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The study of reasoning about actions is an important subarea of the theory
of commonsense reasoning. It is concerned with developing appropriate systems of
logic for describing actions and their effects on the world. In spite of the fact that this
reasoning is based on common sense and does not involve any specialized knowledge,
attempts to formalize it using classical logic encountered serious difficulties, which
have led to the emergence of a new field, nonmonotonic logics.

In particular, McCain and Turner introduced the causal logic in which the
notions of “being caused” and “being true” are distinguished. Based on their logic,
Giunchiglia and Lifschitz proposed a high level action language C, which is a formal
model of parts of natural language that are used for describing properties of actions.
The causal logic and C, along with the concept of satisfiability planning, provided us
with a widely applicable and efficient method of automated reasoning about actions,

which led to the creation of the Causal Calculator (CCALC).
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In this dissertation, we have identified several essential limitations of the
McCain—Turner causal logic and action language C. To overcome these limitations,
we defined an extension of the causal logic to multi-valued formulas and a new
action language C+. Language C+ can represent non-propositional fluents, defined
fluents, additive fluents, rigid constants, and defeasible causal laws. Second, we
have redesigned and reimplemented CCALC to account for these extensions, and
tested the new CCALC and the underlying theory by applying them to several new,
more difficult examples of commonsense reasoning. The input language of the new
CCALC is more elaboration tolerant than the old version. Last, we have shown how
to turn causal logic into propositional logic based on the idea of “loop formulas”

that originated from logic programming under the answer set semantics.
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Chapter 1

Introduction

For a long time humans have been extending their abilities via their own inventions.
Mechanical devices have been developed to fulfill part of the dream. Ever since
computers were first built, the dream has geared its way to more intelligent tasks.
Once a task was well studied to automate, the use of computers became essential.

As we learn how to build systems for doing such tasks, computers seem
to become more “intelligent.” However, there are many human abilities that still
cannot be automated using the knowledge that we have: how can we build a system
that can understand and speak a natural language as well as a human (The Natural
Language Problem), how can we build a system that can see as well as a human
(The Vision Problem), to list a few.

The ability to reason is also one of them. The intellectual mechanisms in-

volved in reasoning are not well understood, even'

in the cases when reasoning
is based on common sense and does not involve any specialized knowledge. In-

deed, everyday life is full of commonsense problems, but a human has no diffi-

'Or one might say, especially.



culty solving them. However, we have little idea how a human’s reasoning mech-
anism works, let alone how to automate it. Even a simple-minded person can
easily devise a commonsense problem that would be a considerable challenge to
researchers in this area. For instances of commonsense problems that have partic-
ularly interested researchers, one may consult the Common Sense Problem Page
(http://wwwu-formal.stanford.edu/leora/cs). A monograph by Davis [1990]
contains a survey of various topics in this area.

For instance, the following are a few instances of problems we want to solve

automatically:

e Monkey and Bananas There is a monkey in a room that contains a box
and a bunch of bananas hanging from the ceiling. The bananas are beyond
his reach, but if he climbs onto the box, he would be able to grasp it. How

can a monkey grasp the bananas?

e Missionaries and Cannibals Three missionaries and three cannibals come
to a river and find a boat that holds two. If the cannibals ever outnumber the
missionaries on either bank, the missionaries will be eaten. How shall they

cross?

e Getting to the Airport I am seated at my desk at home and my car is at

home also. How can I get to the airport [McCarthy, 1959]? 2

Many Al researchers have been trying to endow computers with intelligence
through formal logic. However, their first attempts were not successful because

theories based on classical logic were not adequate for solving commonsense prob-

2This is the oldest planning problem in the AI literature.



lems. It was a new challenge that logicians had been ignorant of, but one that Al
researchers had to confront to fulfill their dream.

One of the most fundamental difficulties was that all systems of logics known
at the time were monotonic: if a conclusion is derivable from a set of axioms, then it
is still derivable even after adding more axioms. We may use the same old derivation
which does not include additional axioms. Monotonicity is natural in usual mathe-
matics. However, it is not desirable in formalizing commonsense reasoning, where a
conclusion may no longer be derivable when we add new assumptions. For instance,
a conclusion that is based on assumptions such as “normally, the car is drivable”
may be retracted later under certain exceptional circumstances such as “there is no
gas in the car,” and then we may get a totally different conclusion. This may once
again be retracted if we are told that “the car is run by electricity, and it has enough
of it.” Still the new conclusion can be retracted once again if we are told that “it is
a toy car.” It appears that one can continue to build an arbitrarily long sequence
of exceptions to any commonsense conclusion.

Despite this fact, humans have no difficulty drawing a conclusion. In a
sense, humans’ reasoning may involve jumping to a conclusion. For instance, when
we hear that there is a car in the garage, we jump to a conclusion that the car can
be used to drive. Such a conclusion can be retracted in the presence of additional
information that defeats the assumptions on which the conclusion was based. Logics
that have this property are called nonmonotonic logics and they were proposed by
AT researchers in the early 1980’s. The formalism we propose in this dissertation is
also nonmonotonic.

Although significant progress has been made in the last decade, the theory



of commonsense reasoning is still far from being complete. In this dissertation, we
focus on the subarea called reasoning about actions, in which we are concerned with
the formalization and automation of reasoning about the effects of actions. By an
action we mean anything that can be executed, and then may affect the state of
the world. In fact, one can see that all three examples above involve actions. These

actions are
e walking, pushing the box, climbing onto the box, and grasping the bananas
e crossing the river
e walking and driving

respectively. Walking changes the location of the monkey; climbing onto the box
changes the status of being on the box; crossing the river affects the number of
people on each bank, etc.

The automation of commonsense reasoning about actions is the subject of
this dissertation. Our work is based on a few successes in the last decade. In par-
ticular, McCain and Turner introduced a nonmonotonic causal logic [McCain and
Turner, 1997], in which the notions of “being caused” and “being true” are distin-
guished. Based on it, Giunchiglia and Lifschitz proposed a high level action language
C, which is a formal model of parts of natural language that are used for describing
properties of actions. The causal logic and C, along with the concept of satisfiability
planning, provided a widely applicable and efficient method of automated reasoning
about actions, which led to the creation of the Causal Calculator (CCALC).

In this dissertation, we have identified several essential limitations of the

McCain—Turner causal logic and action language C. To overcome these limitations,



we defined an extension of the causal logic to multi-valued formulas and a new
action language C+. Language C+ can represent non-propositional fluents, defined
fluents, additive fluents, rigid constants, and defeasible causal laws. Second, we
have redesigned and reimplemented CCALC to account for these extensions, and
tested the new CCALC and the underlying theory by applying them to several new,
more difficult examples of commonsense reasoning. Last, we have shown how to
turn causal logic into propositional logic based on the idea of “loop formulas” that
originated from logic programming under the answer set semantics.

After reviewing earlier work on the formalization and automation of reason-
ing about actions in Chapters 2—4, we discuss the need to extend the McCain—Turner
causal logic, language C and an early version of CCALC in Chapter 5. In Chapter 6
we present an extension of the McCain—Turner causal logic called multi-valued causal
logic, a new action language C+, and the new version of CCALC that overcome the
limitations, and relate C+ to the language ADL from [Pednault, 1994]. In Chapter 7
we test expressive possibilities of C+ and CCALC by formalizing an action domain
of nontrivial size. We identify a class of fluents that we call additive and show how
C+ can be used to talk about the effects of actions on such fluents in Chapter 8. In
Chapter 9 we formalize McCarthy’s elaborations of the Missionaries and Cannibals
Puzzle in the language of the new CCALC. We show how to turn causal logic into
propositional logic using the idea of loop formulas in Chapter 10, and apply loop

formulas to the problem of splitting a causal theory in Chapter 11.



Chapter 2

Background

In his classic paper [McCarthy, 1959], McCarthy proposed to create a software
system that he called the advice taker. The system is supposed to draw relevant
conclusions from the set of premises, mainly in the form of declarative sentences, de-
scribing a domain of consideration. If the information stored in the system needs to
be changed, extended or deleted, that should be done by just updating the premises,
rather than by rewriting the system’s internal code. Moreover, heuristics should also
be introduced by declarative sentences. The airport problem mentioned in Chap-
ter 1 was the example used in the paper to explain this idea. The system is expected
to generate the plan of getting to the airport given a declarative description of the
problem.

The idea of the advice taker was new, and there were many details to be
clarified; many serious difficulties were identified later. In the course of discussion,
Bar-Hillel commented, “Dr. McCarthy’s paper belongs in the Journal of Half-Baked

Ideas.” Even now, more than 40 years later, the idea is still being baked. However,



we have seen much progress. Recently, CCALC was applied to solving the airport
problem [Lifschitz et al., 2000]. In this chapter, we present how the research in this

area has evolved.

2.1 Problems in Formal Reasoning about Actions

It seems natural to choose formal logic as a vehicle for representing commonsense
knowledge due to its precise and declarative semantics. Hayes [1977] pointed out
that a logical model theory provides accounts for the meaning of a representa-
tion or representational language and helps us compare different representations or
languages. Researchers hoped that a computer would be able to derive relevant
conclusion from properly axiomatized knowledge.

But soon serious difficulties with formal logic were recognized. Some of the
problems were due to the implausible number of axioms that were required. The
most important one is the frame problem, which was first identified in [McCarthy
and Hayes, 1969]. The problem is how to represent what remains unchanged after
executing an action. Axiomatizers have to describe not only the things that change,
but also the things that do not change; without that, one would not be able to draw
many useful conclusions. The difficulty is that, in commonsense domains, there
are too many things that do not change, and enumerating all of them would not
be feasible (it looks also non-commonsensical to have to enumerate them all). For
instance, when we describe an action of walking to the car, we also need to list all
things that do not move: the desk, the car, the airport, the house and so on.

The frame problem becomes more difficult in the presence of indirect effects

of an action. The problem of describing indirect effects of an action is called the



ramification problem [Finger, 1986]. For instance, if I drive to the airport, not only
my location and the location of the car change, but also the locations of things in

my pocket and the trunk change. Enumerating all indirect effects is also tedious.

2.2 Nonmonotonic Reasoning

It was observed that the difficulties with formal logic described above are related to
the fact that classical logic is monotonic: for any sets of premises A and B such that
A C B, if a sentence F follows from A, then F follows from B also. In other words,
every conclusion that can be derived from A is also derivable from B. This is not de-
sirable in commonsense reasoning: as discussed in the introduction, when additional
assumptions are made, some of the conclusions may need to be retracted. This was
a challenge to Al researchers, and several systems of nonmonotonic reasoning were
invented in response.

A 1980 issue of the journal of Artificial Intelligence presented three forms
of nonmonotonic reasoning: circumscription by McCarthy [1980], default logic by
Reiter [1980], and a nonmonotonic logic by McDermott and Doyle [1980]. The con-
cept of circumscription was extended in [McCarthy, 1986], and an influential modal
nonmonotonic logic called autoepistemic logic was introduced by Moore [1985].

Every system of nonmonotonic reasoning provides a method for representing
“defaults.” One particularly important default is the commonsense law of inertia,
which says that everything tends to remain as it was. Formalizing this idea was
recognized as a key to solving the frame problem.

While the earlier forms of nonmonotonic reasoning were going through re-

finements and improvements, in 1987, Hanks and McDermott challenged the re-



search community by arguing that formal logic is no good for representing com-
monsense knowledge. As an example, they presented the so-called “Yale shooting
problem” [Hanks and McDermott, 1987], where McCarthy’s revised form of circum-

scription [McCarthy, 1986] could not account for a simple fact.

There is a gun and a person (in some versions, a turkey) whose name
is Fred. If the gun is loaded, shooting it kills Fred. Now consider the
following scenario. Initially Fred was alive, and the gun was not loaded.

Next the gun is loaded, and after waiting, the gun is shot. Is Fred dead?

Intuitively, the answer should be yes. However, McCarthy’s 1986 proposal
could not justify this. It left open the possibility that the gun gets unloaded by
itself during the execution of the wait action.

The failure discouraged some AI researchers and made them abandon the
logicist approach to commonsense reasoning. But others continued to extend the
systems of logic and came up with various solutions in response to the challenge.
Some of them are [Lifschitz, 1987], [Morris, 1988], [Gelfond, 1989], [Baker, 1991]
and [Lifschitz, 1991].

Logic programming became a member of the family of nonmonotonic rea-
soning systems once the semantics of “negation as failure” was clarified. Among the
semantics, influential are the completion semantics [Clark, 1978], the well-founded
semantics [Van Gelder et al., 1991], and the stable model or the answer set seman-
tics [Gelfond and Lifschitz, 1988]. Gelfond [1987] showed how to translate logic
programs into autoepistemic logic. Solutions to the Yale Shooting problem using
logic programs are described in [Eshghi and Kowalski, 1989], [Evans, 1989], [Apt

and Bezem, 1990].



2.3 Nonmonotonic Theories of Causality

Causality has been a major subject of study by philosophers from the ancient times ,

and now it is studied in AI as well.

In the natural sciences, the distinction between a material implication (“If
A holds, then B holds”) and a causal relation (“A causes B”) is commonly disre-
garded. Such distinction, however, turned out to be quite useful in commonsense
reasoning. As a result, nonmonotonic theories based on causality received consider-
able attention.

