing(
a,bank1)=1departing(
a,bank2)=07: num(mi,bank1)=1 num(mi,bank2)=3 num(
a,bank1)=0 num(
a,bank2)=2lo
(boat)=bank2 218



ACTIONS: 
ross(boat,to=bank1,howmany(mi)=1,howmany(
a)=0)departing(mi,bank1)=0 departing(mi,bank2)=1 departing(
a,bank1)=0departing(
a,bank2)=08: num(mi,bank1)=2 num(mi,bank2)=2 num(
a,bank1)=0 num(
a,bank2)=2lo
(boat)=bank1ACTIONS: 
ross(boat,to=bank2,howmany(mi)=2,howmany(
a)=0)departing(mi,bank1)=2 departing(mi,bank2)=0 departing(
a,bank1)=0departing(
a,bank2)=09: num(mi,bank1)=0 num(mi,bank2)=4 num(
a,bank1)=0 num(
a,bank2)=2lo
(boat)=bank2A.6 Solution for Walking on Water% Calling mChaff spelt3... done.% Reading output file(s) from SAT solver... done.% Solution time: 1.59 se
onds (prep 0.31 se
onds, sear
h 1.28 se
onds)
apa
ity(boat)=20: num(mi,bank1)=3 num(mi,bank2)=0 num(
a,bank1)=3 num(
a,bank2)=0num(j
,bank1)=1 num(j
,bank2)=0 lo
(boat)=bank1ACTIONS: 
ross(boat,to=bank2,howmany(mi)=0,howmany(
a)=2,howmany(j
)=0)departing(mi,bank1)=0 departing(mi,bank2)=0 departing(
a,bank1)=2departing(
a,bank2)=0 departing(j
,bank1)=0 departing(j
,bank2)=01: num(mi,bank1)=3 num(mi,bank2)=0 num(
a,bank1)=1 num(
a,bank2)=2num(j
,bank1)=1 num(j
,bank2)=0 lo
(boat)=bank2ACTIONS: 
ross(boat,to=bank1,howmany(mi)=0,howmany(
a)=1,howmany(j
)=0)219



departing(mi,bank1)=0 departing(mi,bank2)=0 departing(
a,bank1)=0departing(
a,bank2)=1 departing(j
,bank1)=0 departing(j
,bank2)=02: num(mi,bank1)=3 num(mi,bank2)=0 num(
a,bank1)=2 num(
a,bank2)=1num(j
,bank1)=1 num(j
,bank2)=0 lo
(boat)=bank1ACTIONS: 
ross(boat,to=bank2,howmany(mi)=0,howmany(
a)=2,howmany(j
)=0)departing(mi,bank1)=0 departing(mi,bank2)=0 departing(
a,bank1)=2departing(
a,bank2)=0 departing(j
,bank1)=0 departing(j
,bank2)=03: num(mi,bank1)=3 num(mi,bank2)=0 num(
a,bank1)=0 num(
a,bank2)=3num(j
,bank1)=1 num(j
,bank2)=0 lo
(boat)=bank2ACTIONS: 
ross(boat,to=bank1,howmany(mi)=0,howmany(
a)=1,howmany(j
)=0)departing(mi,bank1)=0 departing(mi,bank2)=0 departing(
a,bank1)=0departing(
a,bank2)=1 departing(j
,bank1)=0 departing(j
,bank2)=04: num(mi,bank1)=3 num(mi,bank2)=0 num(
a,bank1)=1 num(
a,bank2)=2num(j
,bank1)=1 num(j
,bank2)=0 lo
(boat)=bank1ACTIONS: 
ross(boat,to=bank2,howmany(mi)=2,howmany(
a)=0,howmany(j
)=0)departing(mi,bank1)=2 departing(mi,bank2)=0 departing(
a,bank1)=0departing(
a,bank2)=0 departing(j
,bank1)=0 departing(j
,bank2)=05: num(mi,bank1)=1 num(mi,bank2)=2 num(
a,bank1)=1 num(
a,bank2)=2num(j
,bank1)=1 num(j
,bank2)=0 lo
(boat)=bank2ACTIONS: 
ross(boat,to=bank1,howmany(mi)=0,howmany(
a)=1,howmany(j
)=0)walk(walk_to=bank2) departing(mi,bank1)=1 departing(mi,bank2)=0departing(
a,bank1)=0 departing(
a,bank2)=1 departing(j
,bank1)=1departing(j
,bank2)=06: num(mi,bank1)=0 num(mi,bank2)=3 num(
a,bank1)=2 num(
a,bank2)=1num(j
,bank1)=0 num(j
,bank2)=1 lo
(boat)=bank1220



ACTIONS: 
ross(boat,to=bank2,howmany(mi)=0,howmany(
a)=2,howmany(j
)=0)departing(mi,bank1)=0 departing(mi,bank2)=0 departing(
a,bank1)=2departing(
a,bank2)=0 departing(j
,bank1)=0 departing(j
,bank2)=07: num(mi,bank1)=0 num(mi,bank2)=3 num(
a,bank1)=0 num(
a,bank2)=3num(j
,bank1)=0 num(j
,bank2)=1 lo
(boat)=bank2A.7 Solution for the Bridge% Calling mChaff spelt3... done.% Reading output file(s) from SAT solver... done.% Solution time: 0.7 se
onds (prep 0.29 se
onds, sear
h 0.41 se
onds)
apa
ity(boat)=20: num(mi,bank1)=5 num(mi,bank2)=0 num(
a,bank1)=5 num(
a,bank2)=0lo
(boat)=bank1ACTIONS: useBridge(useBridge_from=bank1,useBridge_to=bank2,useBridge_howmany(mi)=0,useBridge_howmany(
a)=2) departing(mi,bank1)=0departing(mi,bank2)=0 departing(
a,bank1)=2 departing(
a,bank2)=01: num(mi,bank1)=5 num(mi,bank2)=0 num(
a,bank1)=3 num(
a,bank2)=2lo
(boat)=bank1ACTIONS: useBridge(useBridge_from=bank1,useBridge_to=bank2,useBridge_howmany(mi)=2,useBridge_howmany(
a)=0) departing(mi,bank1)=2departing(mi,bank2)=0 departing(
a,bank1)=0 departing(
a,bank2)=02: num(mi,bank1)=3 num(mi,bank2)=2 num(
a,bank1)=3 num(
a,bank2)=2lo
(boat)=bank1ACTIONS: 
ross(boat,to=bank2,howmany(mi)=2,howmany(
a)=0)221



useBridge(useBridge_from=bank1,useBridge_to=bank2,useBridge_howmany(mi)=1,useBridge_howmany(
a)=1) departing(mi,bank1)=3 departing(mi,bank2)=0departing(
a,bank1)=1 departing(
a,bank2)=03: num(mi,bank1)=0 num(mi,bank2)=5 num(
a,bank1)=2 num(
a,bank2)=3lo
(boat)=bank2ACTIONS: useBridge(useBridge_from=bank1,useBridge_to=bank2,useBridge_howmany(mi)=0,useBridge_howmany(
a)=2) departing(mi,bank1)=0departing(mi,bank2)=0 departing(
a,bank1)=2 departing(
a,bank2)=04: num(mi,bank1)=0 num(mi,bank2)=5 num(
a,bank1)=0 num(
a,bank2)=5lo
(boat)=bank2
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