Pearl] [1988] investigated the distinction between causal and non-causal grounds
in general default reasoning. Geffner [1990] introduced a modal operator for rep-
resenting causality. Lin [1995] introduced the predicate Caused; his proposal made
it possible to conveniently express the indirect effects of an action, as well as the
direct effects, using circumscription.

Later, McCain and Turner [1997] introduced a causal logic in which the
notions of “being caused” and “being true” are distinguished using expressions of
the form

F<a (2.1)

where F' and G are propositional formulas. Intuitively (2.1) is understood as the
assertion that F' is caused if G holds. The semantics of the causal logic is based
on “the principle of universal causation,” which says that every fact that obtains
is caused. This strong philosophical commitment is rewarded by the mathematical

simplicity in the semantics. Universal Causal Logic (UCL) [Turner, 1999] extends

! Aristotle enumerated four kinds of causes: the material, the formal, the efficient, and the
final. Rene Descartes, David Hume, Immanuel Kant, and John Stuart Mill were also among the
philosophers who studied causality.

10



the language of causal theories to a modal framework. Although the syntax of
Geffner’s theory and UCL are similar, their semantics are not, and there seems to
be no precise relationship between them. The semantics of McCain and Turner’s
causal logic is closely related to that of logic programming under the answer set
semantics.

The systems proposed by Geffner, Lin, McCain and Turner allow us to ex-
press “static causal laws”—causal dependencies between fluents. This is essential

for solving the ramification problem.

2.4 Action Languages

Action languages [Gelfond and Lifschitz, 1998] are formal models of parts of natural
language that are used for describing the effects of actions. They define “transition
systems” —directed graphs whose vertices correspond to states and whose edges are
labeled by actions. Originally, action languages were developed to represent the
properties of actions in a high level notation. Their simple but concise syntax helps
us compare them and improve our understanding of reasoning about actions.

The STRIPS language [Fikes and Nilsson, 1971] is not an action language
in the sense of [Gelfond and Lifschitz, 1998], but is closely related. Despite its
limited expressivity and semantic pitfalls [Lifschitz, 1987], STRIPS’s influence has
been significant for two reasons: the language provides a built-in solution to the
frame problem; efficient computation can be carried out by employing a resolution
theorem prover in finding a sequence of STRIPS operators that leads to a world
model in which a given goal formula is true.

Many extensions that improve the expressive power of STRIPS were pro-
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posed. Pednault’s ADL [Pednault, 1994] extended STRIPS by allowing symbols
for non-propositional fluents and conditional effects of actions. Gelfond and Lif-
schitz [1993] introduced language A (which is essentially the propositional fragment
of ADL) and related it to logic programming. Similar results for a language that
permits the concurrent execution of actions were proved in [Baral and Gelfond,
1997], and for a language with static causal laws in [Turner, 1997]. That work,
along with the theory of nonmonotonic causal reasoning presented in [McCain and
Turner, 1997)], has led to the design of language C [Giunchiglia and Lifschitz, 1998],

which is a basis of the action language C+ that we present in this dissertation.

2.5 Elaboration Tolerance

McCarthy [1998] expressed the view that human-level AI would require what he

called elaboration tolerance:

A formalism is elaboration tolerant to the extent that it is convenient
to modify a set of facts expressed in the formalism to take into account
new phenomena or changed circumstances. Representations of infor-
mation in natural language have good elaboration tolerance when used
with human background knowledge. Human-level AI will require rep-
resentations with much more elaboration tolerance than those used by
present Al programs, because human-level Al needs to be able to take

new phenomena into account.

The simplest kind of elaboration is the addition of new formulas. Next

comes changing the values of parameters. Adding new arguments to
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functions and predicates represents more of a change.

In the paper McCarthy illustrated the idea by defining 19 variants of the

Missionaries and Cannibals Puzzle (MCP). Here are some of his elaborations:

e The boat can carry three.

e There is an oar on each bank.

e Only one missionary and one cannibal can row.

e The biggest cannibal cannot fit in the boat with another person.

e If the biggest cannibal is isolated with the smallest missionary, the latter will

be eaten.

e Three missionaries along with a cannibal can convert him into a missionary.

e There is a bridge.

e The boat leaks and must be bailed concurrently with rowing.

e There is an island.

e There are four cannibals and four missionaries, but if the strongest of the
missionaries rows fast enough, the cannibals won’t have gotten so hungry that

they will eat the missionaries.

When humans are told about the elaborations above, they understand the
changes using their background knowledge expressed in natural language without

having to start from scratch.
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Lifschitz [2000] showed how to formalize the ten elaborations of MCP above
in the language of CCALC. Instead of formalizing each elaboration from scratch,
he “factored out” their common part; each formalization of an elaboration does not
modify the common part, but just adds to it a few propositions that express the
change. This is the simplest kind of elaboration that McCarthy discussed. CCALC
has determined the shortest number of steps to solve each elaboration and showed

the solution.

2.6 SAT solvers

SATISFIABILITY (or SAT for short) is the problem of determining whether a
given Boolean expression in conjunctive normal form is satisfiable. This is the first
problem proven to be NP-complete [Cook, 1971].

Systems that solve instances of this problem are called SAT solvers. Many
of them are based on an algorithm due to Davis, Logemann and Loveland [1962].
Various techniques such as intelligent backtracking, learning, backjumping and a
rapid restart strategy have been used to improve the efficiency of SAT solvers. At
the time of this writing, hundreds of thousands of atoms, and millions of clauses can
be handled reasonably well in many cases.

Since various problems can be cast as propositional theories, SAT solvers
are widely applied. In “satisfiability planning” [Kautz and Selman, 1992] a plan-
ning problem is encoded as a propositional theory so that a model of the theory
corresponds to a plan—a sequence of actions—that leads to a goal state from an

initial state. The plan can be found by running a SAT solver. Blackbox 2 is a

*http://www.cs.washington.edu/homes/kautz/blackbox .
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planning system that converts a STRIPS formalization of a planning problem into
a propositional theory, and then finds its models using SAT solvers.

SAT solvers have many applications to areas other than reasoning about ac-
tion. For instance, they have been applied to the formal verification of hardware
systems with emphasis in Bounded Model Checking: NuSMV?2 3 is a SAT-based sym-
bolic model checker that turned out to be more efficient than BDD-based NuSMV;
GrAnDe * is a theorem prover based on SAT solvers; SAT solvers have been also
used for finding attacks to a set of well-known authentication protocols [Armando
and Compagna, 2002].

Some SAT solvers are complete, that is, they find a model if there exists
one, and answer “no” if there is none. Others sacrifice completeness in return for
efficiency. Most SAT solvers today accept the DIMACS input format. This simplifies
the efforts required to test and compare the solvers. Also systems employing SAT
solvers as their search engines have the flexibility of choosing different solvers. For
instance, one can run an incomplete solver first, and if it does not terminate after
certain time, run a complete solver. Competitions for SAT solvers are held frequently
to encourage the creation of more efficient systems.?

Carefully engineered solvers have shown significant speed-up. Chaff [Moskewicz
et al., 2001; Zhang et al., 2001] was designed from the beginning to handle large
formulas from a very specific area (mostly Bounded Model Checking) using “lazy”
data structures, and also integrated a new form of learning, taking advantage of

the overall lazy data structures used. Chaff outperforms existing SAT solvers on a

*http://nusmv.irst.itc.it/ .
*http://www.cs.miami.edu/"tptp/ATPSystems/GrAnDe/ .
5For a recent report, consult http://www.satisfiability.org/SAT04/ .
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large set of “structured” (as opposed to random) instances. This efficiency boost is

expected to make SAT solvers more widely applicable.
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Chapter 3

Logic Programs and the

McCain—Turner Causal Logic

The underlying nonmonotonic formalism we choose for formalizing the properties of
actions is causal logic. It is closely related to the answer set semantics (also known
as the stable model semantics) of logic programs by Gelfond and Lifschitz [1988],
which has led to a new declarative programming paradigm called answer set pro-
gramming [Lifschitz, 1999; Marek and Truszczynski, 1999; Niemel, 1999].

A special case of the answer set semantics is closely related to a simple
nonmonotonic formalism called Clark’s completion [Clark, 1978]. Completion is at-
tractive because it is defined as a transformation of logic programs to classical logic,
but it sometimes gives unintuitive results [Przymusinski, 1989, Section 4.1]. The
concept of completion was extended to causal logic by McCain and Turner [1997],
and the relationship between the semantics of causal logic and completion turned

out to be more immediate than the relationship between the answer set semantics
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and completion. This idea has led to an efficient implementation of automated
reasoning about actions.
In this chapter we review the answer set semantics and the semantics of

causal logic, and their relationships with completion.

3.1 Answer Set Semantics for Normal Programs

We review the answer set semantics for normal programs [Gelfond and Lifschitz,
1988]. The word atom is understood here as in propositional logic.

A (normal) rule is an expression of the form

D1 Fp2a"'apﬂ’un0t pm+1)"')n0t Pn (31)

(1 < m < n) where all p; are atoms. Atom p; is called the head, and the part

D2y sPm, NOL Pm1, ..., N0t Pp

is called the body of the rule. We will often write (3.1) in the form

where B is pa,...,pm, and F' is not pp41, ..., not p,, and we will sometimes iden-
tify B with the set {p2,...,pm}. If the body is empty, then < can be dropped.

A (normal logic) program is a finite set of rules of form (3.1).!

We say that a set X of atoms satisfies the body B, F of rule (3.2) (symboli-
cally, X = B, F) if pa,...,pm € X and ppt1,...,pn € X. We say that X satisfies
a normal program IT (symbolically, X = II) if, for every rule (3.2) of that program,

p1 € X whenever X satisfies B, F.

'In the literature, programs are allowed to contain infinitely many rules, but in this dissertation,
for simplicity, we restrict attention to finite programs only.
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Answer sets are defined by a fixpoint definition. The reduct II* of a normal

program II with respect to a set X of atoms is obtained from II by
e deleting each rule (3.2) such that X = F, and
e replacing each remaining rule (3.2) by p; + B.

A set X of atoms is an answer set of IT if X is minimal among the sets of atoms
that satisfy ITX.

For example, consider the following program II;:

p 4 not q

g notp

Consider, one by one, all sets formed from the atoms p and ¢:

e X; = (. The reduct Hfl is {p, q}, which X; does not satisfy. Consequently,

X is not an answer set of Il;.

e X, = {p}. The reduct T3 is {p}. Since X, is minimal among the sets of

atoms that satisfy the reduct, X5 is an answer set of I1;.

e X3 = {q}. Similarly to the above, the reduct II;'* is {g}. Since X3 is minimal

among the sets of atoms that satisfy H{(‘Q‘, X3 is an answer set of II;.

e X4y = {p,q}. The reduct H{X“ is @, which X4 satisfies, but it is not minimal
among the sets of atoms that satisfy the reduct. Consequently, X4 is not an

answer set of II;.

Thus we see that X5 and X3 are the only answer sets of II;.
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3.2 Completion

Let IT be a program whose rules have the form (3.2). The completion of IT, Comp(II),

consists of the equivalences

m= \/ BAF (3.3)
p1<B,Fell

for all atoms p; that occur in II.2

For example, Comp(I1) is

p=79q
q=p,

whose models are {p}, {q}, which are the same as the answer sets of II;.

Proposition [Erdem and Lifschitz, 2003, Proposition 1] For any program Il and

any set X of atoms, if X is an answer set of Il then X is a model of Comp(II).

It is well known that the converse of this proposition does not hold. The one-
rule program p <+ p is a standard counterexample; both ) and {p} are the models
of Comp(II), but only 0 is the answer set of II.

Fages [1994] showed that if a program is “tight,” then the converse of the
proposition holds as well. Erdem and Lifschitz [2003] generalized Fages’ theorem

and extended it to a more general class of programs.

3.3 The McCain—Turner Causal Logic

Like logic programs, causal theories consist of rules, but they are different in that

heads and bodies are arbitrary formulas in propositional logic. In this sense they are

2Completion defined here can easily be extended to the case where rules are allowed to have
empty heads, which is omitted here for simplicity.
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more “propositional logic friendly” than logic programs. In this section we review
the semantics of causal logic.

A propositional signature is a set of symbols of propositional atoms. A
formula is a propositional combination of atoms as in propositional logic. An inter-
pretation of ¢ is a function that maps each element of o to the truth values.

By a (causal) rule we mean an expression of the form
F <G

(“F is caused if G holds”), where F', G are formulas in propositional logic of the
signature o. Formula F' is called the head and G is called the body of the rule.
Rules with the head L are called constraints.

A causal theory is a finite set of causal rules.

Like the semantics of a logic program, the semantics of a causal theory is
given by a fixpoint definition. Let 7" be a causal theory, and I an interpretation of
its signature. The reduct T! of T relative to I is the set of the heads of all rules
in T whose bodies are satisfied by I. We say that I is a model of T if I is the unique
model of T7.

Intuitively, 77 is the set of formulas that are caused, according to the rules
of T', under interpretation I. If this set has no models or more than one model,
then, according to the definition above, I is not considered a model of T. If 7' has
exactly one model, but that model is different from I, then I is not a model of T
either. The only case when I is a model of T is when I satisfies every formula in
the reduct, and no other interpretation does.

If a causal theory T has a model, we say that it is consistent, or satisfiable.

If every model of T satisfies a formula F' then we say that T entails F' and write
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T =F.
As an example, take the following causal theory T} whose signature is {p, ¢}:
P <=4
g <=q (3.4)
g <— —gq.
Consider, one by one, all interpretations of that signature (we identify an

interpretation with the set of literals that are true in it):

e I1 = {p,q}. The reduct consists of the heads of the first two rules of Ti:

TII1 = {p,q}. Since I; is the unique model of Tlh, it is a model of T3.

e Iy = {-p,q}. The reduct is the same as above, and I is not a model of the

reduct. Consequently, I is not a model of T}.

e I35 = {p,—q}. The only element of the reduct is the head of the third rule

of Ty: Tll3 = {—¢q}. It has two models. Consequently, I3 is not a model of T;.

e Iy = {-p,—q}. The reduct is the same as above, so that I, is not a model

of T} either.

Thus we see that I; is the only model of T7.

Consider another example T» whose signature is again {p, ¢}:
pV—qg<=T
pVg <= T.

The reduct T4 is equal to the set of the heads of the rules in Ty regardless of the
interpretation I, so that it has two models, {p, ¢} and {-p, —~q}. Therefore, T5 has

no models.

22



T3 is the following theory of the same signature that adds one rule to T5:

pV—qg &= T
-pVqg <= T

pVg <= T.

Similarly to the previous example, T3I is equal to the set of the heads of the rules
in T3 regardless of the interpretation I. Now {—p, =¢q} is not a model of Tgl, so that
T3 has one model: {p, q}.

Theories T5 and T3 illustrate the nonmonotonicity of causal logic: we may

get a new model by adding more rules.

3.4 Literal Completion

A causal theory is called definite if the head of every rule in it is either a literal or L.
For a definite theory, we can describe its models in terms of “literal completion”
[McCain and Turner, 1997], which is similar to Clark’s completion for normal logic
programs.

Consider a definite causal theory T' of a signature o. For each literal [, the

literal completion formula for [ is the formula
Il =Gyv---VG,

where G1,...,Gy, (n > 0) are the bodies of the rules of 7' with head I. The (literal)
completion of T is obtained by taking the completion formulas for every literal of o,

along with the formula —F for each constraint | <= F in T
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For example, the completion of T; is

pP=q
ﬁpEJ_
(3.5)
a=q
—q="q,

and its only model is {p,q}, which is exactly the model found above using the
definition of causal logic.

The relationship between causal logic and completion is more immediate than
the relationship between logic programs and completion described in Proposition 1

from [Erdem and Lifschitz, 2003] (Section 3.2):

Proposition /[McCain and Turner, 1997/ The models of a definite causal theory

are precisely the models of its completion.

However, the method of completion is not applicable to nondefinite theories,
such as Ty and T3.

Here are two more examples of the use of completion. First, we will show
how to turn any set I' of formulas into a causal theory that has the same models

as I'. The rules of this theory are
e | <= for every literal [ of o, and
e the constraints | <= —F for every F € I'.

The completion of this theory consists of the formulas [ = [ for all literals [ and the

formulas ——F for all F' € I'. Clearly, the completion is equivalent to I'.
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Second, definite theories can be used to express the “closed-world assump-
tion,” [Reiter, 1978] as follows. Take a signature 0. The assumption that the

elements of ¢ are false by default can be expressed by the rules
—a <= —a (a € 0) (3.6)

(if a is false then there is a cause for this). If, for some subset S of o, we combine (3.6)
with the rules

a<=T (a € 8),

we will get a causal theory whose only model is the interpretation I that assigns t
to the atoms in S and f to all other atoms. Indeed, the completion of this theory

consists of the formulas

a=T (a € 9),
a=1 (a€o)\S),
-a=-a (a €0),

and I is the only model of these formulas.
The proposition above shows that the satisfiability problem for definite causal

theories belongs to class NP. It is clearly NP-complete.

3.5 The Causal Calculator (CCALC)

The proposition from Section 3.4 tells us that the models of definite theories can
be computed by SAT solvers. This idea led McCain to design the Causal Calcu-
lator (CCALC) 3—an implementation of definite causal theories. Computationally,

CCALC turns a definite theory into a propositional theory by literal completion,

*http://www.cs.utexas.edu/users/tag/cc .
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and then calls SAT solvers to find the models of the propositional theory, which, in
turn, correspond to the models of the causal theory.

The original version of CCALC was implemented in Prolog as part of Mc-
Cain’s dissertation [McCain, 1997]. The idea is similar to satisfiability planning [Kautz
and Selman, 1992] but the formalism of CCALC is much more expressive than the
STRIPS based formalisms [McCain and Turner, 1998]. An early version of CCALC
was applied to formalizing several challenge problems in the theory of common-
sense knowledge, including McCarthy’s airport example [Lifschitz et al., 2000] and
elaborations of the Missionaries and Cannibals Puzzle [Lifschitz, 2000].

We will talk about CCALC in more detail in the following chapter.
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Chapter 4

Action Language C and the

Causal Calculator

4.1 Language C

The review of C in this section follows [Giunchiglia and Lifschitz, 1998].

4.1.1 Syntax

In C, a signature o is partitioned into two groups of symbols: fluent symbols of!
and action symbols 0. A fluent formula is a formula that does not contain action
symbols.

Consider the monkey and bananas problem described in Chapter 1. To for-

malize the problem in a declarative language, one needs to be able to describe
e the locations of the monkey, the bananas, and the box,

e whether the monkey is on the box, and
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e whether the monkey has the bananas.

Assuming that the possible locations of the monkey, the bananas, and the

box are L, Lo, L3, a signature that would allow us to talk about the states consists

of symbols:
At(z,1) (x€{Monkey, Bananas, Boz}, l€{L1, Ly, L3}), (41)
1
HasBananas, OnBoz.
Actions in the domain can be denoted by symbols:
Walk(l), PushBoz(l), ClimbOn, ClimbOff, GraspBananas. (4.2)

There are two kinds of propositions, called “causal laws,” in C. A static law

is an expression of the form

caused F if G (4.3)

where F' and G are fluent formulas. For instance,
caused At(Bananas,l) if At(Monkey,l) N HasBananas (4.4)

is a static law. The intuitive meaning of the proposition is that the location of the
bananas is determined by the location of the monkey if it has the bananas. The
change of the location of the bananas is an indirect effect of any action that affects
the location of the monkey.

A dynamic law is an expression of the form
caused F if G after H (4.5)
where F' and G are fluent formulas and H is a formula. For instance,

caused At(Monkey,l) if T after Walk(l)
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is a dynamic law describing the effect of an action of walking.

In both propositions (4.3) and (4.5), the formula F' is called the head. The
part if G can be dropped if G is T.

A causal law is a static law or a dynamic law. An action description is a
finite set of causal laws. An action description is definite if the head of every causal

law of it is either a literal or L.

4.1.2 Semantics

As in [Giunchiglia and Lifschitz, 1998], the semantics of C can be defined in terms
of causal logic. An action description is mapped to a causal theory whose models
are in a 1-1 correspondence with the paths in the transition system.

More precisely, any action description can be viewed as an abbreviation for
a sequence of causal theories. For any action description D and any nonnegative
integer m, the causal theory D,, is defined as follows. The signature of D,, consists

of the pairs i:c¢ such that
e i €{0,...,m} and c is a fluent constant of D, or
e i €{0,...,m — 1} and c is an action constant of D.

If ¢ is a fluent, then 7 : ¢ means that ¢ holds at step ¢, and if ¢ is an action, then i : ¢
means that ¢ occurs between steps ¢ and 7 + 1.

In the description of the rules of D,, below, the following convention is used:
for any formula F' of the signature of D, i: F stands for the result of prefixing all

fluent symbols and action symbols in F' with ¢: . The rules of D,, are
1 F<=i:G (4.6)
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for every static law (4.3) in D and every ¢ € {0,...,m};

i+1:F <=i+1:G N i:H (4.7)

for every dynamic law (4.5) in D and every i € {0,...,m — 1};

O:c<=0:c
(4.8)
0:—mc<=0:—c
for every fluent symbol ¢;
t:c<&<=tice
(4.9)

t:oc<=1:c
for every action symbol ¢, and every i € {0,...,m — 1}.

Rules (4.8) express that the initial values of all fluents are “exogenous”: they
can be chosen arbitrarily. Rules (4.9) express that all actions are exogenous: whether
or not an action is executed can be decided arbitrarily.

For instance, consider the following simple action description SD where there

are only one fluent symbol P and only one action symbol A:

caused P if T after A
caused P if P after P

caused —P if —P after —P.

The first line expresses that if the action A is executed, then the value of P will be
caused to be true; the next two lines express the commonsense law of inertia: in the
absence of any evidence to the contrary, the value of P after an event is assumed to

be the same as the value before the event. This is how C solves the frame problem.
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The causal theory SD,, for action description SD consists of

1+1:P<&<i:A
t+1:P<i+1:P A i:P
1+1:mP<<=i+1:=-P A ©:—-P

for every i € {0,...,m — 1} according to (4.7);

0:P<=0:P
0:=P <= 0:—-P
according to (4.8);
itA<=1i:A
itmA<=i:-A
for every i € {0,...,m — 1} according to (4.9).
It is easy to check that the models of the completion of SD,, can be written

as m equivalences
i+1:P = i:AV i:P (0 <i<m).

SD,, has 2™*! models, each characterized by the truth values assigned to the con-
stants 0: P and ¢: A (i = 0,...,m — 1). For instance, one of the models of SD,
is
{=0:P, -0: A, —-1:P, 1: A, 2:P}. (4.10)
Intuitively, it means that P is false in the beginning, and remains false when action
A is not executed. Then the action is executed, which will make P true.
Certain abbreviations are useful. If a is an action constant and F', G are

fluent formulas, then

a causes F if G (4.11)
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Figure 4.1: The transition system described by SD
stands for the dynamic law
caused F' if T after a A G.

The rule (4.11) can be used for describing a conditional effect of an action, i.e., for
expressing that executing action a causes F' to be true if G holds in the current
state. The part if G can be dropped if G is T. So the first line of SD can be
abbreviated as

A causes P.

There is also an abbreviation for the last two lines of SD:

inertial P. (4.12)

4.1.3 States and Transitions

The models of SD,, can be visualized as paths in a “transition system”—the graph
shown in Figure 4.1. The two vertices of the graph represent states; in one state,
the value of the fluent P is f, in the other it is t. The edges represent transitions
between states; the action a is executed in two transitions, and it is not executed in

the other two.
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There is a simple 1-1 correspondence between the models of SD,, and the
paths of length m in this transition system. For instance, the model of SD; in (4.10)
corresponds to the path

(=P, ~A, -P, A,P).

Indeed, any action description describes a transition system. Consider an
action description D with a set ¢! of fluent symbols and a set % of action symbols.
The transition system represented by D is defined by Dy and D; as we will see soon.

We can represent any interpretation of the signature of D,, in the form
(0:50) U(0:eg) U(Ll:sy)U(Lieg) U---U(m:sp) (4.13)

where sg,..., s, are interpretations of of!, and eq,...,en_1 are interpretations
of g%t

A state is an interpretation s of of! such that 0:s is a model of Dy. States
are the vertices of the transition system represented by D. A transition is a triple
(s,e,s'), where s and s’ are interpretations of ¢! and e is an interpretation of ¢,
such that 0:sU0:eU1:s" is a model of D;. Transitions correspond to the edges
of the transition system: for every transition (s, e, s'), it contains an edge from s to

s' labeled e. These labels e will be called events. One can check that according to

the definitions, the graph in Figure 4.1 is indeed the transition system described by

SD.
A history is a sequence of the form
<807 €0,S51,€1,.---,8m—1,Em—1, Sm>
where each (sg, €g, $1), ($1,€1,52), "+ , (Sm_1,€m_1, Sm) 1S a transition.
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Proposition [Giunchiglia and Lifschitz, 1998, Proposition 2] For any m > 0, an

interpretation (4.13) of the signature of D, is a model of Dy, iff
(80,€0, 81, €15+ -+, 8m—1,€m—1,5m)

s a history of D.

4.2 Examples

4.2.1 Monkey and Bananas

We illustrate the use of C by formalizing the Monkey and Bananas domain. The
signature is as given in Section 4.1.1. In the following, x ranges over Monkey,
Bananas, Box; 1, 11, I3 range over Ly, Lo, Lg.

The first postulate expresses that there exists a location for each object at

every instant:

constraint \/, At(z,!) (4.14)

The symbol \/; denotes a multiple disjunction over locations {. For a fluent for-
mula F',

constraint F

stands for the static law

caused L if —-F.

The proposition constrains the set of states: if an action description contains the
proposition, every state in the corresponding transition system must satisfy F.

The second postulate expresses that each object belongs to at most one
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location:
caused —At(z,l;) if At(z,1) (1 #1). (4.15)

The fact that an object, when moved to another location, “disappears” from its
previous location can be treated as an indirect effect, or “ramification,” of the
moving action. This is represented by (4.15), which illustrates how C solves the
ramification problem using static laws. Note that static laws do not mention actions,
and we will soon see why the use of static laws is an attractive solution for the
ramification problem.

The next group of static laws further constrains the set of states: if the
monkey has the bananas, then the bananas are at the location where the monkey

is; if the monkey is on the box, then the monkey is at the location where the box is.

caused At(Bananas,!l) if At(Monkey,l) N HasBananas (4.16)
4.16

caused At(Monkey,!l) if At(Boz,l) N OnBoz.

The first law ensures that the change in the location of the bananas is an indirect
effect of walking if the monkey has the bananas. Walking not only affects the location
of the monkey, but also the location of the bananas if the monkey has them. The

second effect can be described by
Walk(l) causes At(Bananas,l) if HasBananas.

But this law is redundant, because in the presence of the first line of (4.16), the
change in the location of the bananas is an indirect effect of walking (and of any other
action that affects the location of the monkey). The possibility of this simplification

is what makes the postulate (4.16) attractive.
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Similarly in view of the second law, the change in the location of the monkey
is an indirect effect of moving the box.!

The effects and the preconditions of walking are described as follows:

Walk (1) causes At(Monkey,l)
nonexecutable Walk(l) if At(Monkey, 1) (4.17)

nonexecutable Walk(l) if OnBoz.

In the last two lines

nonexecutable a if G (4.18)

is an abbreviation for (4.11) when F' is L. The proposition is used to represent a
qualification for executing action a.

Pushing the box has two effects and three preconditions:

PushBoz(l) causes At(Monkey,1)

PushBoz(l) causes At(Boz,1)

nonexecutable PushBoz(l) if At(Monkey,1)

nonexecutable PushBoz(l) if At(Monkey,l;) N At(Boz,ls) (I3 # 12)

nonexecutable PushBoz(l) if OnBoz.
(4.19)

'Of course in this domain with only one monkey, it is not possible to move the box with the
monkey on it. But if we enhance the domain to allow multiple monkeys, then this will become
possible.
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The descriptions of the rest of actions have a similar structure:

ClimbOn causes OnBozx
nonexecutable ClimbOn if At(Monkey,l) N At(Boz,l1) (1 # 1)

nonexecutable ClimbOn if OnBoz

ClimbOff causes —OnBozx

nonexecutable ClimbOff if —OnBoz

GraspBananas causes HasBananas
nonexecutable GraspBananas if HasBananas
nonexecutable GraspBananas if At(Monkey,l) N At(Bananas,ly) (I # 11)

nonexecutable GraspBananas if —OnBoz.
(4.20)

Every fluent in this domain tends to keep its previous value. The inertia
rules are

inertial ¢ (4.21)

for every fluent symbol ¢ from (4.1).

The concurrent execution of actions can be prohibited by postulating
nonexecutable c A d (4.22)

for every pair of distinct action symbols ¢, d from (4.2).
Let us call this action description MB. The planning problem given in Chap-
ter 1 asks to find a path in the transition system described by MB that starts from

the state defined by
At(Monkey, L1), At(Bananas,Lsy), At(Bozx,Ls)
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and leads to a goal state that satisfies

HasBananas.

4.2.2 Blocks World

In the blocks world, a state is described by a set of stacks of blocks on the table.
In the following, b, by, by range over blocks A, B, C and D; | ranges over
blocks and Table. The symbol On(b,l) denotes the fact that block b is on location
l; the symbol Mowve(b,l) denotes the action of moving block b onto location [. As in
the previous example, we begin by postulating that On is a function that maps a
block into a location:
constraint \/, On(b,1) (4.23)
caused —On(b, 1) if On(b,1) (1 #1).
In addition, we say that, in any state, two blocks cannot be on top of the

same block at the same time:
constraint —(On(b,b2) A On(by, b2)) (b # by). (4.24)
The effect of moving a block is represented by the following rule:
Move(b,l) causes On(b,l). (4.25)

The next three postulates describe the preconditions of the action: a block
can be moved only when it is clear; a block can be moved only to a position that is

clear; a block cannot be moved onto a block that is being moved also:

nonexecutable Move(b, 1) if On(by,b)
nonexecutable Move(b,by) if On(by,by) (4.26)

nonexecutable Move(b,b;) A Move(by,1).
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Initial condition Goal

Figure 4.2: The Blocks World—A planning problem

Finally the inertia rules are
inertial On(b,!). (4.27)

Let us call this action description BW. A typical problem in this domain is
to find a sequence of moves that leads to a goal. For instance, consider the problem
in Figure 4.2: given an initial configuration shown on the left, what is the shortest
sequence of moves that turns it into the goal configuration shown on the right? This
is a planning problem that asks to find a path in the transition system described by

BW that starts from the state defined by
On(A,B), On(B, Table), On(C,D), On(D, Table),
and leads to the goal state defined by

On(A, Table), On(B,A), On(C, Table), On(D,C).

4.3 Language of the Causal Calculator

Since CCALC is an implementation of definite causal theories, it can handle definite

action descriptions in C. Indeed, all examples of C action descriptions we have seen
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so far belong to this category.

Many commonsense reasoning problems related to C action descriptions can
be viewed as problems of generating paths in the corresponding transition systems
that satisfy certain conditions. As shown in Section 4.1.2, paths of a transition sys-
tem can be obtained by computing the models of the corresponding causal theory.
An action description is translated by CCALC first into a causal theory by a macro
expansion mechanism and then into a set of propositional formulas using the literal
completion procedure (Section 2.3). The models of the set of formulas, which cor-
respond to paths in the transition system, are found by running SAT solvers, such
as SATO [Zhang, 1997] and RELSAT [Bayardo and Schrag, 1997], in the spirit of sat-
isfiability planning [Kautz and Selman, 1992]. Below we present how the example C
action descriptions in the previous section can be represented in the input language

of CCALcC.

4.3.1 Monkey and Bananas in the Language of CCALC

A C input file for the Causal Calculator consists of declarations, propositions in C
(or, more often, schemas with metavariables whose instances are propositions in C),
queries (for instance, planning problems) and comments. Among its declarations,
a C input file usually contains a directive to include the “standard” file C.t which
contains rewrite rules for translating from C into the language of causal logic, as
well as various sorts, variables, constants, and domain independent causal laws that
have been found to be useful in formalizing action domains.

A C input file for MB (Section 4.2.1) is shown in Figure 4.3—4.4: Figure 4.3

contains declarations for symbols used; Figure 4.4 contains the corresponding causal
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% File: ’monkey.t’

:— include ’C.t°’.

:— sorts
thing;
location.
:— variables
0 :: thing;
L, L1, L2 :: location.
:— constants
monkey, box, bananas :: thing;
11, 12, 13 :: location;
at(thing,location), onBox, hasBananas :: inertialFluent;
walk(location), pushBox(location),
climbOn, climb0ff, graspBananas :: action.

Figure 4.3: Monkey and Bananas in the language of CCALC—Declarations

laws from Section 4.2.1.

Since CCALC is written in Prolog, the syntax of input files follows the Prolog
tradition of capitalizing variables. The ranges of schematic variables declared in
the variables section in Figure 4.3 are given names thing, location in the sort
declaration section at the beginning. The extent of each sort is defined in the
first two lines of the constant declaration section. Fluent symbols are declared
inertialFluents: the identifier instructs CCALC to declare the symbols fluents,
and moreover to postulate that the fluents are inertial, i.e., implicitly added are
inertial c for each fluent symbol c¢c. This is a built-in solution in CCALC for
solving the frame problem.

The propositions in Figure 4.4 are almost identical to the causal laws from
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constraint [\/L | at(Q,L)].
caused -at(0,L1) if at(0O,L) & L\=L1.

caused at(bananas,L) if hasBananas & at(monkey,L).
caused at(monkey,L) if at(box,L) & onBox.

walk (L) causes at(monkey,L).
nonexecutable walk(L) if at(monkey,L).
nonexecutable walk(L) if onBox.

pushBox (L) causes at(monkey,L).

pushBox (L) causes at(box,L).

nonexecutable pushBox(L) if at(monkey,L).

nonexecutable pushBox(L) if at(monkey,L1) & at(box,L2) & L1\=L2.
nonexecutable pushBox(L) if onBox.

climbOn causes onBox.
nonexecutable climbOn if at(monkey,L) & at(box,L1) & L\=L1.
nonexecutable climbOn if onBox.

climb0ff causes -onBox.
nonexecutable climb0Off if onBox.

graspBananas causes hasBananas.

nonexecutable graspBananas if hasBananas.

nonexecutable graspBananas if at(monkey,L) & at(bananas,L1) & L\=L1.
nonexecutable graspBananas if -onBox.

noconcurrency.

Figure 4.4: Monkey and Bananas in the language of CCALC—Causal laws
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% File: ’monkey-test.t’
:—- include ’monkey.t’.

:- plan
facts ::

0: at(monkey,11),
0: at(banana,12),
0: at(box,13);
goals

1..100: hasBananas.

Figure 4.5: Monkey and Bananas in the language of CCALC—Planning problem

Section 4.2.1. The ASCII representations of some symbols used in the language of

CCALC are summarized in the following chart:

>
<
U
Il
-
-

Symbol ‘ - ‘ % ‘

ASCII representation ++ | ->> | <-> | false | true

el

Every proposition in Figure 4.4 containing schematic variables is treated as
an abbreviation for the set of C propositions. In a step called “grounding,” CCALC
replaces each variable with every object in the range of the corresponding sort; some
parts of a schema turn into 0-place connectives T, L. For instance, grounding turns

L\=L1 in the schema
caused -at(0,L1) if at(0,L) & L\=L1.

into T when L and L1 are instantiated by different objects, and into L otherwise.
Figure 4.5 represents the planning problem for this domain. Symbols 0: and

1..100: are “time stamps.” 1..100: in the goal condition instructs CCALC to
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first try to find a plan of length 1, then 2, 3, and so on until it finds a solution or
fails after trying length 100.
Given the query, CCALC finds a model of MB,, that satisfies the initial

conditions
0: At(Monkey, L), 0: At(Bananas, L), 0: At(Boz, L3) (4.28)
and the goal
m: HasBananas (4.29)

where m is the smallest number for which such a model exists. CCALC takes consec-
utively m = 1,2, ... and looks for an interpretation satisfying both the completion
of MB,, and formulas (4.28), (4.29). Such an interpretation will be first found

for m = 4. It assigns the value t to
0: Walk(L3), 1: PushBoz(Ls), 2: ClimbOn, 3: GraspBananas.
Accordingly, CCALC output is as follows:
| ?- plan O.

calling sato 3.1.2...
run time (seconds) 0.00

No plan of length 1,

calling sato 3.1.2...
run time (seconds) 0.01

No plan of length 2,

calling sato 3.1.2...
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run time (seconds) 0.01

No plan of length 3,

calling sato 3.1.2...

run time (seconds) 0.00

0: at(bananas,12) at(box,13) at(monkey,l1)

ACTIONS: walk(13)

1: at(bananas,12) at(box,13) at(monkey,13)

ACTIONS: pushBox(12)

2: at(bananas,12) at(box,12) at(monkey,12)

ACTIONS: c¢limbOn

3: onBox at(bananas,12) at(box,12) at(monkey,12)

ACTIONS: graspBananas

4: hasBananas onBox at(bananas,12) at(box,12) at(monkey,12)

yes

4.3.2 Blocks World in the Language of CCALC

Figure 4.6 is a formalization of the Blocks World BW in the language of CCALC,

similar to Section 4.2.2.
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% File: ’bw.t’

:— include ’C.t°.

:— sorts
location >> block.

:— variables
B,B1,B2 :: block;
L,L1 :: location.

:- constants
table :: location;
on(block,location) :: inertialFluent;
move (block,location) :: action.

constraint [\/L | on(B,L)].
caused -on(B,L1) if on(B,L) & L\=L1.

constraint BO<B1 ->> -(on(B,B2) & on(B1,B2)).
move (B,L) causes on(B,L).
nonexecutable move(B,L) if on(B1,B).

nonexecutable move(B,B1) if on(B2,B1).
nonexecutable move(B,B1) & move(B1,L).

Figure 4.6: Blocks World in the language of CCALC

46



% File ’bw-test.t’.

:— include ’bw.t’.

:— constants
a,b,c,d :: block.
:- plan
facts::
0: on(a,b), on(b,table), on(c,d), on(d,table);
goals::

1..100: on(a,table), on(b,a), on(c,table), on(d,c).

Figure 4.7: A Blocks World planning problem

The symbol >> between the names of two sorts expresses that the second is a
subsort of the first, so that every object that belongs to the second sort also belongs
to the first. @< is a fixed total order between the symbols.

Figure 4.7 represents the planning problem given at the end of Section 4.2.2.

CCALc finds a model of BW,,, that satisfies the initial conditions
0: On(A, B), 0: On(B, Table), 0: On(C, D), 0: On(D, Table), (4.30)
and the goal
m:On(A, Table), m:On(B,A), m:On(C, Table), m: On(D,C). (4.31)

where m is the smallest number for which such a model exists. CCALC takes consec-
utively m = 1,2,... and looks for an interpretation satisfying both the completion
of BW,, and formulas (4.30), (4.31). Such an interpretation will be first found
for m = 2. The interpretation assigns the value t to

0: Move(A, Table), 0: Move(C, Table), 1: Move(B, A), 1: Move(D,C).
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Note that some actions are executed concurrently.
CCALC has determined that at least two steps are needed and displayed the

following solution:

calling sato 3.1.2...

run time (seconds) 0.01

0: on(a,b) on(b,table) on(c,d) on(d,table)

ACTIONS: move(a,table) move(c,table)

1: on(a,table) on(b,table) on(c,table) on(d,table)

ACTIONS: move(b,a) move(d,c)

2: on(a,table) on(b,a) on(c,table) on(d,c)

yes
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Chapter 5

New Extensions of Earlier Work

In this dissertation we show how to overcome several essential limitations of the

work on causal logic, language C and CCALC.

5.1 Multi-valued Fluents

Most formalisms for representing properties of actions limit their attention to propo-
sitional fluents, and this is true for C as well. Multi-valued fluents, such as the lo-
cation of an object, or the number of missionaries on a bank, can be represented in
such formalisms by symbols with Boolean values, which requires introducing rules
that relate these symbols to each other. For instance, in Sections 4.2.1 and 4.2.2 we
described the location of an object by Boolean constants At(x,l) and On(b,l), and
had to express the existence and the uniqueness of a location by postulates (4.14),
(4.15) and (4.23). Such causal laws are needed quite often, which is inconvenient. In
this respect, C is inferior to the language ADL (see Section 2.4) which does include

symbols for multi-valued fluents.
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In Section 6.1 we extend usual propositional logic by adopting a slightly more
general definition of an atom that allows expressions of the form ¢ =wv, where v is
an element of the “domain” of a symbol c. For instance, we may write Loc(Boz)=
Ly instead of At(Boz,Ls). We extend causal logic and C in accordance with this

extension.

5.2 Elaborating Actions by Attributes

Consider McCarthy’s elaborations of the Missionaries and Cannibals Puzzle (Sec-
tion 2.5). There is only one action, crossing, in the basic problem. We can represent
this action by a symbol such as cross(boat ,bank2,1,1) (1 missionary and 1 canni-
bal cross to Bank 2 using the boat). Some of McCarthy’s elaborations would require
that cross be given more arguments. In one of the elaborations (Elaboration 17),
it is necessary to distinguish between rowing fast and rowing slowly, which would
require an expression like cross(boat,bank2,1,1,fast). In another elaboration
(Elaboration 6), only one missionary and one cannibal can row, which would require
to denote which of the people on the boat can row.

As McCarthy [1998] noted (Section 2.5), adding arguments to functions and
predicates is what we want to avoid: if possible, we want to formalize elaborations by
adding postulates. One way to achieve this goal is to distinguish between actions and
“attributes.” Attributes are used to elaborate the execution of actions. For instance,
we may denote the action of crossing in a boat V by cross(V). On the other hand,
the destination of this action may be denoted by an attribute symbol to(V) whose
value is a location; the number of a group G on a boat V crossing may be denoted

by an attribute symbol howmany (V,G); the speed of a boat V may be denoted by an
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attribute symbol howfast (V).

Such elaborations mentioned above will involve extending the formalism by
adding new attribute symbols, instead of adding new arguments to the existing
action symbols. This allows us to reflect elaborations by adding postulates that
describe the new effects of the action in terms of the newly introduced attributes,
rather than by modifying the existing description.

In Section 6.2.7 we show how attributes can be represented in an extension

of C.

5.3 Defining New Fluents

Attempts to define new fluents by causal laws in C often do not lead to intuitively
expected results. Suppose we add to the description BW in Section 4.2.2 new fluents
Neighbor (b, b1), meaning that “one of the blocks b and b; is on top of the other.”
One might be tempted to write the definition of Neighbor by the following causal

laws:

caused Neighbor(b,by) if On(b,b1) V On(by,b) (5.1)
5.1
caused —Neighbor (b, by) if —Neighbor (b, by).

The second line of (5.1) abbreviates the set of causal laws
=i : Neighbor (b, by) <= —i: Neighbor (b, b1).

As discussed in Section 3.4, rules like this represent, intuitively, the closed-world
assumption: by default, the fluent Neighbor(b,b;) is assumed to be false.
Let us call the extended description with (5.1), BW .

Unfortunately, the description (5.1) is not satisfactory: it does not express
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that every state satisfies the condition
Neighbor(b,b1) = On(b,b1) V On(by,b), (5.2)
or equivalently, that the models of Dy satisfy
0 : Neighbor(b,b1) = 0: On(b,by) V On(by,b), (5.3)

as one would intuitively expect.
To see why, consider the literal completion formula of BW}' for 0: Neighbor (b, by )

and its negation:

0: Neighbor(b,by) = 0: Neighbor (b, b1) V (On(b,b1) V On(b1, b)) (5.4)
9.
0: - Neighbor (b, by) = 0: —~Neighbor (b, by).

The second equivalence is a tautology, and the implication from the left to right of

the first equivalence is also a tautology. Thus (5.4) is equivalent to
0: On(b,b1) V On(b1,b) D 0 : Neighbor(b,by),

which is weaker than (5.3).
The semantics of C needs to be corrected to avoid such anomaly. In Sec-
tion 6.2.3, we show how this can be achieved by introducing a new type of fluent

constants called “statically determined.”

5.4 Rigid Constants

Imagine that we want to enhance the description of the Blocks World by specifying
the materials that the blocks are made of, say wood or metal, or by describing the

size of the blocks. Such characteristics of blocks are not fluents because they do not
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depend on the state of the system. We call them rigid. Rigidity can be modeled in
C using inertial fluents: if no action is assumed to affect an inertial fluent, then its
value never changes. But this treatment looks somewhat unnatural.

Modeling rigidity by fluents is also computationally inefficient. As described
in Section 6.2.2, in turning an action description into a causal theory, CCALC gen-
erates atoms i:c for fluent constants ¢ and time stamps ¢. If the value of ¢ does not
change over time, then there is no need to generate copies of these atoms. This makes
the size of the translation more compact, which brings computational efficiency. In

Section 6.2.6, we introduce rigid constants in an extension of C.

5.5 Defeasible Causal Laws

In the CCALC formalization of McCarthy’s elaborations of the Missionaries and
Cannibals Puzzle from [Lifschitz, 2000], it was necessary to make some causal laws
“defeasible.” For instance the formalization of the basic problem contains a propo-

sition saying that the boat can hold two people:

constraint capacity(boat,2). (5.5)

In one of the elaborations, it was required to change this assumption: the boat can
hold three people, instead of two. Rather than by removing the line above, the same
effect could be obtained by adding causal laws, in the spirit of elaboration tolerance.

However, since language C cannot represent defeasible causal laws, that paper
had to rely on causal logic directly to be able to make (5.5) defeasible. Moreover in
the version of CCALC used there, only a few propositions, such as constraint and

nonexecutable, could be made defeasible.
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In Section 6.2.4, we illustrate how an enhancement of C overcomes the lim-
itations: the semantics of defeasible causal laws can be explained in terms of the
enhancement of C; any causal law can be made defeasible. Moreover CCALC pro-

vides a convenient syntax for using defeasible causal laws.

5.6 Additive Fluents

Some action languages, including C, allow us to talk about the effect of the concur-

rent execution of actions. The causal law

Walk (1) causes At(Monkey,1)

is understood in C to imply that A¢(Monkey, ) holds after any event that involves
the execution of Walk(l), even if other actions are executed concurrently.
To distinguish the events involving the concurrent execution of actions aq

and ay from the events that involve a; but not as, we can write
ai N\ ap causes ...,
a1 N\ —ag causes ... .

In some cases, unfortunately, the causes construct of C and similar languages
is not directly applicable to describing the effect of the concurrent execution of
actions. Consider, for instance, the effect of the action Buy(z, n) (customer z buys n

books) on the number of books available at a bookstore. The causal law

Buy(z,n) causes Available(k—n) if Available(k) (5.6)

is applicable in the case when no customer other than x is buying books at the same

time: k£ — n books are available after the event if there were k£ books in the store
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before the event. But (5.6) is not acceptable if we are interested in the concurrent
execution of such actions. For instance, according to (5.6), the actions Buy(z1,3)
and Buy(x2,5) cannot be executed concurrently, although intuitively we expect the
number to be decremented by 8.

Awailable is an example of an “additive” fluent. An additive fluent is a fluent
with numerical values such that the effect of several concurrently executed actions
on it can be computed by adding the effects of the individual actions. For example,
the gross receipts of a store are represented by an additive fluent: when several
customers pay to different cashiers simultaneously, the gross receipts will increase
by the sum of the “contributions” of the individual customers. The voltage of a
battery is an additive fluent: the increase in voltage obtained by adding several cells
to a battery can be computed by addition. In mechanics, the velocity of a particle is
an additive fluent, because the net effect of several forces on this fluent over a time
interval equals the sum of the effects of the individual forces. Additive fluents are
ubiquitous; this may be the reason why adding numbers is such a useful operation.

As noted above, the effect of the concurrent execution of actions on an addi-
tive fluent is not covered by the “built-in” treatment of the concurrent execution of
actions in C. This problem was first observed in [Lifschitz, 2000] in connection with
the elaborations of the Missionaries and Cannibals Puzzle that involve concurrent
actions. One of the postulates adopted in that paper is that if the number of mem-
bers of a group (say, missionaries) in some location (say, the left bank of the river)
equals =, and a vessel arrives with y members of the group aboard, the number
will become z + y. But this may be incorrect when several actions are executed

concurrently. If, for instance, a boat is taking y missionaries to the left bank while
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another boat is taking z missionaries to the right bank then the number will become
x+y—z. To treat such examples correctly, we need to view the number of members
of a group in a location as an additive fluent.

In Chapter 8 we show how the new language can be used for representing
additive fluents; in Chapter 9 we apply the new version of CCALC, which can rep-
resent additive fluents and defeasible causal laws, to formalizing a few elaborations

of MCP.

5.7 Nondefinite Causal Theories

As discussed in Section 3.4, it is straightforward to embed propositional logic into
causal logic. The other direction, embedding causal logic into propositional logic, is
more difficult. Completion gives us a partial answer: if a theory is definite, it can
be turned into a propositional theory.

In Chapter 10 we show how to turn arbitrary causal theories into proposi-
tional formulas. This process includes completion as a special case. It also allows us
to turn any nondefinite theory into an equivalent definite theory. Some of the the-
orems about causal logic can be proved more easily by turning a causal theory into
an equivalent propositional theory, rather than by applying the fixpoint definition
directly. In Chapter 11 we show, for instance, how the idea can be used to prove
the theorem on “splitting” causal theories.

Nondefinite theories can be useful also in applications to representing com-
monsense knowledge. Although definite theories are widely applicable, there are
cases where nondefinite theories yield more natural formalizations. An action do-

main of this kind, due to Marc Denecker, is discussed in [McCain, 1997, Section
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7.5]:

Imagine that there are two gears, each powered by a separate motor.
There are switches that toggle the motors on and off, and there is a
button that moves the gears so as to connect or disconnect them from
one another. The motors turn the gears in opposite (i.e., compatible)
directions. A gear is caused to turn if either its motor is on or it is

connected to a gear that is turning.

A nondefinite action description representing this example in C is shown in
Figure 5.1. The expression

default F

stands for

caused F' if F

(“There is a cause for F' if F holds”).

5.8 Extending CCALC

McCain’s CCALC accepts C as an input language, but it does not handle the ex-
tended C presented in the next chapter which overcomes the limitations discussed
here. In Section 6.5 we present the new version of CCALC that implements the
extended language.

Besides the implementation of the theoretical extensions, the new CCALC
provides more convenient features for compact representation. For instance, Mc-

Cain’s CCALC could not automatically evaluate arithmetical expressions in rules,
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Notation: z ranges over 1, 2.

Simple fluent constants: Domains:
MotorOn(z), Turning(z), Connected Boolean
Action constants: Domains:
Toggle(z), Push Boolean

Causal Laws:

inertial MotorOn(x)
inertial Connected

Toggle(z) causes MotorOn(z) if =MotorOn(x)
Toggle(x) causes —MotorOn(x) if MotorOn(x)
Push(z) causes Connected if —Connected
Push(x) causes — Connected if Connected

caused Turning(z) if MotorOn(x)
default — Turning(z)
caused Turning(1l) = Turning(2) if Connected

Figure 5.1: Formalization of Two Gears in C
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and relied on the “is” predicate in underlying Prolog, so that to write a causal law

such as (5.6) one had to write something like

buy(X,N) causes available(K1l) if available(K) & K1 is K-N.

Another improvement is related to grounding. Rather than blindly replacing
each schematic variable in causal laws with every object in the range of the corre-
sponding sort, the new version of CCALC allows us to limit grounding to instances
of the variables that satisfy a given test. We will see an example in Section 6.5.

Other new features of CCALC will be discussed in Section 6.5 also.
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Chapter 6

Multi-valued Causal Logic,
Action Language C+ and

CCaLc 2.0

To overcome the difficulties discussed in the previous chapter, we have extended
the McCain-Turner causal logic, proposed a new action language C+ based on this

extension, and redesigned and reimplemented CCALC accordingly.

6.1 Multi-valued Causal Logic

6.1.1 Multi-valued Formulas

We slightly extend formulas of the usual propositional logic to be able to represent
multi-valued fluents. Differently from propositional logic, where each symbol is

mapped to either f or t, in “multi-valued” propositional logic defined in this section,
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a symbol can be mapped to an element of a certain finite set of values.

A (multi-valued propositional) signature is a set o of symbols called con-
stants, along with a nonempty finite set Dom/(c) of symbols, disjoint from o, assigned
to each constant ¢. We call Dom(c) the domain of ¢. An atom of a signature o is
an expression of the form c¢=v (“the value of ¢ is v”) where ¢ € o and v € Dom(c).
A formula of o is a propositional combination of atoms.

For instance, the following atoms may be used to describe the location of an

agent in an apartment:
Loc = Kitchen, Loc = LivingRoom, Loc = Bathroom, Loc = Bedroom (6.1)
where Loc is a constant with the domain
{Kitchen, LivingRoom, Bathroom , Bedroom }.

An interpretation of o is a function that maps every element of o to an
element of its domain. An interpretation I satisfies an atom c=wv (symbolically,
I = e=w) if I(c) = v. For instance, the fact that the agent is in the kitchen can be
described by an interpretation satisfying the first of the atoms in (6.1), so that the
others are not satisfied.

The satisfaction relation is extended from atoms to arbitrary formulas ac-
cording to the usual truth tables for the propositional connectives.

The following definitions are standard in logic. Two formulas or sets of
formulas are equivalent to each other if they are satisfied by the same interpretations.
A model of a set I' of formulas is an interpretation that satisfies all formulas in I'.
If I’ has a model, it is said to be consistent, or satisfiable. If every model of I'

satisfies a formula F' then we say that I' entails F' and write ' |= F.
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A Boolean constant is one whose domain is the set of truth values {f,t}. A
Boolean signature is one whose constants are Boolean. If ¢ is a Boolean constant,
we will sometimes use ¢ as shorthand for the atom c¢=t. When the syntax and
the semantics defined above are restricted to Boolean signatures and to formulas
that do not contain f, they turn into the usual syntax and semantics of classical
propositional formulas. In principle, the domain of a constant can be a singleton.

Recall that, according to the definition, an atom is an equality whose left-
hand side is a constant ¢, and whose right-hand side is an element of the domain
of ¢. An expression of the form ¢ = d, where both ¢ and d are constants, will be
understood as an abbreviation for the disjunction

\/ (c=vANd=v).
v€ Dom(c)N Dom(d)

The symbol # will be used to abbreviate the negation of an equality of either kind.

6.1.2 Multi-valued Causal Logic

By a (multi-valued) causal rule we mean an expression of the form F <= G (“F is
caused if G is true” ), where F' and G are multi-valued formulas of a given signature o.
A (multi-valued) causal theory is a finite set of causal rules. From now on, we will
often drop the word “multi-valued.”

As in the Boolean case, the reduct T! of T relative to I is the set of the
heads of all rules in T" whose bodies are satisfied by I; we say that I is a model of T'
if I is the unique model of T'.

For example, take
o ={c}, Dom(c)={1,...,n}
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for some positive integer n, and let the only rule of T" be

c=1<=c=1. (6.2)
The interpretation I defined by I(c) = 1 is a model of T'. Indeed,

T — {c—1},

so that I is the only model of T7. Furthermore, 7' has no other models. Indeed,
for any interpretation J such that J(c) # 1, T7 is empty, and I is a model of T
different from J.

It follows that causal theory (6.2) entails c=1.

Consider now what happens if we add the rule
c=2<&=T (6.3)

to this theory. The reduct of the extended theory relative to any interpretation
includes the atom ¢=2. Consequently, the interpretation assigning 2 to c is the only
possible model of the extended theory. It is easy to see that this is indeed a model.
The extended theory does not entail ¢ = 1; it entails ¢ = 2. This example
illustrates the nonmonotonicity of the logic. Intuitively, rule (6.2) expresses that 1
is “the default value” of ¢, and rule (6.3) overrides this default.
If the rule

c=2<=c=2 (6.4)

is added to (6.2) instead of (6.3), we will get a causal theory with two models. This

theory entails c=1V c=2.
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6.1.3 Multi-valued Completion

As in the McCain-Turner causal logic, a causal theory is definite if the head of
every rule of it is an atom or L. For instance, causal theory (6.2) is definite. Causal
theory (3.4) from Section 3.3 is, strictly speaking, not definite, but it can be turned
into a definite theory by replacing —q in the head of the last rule with the equivalent

atom:

P <= q
g < q, (6.5)
g=f < —q.

The “multi-valued completion” process described below extends the literal
completion for the McCain—-Turner causal theories. It reduces the problem of finding
a model of a definite causal theory to the problem of finding a model of a set of
formulas.

Take a definite causal theory T of a signature o. We say that an atom c=v
of o is trivial if the domain of ¢ is a singleton. For each nontrivial atom A, the

completion formula for A is the formula
A=G1V--- VG,

where Gp,...,G, (n > 0) are the bodies of the rules of 7' with head A. The
(multi-valued) completion of T is obtained by taking the completion formulas for all
nontrivial atoms of o, along with the formula —F for each constraint | <= F in T

As in the McCain—Turner causal logic, the following proposition holds.

Proposition 1 The models of a definite causal theory are precisely the models of

its completion.
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For instance, the completion of (6.2) is

c=1

c=1,

(6.6)

C="v

1 (v € Dom(c) \ {1})

if [Dom(c)| > 1. Otherwise the atom c¢=1 is trivial, and the completion is empty.
In both cases, the only model of the completion is defined by I(¢) = 1. As discussed
in Section 6.1.2, this is the only model of (6.2).

After adding rule (6.3), the completion turns into

c=1=c=1,
c=2=T,
c=v=_1 (v € Dom(e) \ {1,2}).

The only model of these formulas is defined by I(c) = 2.

The completion of (6.5) is

p=gq,
p=f=1,
(6.7)
q=4q,
q:fE -q,

which corresponds to (3.5).

The assertion of Proposition 1 would be incorrect if we did not restrict the
completion process to nontrivial atoms. Consider, for instance, the causal theory
whose signature consists of one constant ¢ with the domain {0}, and whose set of
rules is empty. If the process of completion were extended to trivial atoms then the

completion of this theory would be ¢=0 = L, which is inconsistent.
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6.2 Action Language C+

6.2.1 Syntax of C+

Constants in C+ are divided into two groups: fluent constants and action constants.
Furthermore, the fluent constants are assumed to be partitioned into simple and
statically determined. By a fluent formula we mean a formula such that all constants
occurring in it are fluent constants. An action formula is a formula that contains at
least one action constant and no fluent constants.

A static law is an expression of the form
caused F if G (6.8)

where F' and G are fluent formulas. An action dynamic law is an expression of the
form (6.8) in which F' is an action formula and G is a formula. A fluent dynamic

law is an expression of the form
caused F if G after H (6.9)

where F' and G are fluent formulas and H is a formula, provided that F' does not
contain statically determined constants. A causal law is a static law, an action
dynamic law, or a fluent dynamic law. An action description is a finite set of causal
laws.

An action description D is definite if the head of every causal law of D is an

atom or L.

6.2.2 Semantics of C+

Just as the semantics of C is defined in terms of the McCain-Turner causal logic,

the semantics of C+ can be defined in terms of multi-valued causal logic.

66



For any action description D and any nonnegative integer m, the causal
theory D,, is defined as follows. As in C, the signature of D,, consists of the

pairs i:c such that
e i €{0,...,m} and ¢ is a fluent constant of D, or
e i€{0,...,m—1} and c is an action constant of D.

The domain of 7:c is the same as the domain of c.
The rules of D,, are

iiF <i:G (6.10)

for every static law (6.8) in D and every i € {0,...,m}, and for every action dynamic

law (6.8) in D and every ¢ € {0,...,m — 1};

i+1:F <= (i+1:G) A (i: H) (6.11)

for every fluent dynamic law (6.9) in D and every i € {0,...,m — 1};

O:c=v <= 0:c=v (6.12)

for every simple fluent constant ¢ and every v € Dom(c).

Note that the definition of D, treats simple fluent constants and statically
determined fluent constants in different ways: rules (6.12) are included only when ¢
is simple, so that the initial values of statically determined fluents are not assumed
to be exogenous (see Section 4.1.2). We will see in the next section why this is
useful.

Similarly, the assumption (4.9) that the execution of an action is exogenous

is not built into the semantics of C+, so that we need to write it explicitly if an
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action is exogenous. We will see later in Section 6.2.4 and Section 8.3 when it is
necessary to lift the exogeneity assumption for actions.
The definitions of states, transitions, histories are the same as in C (Sec-

tion 4.1.3).
Proposition 2 For any transition (s,e,s'), s and s' are states.

We identify an interpretation I in the sense of Section 6.1.1 with the set of
atoms that are satisfied by this interpretation, that is to say, with the set of atoms
of the form ¢ = I(c¢). This convention allows us to represent any interpretation of

the signature of D,, in the form
(0:80) U(0:eg)U (1:s1) U(lreg)U---U(m:spy) (6.13)

where sg,...,Sm are interpretations of of!, and ei,...,em_1 are interpretations

of o.act

Proposition 3 For any m > 0, an interpretation (6.13) of the signature of D, is
a model of D, iff
<807 €0,S51,€1,---,8m—1,Em—1, Sm>

s a history of D.

6.2.3 Statically Determined Fluents

The problem with defined fluents discussed in Section 5.3 can be corrected by clas-
sifying these fluents as statically determined. For instance, in the extended Blocks
World domain BW?Y in Section 5.3, if fluents Neighbor(b,b;) are declared stati-
cally determined, then the extent of the Neighbor relation is defined by the equa-

tion (5.2), as desired. To see this, note that the completion formulas of BWY for

68



0: Neighbor(b,b1) and its negation are now

0: Neighbor(b,b1) =0: On(b,b1) V On(by,b
9 (b, 1) (b, b1) (b1,0) (6.14)

0: - Neighbor (b, by) = 0: —~Neighbor (b, by).

The second equivalence is a tautology, and the first equivalence is exactly (5.3).

The transition system described by BW? is isomorphic to the one described
by BW: every state of the latter can be turned into the corresponding state of the
former by assigning to Neighbor(b,b;) the truth values defined by (5.2).

The following theorem describes a general method of defining fluents in C+.

Proposition 4 Let D be an action description whose signature is o, @ a set of stat-
ically determined fluent constants such that cNQ = 0, and D¢ an action description

which consists of causal laws of the form
caused q if F
where g € Q and F is a formula of o, and the causal laws
caused —q if —q.

or all ¢ € (). Then the transition system of D U Do is isomorphic to the transition
q Y Q P

system of D.

6.2.4 Defeasible Causal Laws

Using statically determined fluents, any static law can be made defeasible. A defea-

sible static law has the form

caused F if G unless ab (6.15)

69



where ab is a statically determined fluent constant. It stands for the pair of causal

laws
caused F if G A —ab
(6.16)
default —ab
(Recall that the second law stands for caused —ab if —ab). Under exceptional
circumstances where ab is true, causal law (6.15) becomes ineffective.

For instance, a defeasible form of proposition (5.5) can be represented in the

new language by

constraint Capacity(Boat) =2 unless AbBoat.

Similarly, any action dynamic law can be made defeasible: an action dy-
namic law (6.15) where ab is a Boolean action constant stands for the pair of causal
laws (6.16).

A defeasible fluent dynamic law has the form

caused F' if G after H unless ab (6.17)

where ab is a Boolean action constant. It stands for the pair of causal laws

caused F' if G after H A —ab
(6.18)

default —ab.

Under exceptional circumstances where ab is true, causal law (6.17) becomes inef-
fective.

For instance, in the Monkey and Bananas domain,

PushBoz(l) causes At(Boz,l) unless AbBoz (6.19)
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expresses that pushing the box normally involves changing the location of the box.
Suppose we want to enhance the description by postulating that the box is not

movable if it is too big. This can be done by adding
caused AbBoz if BigBoz. (6.20)

If the box is too big, then AbBoz is caused and this makes (6.19) ineffective. On the
other hand, intuitively, when there are no exceptions, the unless clause in (6.19)

can be disregarded. The following proposition makes the claim precise:

Proposition 5 (a) Let D be an action description, L a static causal law, and ab
a Boolean statically determined fluent. If ab does not occur in the heads of any
causal laws of D, then the transition system described by D U {L unless ab}

is ezactly the transition system described by D U{L} U {caused —ab}.

(b) Let D be an action description, L a dynamic causal law, and ab a Boolean
action constant. If ab does not occur in the heads of any causal laws of D, then
the transition system described by D U {L unless ab} is ezactly the transition

system described by D U {L} U {caused —ab after T}.

Notice that this method of making causal laws defeasible was not possible
in C: statically determined fluents were not available and action constant ab could
not be made non-exogenous due to the built-in exogeneity assumption (4.9) for all

actions.

6.2.5 Solving the Qualification Problem in C+

The qualification problem is the problem of representing properties of actions in a

way that makes new conditions for the successful performance of an action express-
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ible by adding new propositions. This is a special case of the problem of elaboration
tolerance.

We can distinguish between two kinds of conditions for the successful per-
formance of an action [Reiter, 1991]. It may happen that the action is simply not
executable when the condition is violated. Or it may happen that some of the usual
effects of the action do not hold in the resulting state even if the action was executed.
Accordingly, we can distinguish between two parts of the qualification problem—one
deals with executability qualifications, and the other with effect qualifications.

We can further distinguish between two kinds of executability qualifications—
those stated explicitly, in terms of preconditions, and those expressed implicitly by
constraints on the states. For instance, the fact that the monkey cannot walk if it
is on the box can be expressed explicitly by adding nonexecutable proposition as
in (4.16) (Section 4.2.1); the fact that one cannot buy more books than those avail-
able in the bookstore (Section 5.6) is expressed implicitly by the assumption that
Awailable has nonnegative values. Executability qualifications can be represented in
both C and C+.

On the other hand, effect qualifications can be expressed in C+, but not in C;
the C+ solution involves the use of defeasible causal laws which C cannot represent.
As in the previous section, the fact that a very big box accounts for an exception to
the usual effect of pushing action can be represented by the combination of causal

law (6.19) that allows exceptions and causal law (6.20) that specifies an exception.
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6.2.6 Rigid Constants

A fluent constant ¢ in the signature of an action description D is rigid (relative
to D) if, for every transition (s, e, s') in the transition system represented by D,
s'(¢) = s(c). Intuitively, rigid constants represent the fluents whose values are not
affected by any events.
The expression
rigid ¢
stands for the set of causal laws

caused L if —(c=v) after c=v

for all v € Dom(c). It is clear that c¢ is rigid relative to any action description
containing these laws.

As noted in Section 5.4, one of the reasons why rigid constants are interesting
is that, under some conditions, their presence allows us to make the causal theories
D,,, more compact, which can be computationally advantageous. Let R be a set of
fluent constants that are rigid relative to D. Denote by D the causal theory whose
constants and causal rules are obtained from the constants and causal rules of D,,
by dropping the time stamps before each constant from R. For any interpretation [
of the signature of D,,, by I® we denote the interpretation of the signature of DE
defined by the formulas

I®(c)=1(0:¢c) if c € R,
IR(ize) = I(izc) ifc¢ R.

Proposition 6 If
(i) every constant in R is statically determined, and
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(ii) for every causal law in D that contains a constant from R in the head, all

constants occurring in this law belong to R,

then the mapping I — I® is a 1-1 correspondence between the models of Dy, and

the models of DE.

Thus dropping the time stamps in front of the rigid constants from R does
not affect the meaning of D,, if, first, R contains no simple constants, and second,
no constant from R “causally depends” on a constant that does not belong to R.

The following example shows that the assertion of Proposition 6 would be
incorrect without the first condition. Take D to be

rigid p
default p

where p is a Boolean simple fluent, and let R = {p}. Then D; is

L <= (1:p) A=(0:p)
L <= =(1:p) A (0:p)
0:p <= 0:p
l:p <= 1:p
0:=p <= 0:—p
and sz is
1L <=pA-p
1l <= —pAp
p<=rp
P = P
The interpretation {p = f} is a model of Df, but it does not have the form I# for

any model I of D;.
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The following example shows that the assertion of Proposition 6 would be
incorrect without the second condition. Take D to be
caused p if ¢
exogenous g,
where p and ¢ are statically determined fluent constants, and let R = {p}. Then D,

is

0:p <= 0:¢q
l:p <= 1:¢
0:g <= 0:¢q
l:g <= 1:¢q
-0:qg <= —0:q
-l:qg <= —1l:q

and DFE is

p <= 0:q

p <= l:q
0:q <= 0:¢q
l:qg <= 1:¢q
—0:q <= —0:q
-1l:q <= —1l:q.

The interpretation {p = t,0:q = f,1:q = t} is a model of sz, but it does not have

the form I® for any model I of D;.

6.2.7 Action Attributes

Syntactically an attribute is a non-Boolean exogenous action constant. The domain

of every attribute of an action includes the special value None, which the attribute
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is required to take if and only if the action is not executed. For this purpose we
postulate

caused L if T after (attr=None) =a (6.21)

for every attribute attr of action a.

An expression of the form
always F

in C+ stands for

caused L if T after F.

Thus (6.21) can be abbreviated as
always (attr = None) = a.

Note that this treatment of attributes was not possible in C, since every

action constant in C was Boolean.

6.3 Comparison with ADL

To clarify the relation of C+ to the language ADL mentioned in Section 2.4, we show
how Pednault’s idea of “update conditions” can be incorporated into the syntactic
framework of Section 6.2.1.

As a preliminary step, consider a multi-valued propositional signature o
whose constants have the same domain Dom. The elements of Dom will be called
values. The concept of a formula of a signature o can be extended as follows. A
term is a constant of o, a value, or a variable (from a fixed infinitely countable

set). An extended atom is an expression of the form ¢ = v where ¢ is a term and
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v is a value. Extended formulas are formed from atoms using propositional con-
nectives and quantifiers, as in first-order logic. We will sometimes identify a closed
extended formula F' with the formula in the sense of Section 6.1.1 that is obtained
from F' as follows: first, eliminate from F' all quantifiers by replacing each subfor-
mula of the form VzG(z) with A, G(v), where v ranges over Dom, and each JzG(x)
with \/, G(v); second, replace all occurrences of atoms of the form v =v with T,
and all occurrences of atoms of the form v = w, where v is a value different from
w, with 1. This convention allows us, for instance, to talk about the satisfaction
relation between interpretations of o and closed extended formulas.

Consider a multi-valued signature ¢ partitioned into fluent constants of* and
action constants ¢, such that all fluent constants have the same domain, and all

action constants are Boolean. An ADL action description consists of

e a closed extended formula Precond® of signature of! for every action con-

stant a, and

e an extended formula Update?(z) of signature /!, with no free variables other

than x, for every action constant a and every fluent constant c.

An ADL action description is consistent if, for every action constant a, every fluent

constant ¢, and every pair of distinct values v and w, formula Precond® entails
—(Updatel(v) A Updateg(w)).

Let D be a consistent ADL action description, s and s’ interpretations of o,

and a an action constant. We say that s’ is the result of executing a in s according
to D if

s = Precond®
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and, for every fluent constant c,

v if s = Updatel(v),
s'(c) =

s(c) if s = -3z Updatel(x).
Now we will define a translation from this version of ADL into C+. In the C+
counterpart of an ADL action description D, all fluent constants of D are treated

as simple. The propositions of this C+ action description are

inertial ¢
exogenous a
(6.22)

nonexecutable a if =Precond®

a causes c=v if Updatel(v)

for every fluent constant ¢, action constant a, and value v.
In the following theorem, we identify a Boolean action constant e with the

event that maps e to t and maps every other action constant to f.

Theorem 1 For any consistent ADL action description D, any interpretations s, s'

!

of oft, and any e € 0%, §' is the result of executing e in s according to D iff

transition (s, e,s') is a transition of the counterpart of D in language C+.

The version of ADL described above is significantly less expressive than C+.
ADL is mapped here into the subset of C+ that includes no statically determined
fluent constants; it has neither concurrent actions nor non-inertial fluents; there are
no static laws or action dynamic laws in it, and consequently it does not solve the

ramification problem.
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6.4 Eliminating Multi-valued Constants

In fact, the extension of causal logic by multi-valued constants described in this
chapter is not essential in the sense that multi-valued constants can be eliminated
in favor of Boolean constants: we can replace a multi-valued constant ¢ with a family
of Boolean constants, one for each element of Dom(c). In this section we show how
this idea applies to multi-valued formulas and then extend it to multi-valued causal

theories and to C+.

6.4.1 Eliminating Multi-valued Constants from Formulas

Begin with a multi-valued propositional signature o, and a constant ¢ € 0. By o,
we denote the signature obtained from o by replacing constant ¢ with Boolean
constants ¢(v) for all v € Dom(e).

Let T be a set of formulas of signature o, and I a set of formulas of sig-
nature o.. We will say that I correctly reduces ¢ in T' (to a family of Boolean
constants) if the following holds: an interpretation of o, is a model of I" iff it
corresponds to a model of I

Let elim,. be the formula

V@)=t A N (c(v)=FfVc(v')=f). (6.23)
v v
Notice that the models of elim,. are precisely the interpretations of o. that corre-
spond to an interpretation of o.

For any formula F of o, by F. we denote the formula obtained from F' by

replacing each occurrence of an atom ¢=wv with ¢(v) =t. The elimination of ¢ from T’

is the set of formulas {F, : F € I'} U {elim.}.
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Proposition 7 For any set I' of formulas and any constant c, the elimination of c

from T correctly reduces c in T.

6.4.2 Eliminating Multi-valued Constants from Causal Theories

Begin with a causal theory T" whose signature is o, and a constant ¢ € . We under-
stand the notation o, as in the previous section. We will say that a causal theory T"
with signature o. correctly reduces ¢ in T (to a family of Boolean constants) if the
following holds: an interpretation of o, is a model of T" iff it corresponds to a model

of T.

General Elimination Method for Causal Theories

The general elimination of ¢ from T is the causal theory with signature o, obtained
by replacing each occurrence of an atom ¢=wv in T with ¢(v) =t, and adding the

causal rule

elim, <= T. (6.24)

Proposition 8 For any causal theory T' and any constant c, the general elimination

of ¢ from T correctly reduces ¢ in T'.

A drawback of this simple elimination method is that rule (6.24) is not defi-
nite. For this reason, even in application to a definite theory, this process leads to
a theory that is not definite. Since definiteness is useful, we next introduce another

elimination method that preserves it.
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Definite Elimination Method for Causal Theories

The definite elimination of ¢ from T is the causal theory with signature o, obtained
by replacing each occurrence of an atom ¢=wv in T with ¢(v) =t, and adding the
causal rules

c(v')=f<=c(v)=t (6.25)

for all v,v" € Dom(c) such that v # v, and also adding
L<= New)=f. (6.26)
v

Proposition 9 For any causal theory T and any constant ¢ such that (i) Dom (c)
has at least two elements, and (ii) every head in which ¢ occurs is an atom, the
definite elimination of ¢ from T correctly reduces ¢ in T.

6.4.3 Eliminating Multi-valued Constants from C+

A multi-valued constant in an action description can be replaced by a family of
Boolean constants using methods similar to those introduced for causal theories.
We will say that an action description D’ with signature o, correctly reduces

¢ in D (to a family of Boolean fluent constants) if the following holds.
e s is a state of D iff s’ is a state of D'.
e (s,e,s1) is a transition of D iff (s', €', s|) is a transition of D'.

General Elimination Method for Action Descriptions

The general elimination of a fluent or action constant ¢ from D is the action descrip-

tion with the signature o, obtained by replacing each occurrence of an atom c=wv
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in D with ¢(v)=t, and adding the static law

caused elim. if T . (6.27)

Proposition 10 For any action description D and any constant c, the general
elimination of ¢ from D correctly reduces ¢ in D.
Definite Elimination Method for Action Descriptions

The definite elimination of a constant ¢ from D is the action description with action

act

¢t and fluent symbols af obtained by replacing each occurrence of an

symbols o

atom c=v in D with ¢(v)=t, and adding the causal laws
caused c(v')=fif c(v)=t (6.28)
for all v,v" € Dom(c) such that v # v, and also adding the causal law
caused L if /\c(v):f. (6.29)
v

Proposition 11 For any action description D and any constant ¢ such that (i)
Dom(c) has at least two elements, and (ii) any head in which ¢ occurs is an atom,

the definite elimination of ¢ from D correctly reduces ¢ in D.

6.5 CCALc 2.0

We have redesigned and reimplemented CCALC according to the extensions of the

causal logic and C+ described above. The new CCALC is available at

http: //www.cs.utexas.edu/users/tag/ccalc/ .
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The input language of the new CCALC provides a convenient and concise syntax
for describing action descriptions in C+4. The new version of CCALC has been
successfully applied to challenging problems in the theory of commonsense knowl-
edge [Campbell and Lifschitz, 2003], [Akman et al., 2004] and to the formalization
of multi-agent computational systems [Artikis et al., 2003a; Artikis et al., 2003b;
Chopra and Singh, 2003].

Compare Figures 4.3—4.5 with Figures 6.1—6.3, a description of the monkey
and bananas domain in the language of the new CCALC.

Constant declarations are now divided into two parts: object declarations
and constant declarations. Object declarations define the extents of sorts; constant
declarations define fluent and action symbols, along with the values to which the
symbols can be mapped. The set of values is specified in parentheses, as in the
expression

inertialFluent(location).
The declaration
onBox ,hasBananas :: inertialFluent
is understood as shorthand for
onBox,hasBananas :: inertialFluent (Boolean)

Notice that we declare the actions exogenousAction to distinguish them

from non-exogenous actions. Upon reading the declaration
¢ :: exogenousAction,

CCALc adds

exogenous ¢
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% File: ’monkey’

:— sorts
thing;
location.

:— objects
monkey,bananas,box
11,12,13

:— variables
L

:— constants
loc(thing)
onBox ,hasBananas

walk(location),
pushBox(location),
climbOn,

climb0Off,
graspBananas

:: thing;

location.

location.

inertialFluent (location) ;
inertialFluent;

: exogenousAction.

Figure 6.1: Monkey and Bananas in the language of the new CCALC—Declarations

to the action description automatically.

Since we can represent the location of an object using location-valued fluent

symbols, we do not need to write rules such as (4.14) and (4.15).

The line

pushBox (L) causes walk(L)

is the action dynamic law that stands for

caused walk(L) if pushBox(L).
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walk(L) causes loc(monkey)=L.
nonexecutable walk(L) if loc(monkey)=L.
nonexecutable walk(L) if onBox.

pushBox (L) causes loc(box)=L.
pushBox (L) causes walk(L).
nonexecutable pushBox(L) if loc(monkey)\=loc (box).

climbOn causes onBox.
nonexecutable climbOn if loc(M)\=loc(box).
nonexecutable climbOn if onBox.

climb0ff causes -onBox.
nonexecutable climb0ff if -onBox.

graspBananas causes hasBananas.

nonexecutable graspBananas if hasBananas.

nonexecutable graspBananas if loc(monkey)\=loc(bananas) .
nonexecutable graspBananas if -onBox.

noconcurrency.

Figure 6.2: Monkey and Bananas in the language of the new CCALCc—Causal laws
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:- query

maxstep :: 2..4;

0: loc(alice)=11,
loc(bananas)=12,
loc(box)=13;

maxstep: hasBananas(alice).

Figure 6.3: Monkey and Bananas in the language of the new CCALC—Planning
problem

Due to this law saying that pushing the box involves walking, we do not need to
repeat the description of the effects and preconditions of pushing which are also the
effects and preconditions of walking.

The expression
loc (monkey) \=1loc (box)
(Recall that \= is the ASCII representation of #) is shorthand for
-[\/L | loc(monkey)=L & loc(box)=L].

Figure 6.3 is a counterpart of Figure 4.5 in the language of the new CCALC. A
query consists of two components. One is an integer, called maxstep, that specifies
the length of the paths the query is about. It is similar to the maximum time
implicitly specified in the goal condition of Figure 4.5; its value determines how to
turn the given action description into a sequence of causal theories. The second
component is a set of formulas constraining the paths of interest.

Figure 6.4 is a description of the blocks world in the language of the new
CCArc. Function constant loc represents an operation that turns a block into a

fluent. This fluent is inertial, and its value is a location. The operation denoted
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by move turns a block into an action—moving that block. Operation destination
gives an attribute of that action—the destination of the move. Upon processing the
declaration of an attribute attr, CCALC automatically includes (6.21).

In the last causal law of Figure 6.4, a “where” clause, containing a test,
is appended. The clause instructs CCALC to limit grounding to instances of the
schematic variables that satisfy the given test, which produces less number of
grounded instances: in all instances of the last causal law that CCALC generates, B
and B1 are different from each other.

Figure 6.5 shows a query on the domain description in Figure 6.4, a coun-
terpart for the query from Figure 4.7.

Figure 6.6 is an extension of Figure 6.4. The word sdFluent in the declara-
tion of
neighbor(block,block) stands for “statically determined fluent constant.” Recall
that ‘++’ is the ASCII representation of ‘V’ in the language of CCALC.

More features of the language of the new CCALC will be presented in Sec-

tion 7.3.

6.6 Proving the Unsolvability of Planning Problems in

CCALC

For a planning problem described by a query with its maximum number of steps
specified, CCALC can find, in principle, a plan of that length if such a plan exists; if
it determines that a plan of the given length does not exist, it answers no. However,

such queries cannot help us establish that a problem cannot be solved in any number
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% File: ’bw’

:— sorts
location >> block.

:— objects

table :: location.
:— constants

loc(block) :: inertialFluent(location) ;

move (block) :: action;

destination(block) :: attribute(location) of move(block).
:— variables

B,B1 :: block;

L :: location.

% effect of moving a block
move (B) causes loc(B)=L if destination(B)=L.

% a block can be moved only when it is clear
nonexecutable move(B) if loc(B1)=B.

% a block can be moved only to a position that is clear
nonexecutable move (B)
if destination(B)=loc(Bl) & destination(B)\=table.

% a block can’t be moved onto a block that is being moved also
nonexecutable move(B) & move(B1l) if destination(B)=B1.

% two blocks can’t be on the same block at the same time
constraint loc(B)=loc(B1l) ->> loc(B)=table where B @< B1.

Figure 6.4: Blocks World in the language of the new CCALC
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% File: ’bw-test’

:— include ’bw’.

:— objects
a,b,c,d :: block.
:- query
% initial condition goal
b
) a ¢ b
b b d a ¢

% __________________

maxstep :: 1..100;

0: loc(a)=b, loc(b)=table, loc(c)=d, loc(d)=table;
maxstep: loc(a)=table, loc(b)=a, loc(c)=table, loc(d)=c.

Figure 6.5: A query in the Blocks World with four blocks
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% File: ’bw-neighbor’
:— include ’bw’.

:- constants
neighbor(block,block) :: sdFluent.

:— variables
B, B1 :: block;
L :: location.

% definition of neighbor

caused neighbor(B,B1) if loc(B)=B1 ++ loc(B1)=B.
default -neighbor(B,B1).

Figure 6.6: Definition of neighbor

of steps. For instance, every elaboration of MCP formalized in [Lifschitz, 2000] has
a solution, so that by specifying the number of steps to try, CCALC found one.
However, some other elaborations in the McCarthy’s list are not solvable. For
example, one elaboration asks whether it is possible to have a solution if there are
four missionaries and four cannibals instead of three in each group.

A well-known general method of using invariants helps us prove the unsolv-
ability of planning problems. As discussed in [McCarthy, 1998], we need to check

the following three conditions given a property I of states:
e the initial state satisfies I,
e every state that satisfies I is not a goal state,
e in every transition (s, e, s') where s satisfies I, s’ also satisfies I.
In terms of transition systems, the conditions ensure that every state that is
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reachable from the initial state satisfies the invariant but the goal state does not,
so that it is not possible to reach a goal state from the initial state. For instance,
an invariant for the unsolvable problem mentioned above is that either the boat is
on the first bank on which there are more than 2 missionaries, or the boat is on
the second bank on which there are less than 3 missionaries. Once a property [
is selected, checking that it satisfies the three conditions above can be reduced to
the satisfiability problem. CCALC provides a convenient syntax for doing this as
shown in Figure 6.7. The line maxstep :: any instructs CCALC that this query
is about unsolvability. The next two lines describe the initial and the goal states.
An invariant is specified with invariant:.

CCALC calls a SAT solver three times to check each of these conditions (Init
is the formula specified with 0: in the query and Goal is the formula specified with

maxstep:):

(7) if Comp(Dg) U 0:Init U 0:1 is satisfiable;
(13) if Comp(Dy) U 0:I U 0:G is unsatisfiable;
(¢i7) if Comp(Dy) U 0:1 U —(1:I) is unsatisfiable.

In checking each of conditions (i7) and (¢i7), if the theory is satisfiable, then a SAT

solver returns a model, which is a counterexample to the claim.

6.7 Proofs

The proof of Proposition 4 is given in Section 11.2.

Proposition 1 The models of a definite causal theory are precisely the models of
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% File: ’jmc3-test’

:— query
maxstep :: any;
0: num(mi,bankl)=4, num(ca,bankl)=4;
maxstep: num(mi,bank2)=4 & num(ca,bank2)=4;
invariant:
num(mi,bankl)+num(mi,bank2)=4 & num(ca,bankl)+num(ca,bank2)=4
& (loc(boat)=bankl & num(mi,bankl)>2 ++
loc(boat)=bank2 & num(mi,bank2)<3).

Figure 6.7: Four missionaries and four cannibals—Unsolvable problem
its completion.

Proof Let T be a definite causal theory. Assume that I is a model of T'. It follows
that, for every rule of the form | <= F in T, I does not satisfy F', and thus satisfies
every formula in the completion of T' that is obtained from a constraint. It remains
to show that I satisfies the completion formula for every nontrivial atom A. Consider
two cases.

Case 1: A € T!. Since T is definite and I = T!, T is a set of atoms true
in I. So I satisfies A, which is the left-hand side of the completion formula for A.
Since A € T7, there is a rule with head A whose body is true in I. Hence I also
satisfies the right-hand side of the completion formula for A.

Case 2: A ¢ T!. So there is no rule in T with head A whose body is true in I,
which shows that I does not satisfy the right-hand side of the completion formula
for A. Tt remains to show that I = A. Since T is a set of atoms whose unique
model is I, every nontrivial atom true in I belongs to 7. Since A is a nontrivial

atom that does not belong to T, we can conclude that A is false in I.
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Proof in the other direction is similar. |1

Proposition 2 For any transition (s,e,s'), s and s' are states.

Proof Let X =0:5U0:eU1:s’ be a model of D;. We need to show that 0:s and
0:s' are models of Dy. By i:0f! we denote the set of all constants of the form i:c
where ¢ € o7!.

To show that 0 : s is a model of Dy, observe that Dg is the part of D
consisting of rules (6.10) for static laws with ¢ = 0 and rules (6.12). The reduct
D is a set of formulas over 0: of! and every formula from Di¥ with a constant
from 0:0f! belongs to DF. Since X is the unique model of D{f, we can conclude
that 0:s is the unique model of D§. But D = DJ**, so that 0:s is a model of Dj.

Next we show that 0:s’ is a model of Dy. Let T be the part of D; consisting
of rules (6.10) for static laws with ¢ = 1, rules (6.10) for action dynamic laws with
i = 0, and rules (6.11) with ¢ = 0. Let T = TX. It is straightforward to verify that T
is a set of formulas over 1:0/! and that every formula from DX with a constant from
1:0/! belongs to I'. Since X is the unique model of Df(, we can conclude that 1:s' is
the unique model of T'. Let Ty be the set of formulas over 0:0/! obtained from T by
replacing each time stamp 1: with 0:. Then 0:5s’ is the unique model of I'y. We need
to show that 0:s' is also the unique model of Dg’sl. Observe first that every formula
in Dg’sl that does not belong to I'g is an atom from 0: s’ that came to the reduct
from one of the rules (6.12) of Dy. Hence 0: s’ satisfies Dg’sl. Due to the presence
of rules (6.12) in Dy, any interpretation that satisfies Dg’sl must agree with 0:s’ on
simple fluent constants. On the other hand, the formulas in I'y that do not belong

to Dg’sl do not contain statically determined constants, because their counterparts
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in I' came from the heads of dynamic laws. Consequently any interpretation that
satisfies Dg’sl must agree with 0: s’ on statically determined fluent constants. It

follows that 0:s’ is the unique model of Dg’sl, so that 0:s’ is a model of Dg. 1

Proposition 3 For any m > 0, an interpretation (6.13) of the signature of Dy, is
a model of D, iff

<80760;51a61a .. .,Sm,1,6m7178m>

s a history of D.

Proof We understand the notation i:of! as in the previous proof, and the meaning
of i:0% is similar.

Take a model X of D,,, represent it in the form (6.13), and take any
j€{0,...,m —1}. We need to show that 0:s; UO:e; Ul:sj;q is a model of
D;.

Let T be the subset of D,, consisting of rules (6.10) for static laws with
i = j+ 1, rules (6.10) for action dynamic laws with ¢ = j, and rules (6.11) with
i = j. Let I' = TX. It is straightforward to verify that I' is a set of formulas

over j:o0%t U j+1:0f!, and that every formula from DX with a constant from

X

7, it follows

j:o%t U j+1:0f belongs to I'. Since X is the unique model of D
that j:e; U j+1:s;41 is the unique model of I'. Let I'y be the set of formulas over
0:0%t U 1:0/! obtained from I' by replacing j: with 0: and j + 1: with 1:. Then
0:e; U 1:s;41 is the only interpretation of 0:0%t U 1:07! that satisfies T'y.

The proof of the previous proposition is easily adapted to show that s; is a

state, which is to say that 0:s; is a model of Dy. That is, 0:s; is the unique model

O:S]' o O:SJ‘U O:EJ'U 1:5j+1
of Dy’ = D, .
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0

. 157U 0:e;U 1:s; 0:s;U O:e5U 1:s;
It remains to observe that D™/~ "7~ "ty Ty =D, "7 " g0 that

0:5;U0:ej Ul:s;yq is the unique model of this set of formulas, and, consequently,
a model of Dj.

For the other direction, assume that, for each j € {0,...,m — 1}, the triple
(sj,€j,8;41) is a transition. We need to show that the corresponding interpreta-
tion X of form (4.13) is a model of Dyp,.

For each j, let T; be the subset of Dy, consisting of rules (6.10) for static
laws with ¢ = j + 1, rules (6.10) for action dynamic laws with ¢ = j, and rules
(6.11) with i = j. Notice that Dy, = Dy UTo U--- U Ty, 1. Let T'j = T;¥. Of course
DX =D UTyU- Ul 1.

For any such j, since (sj,ej, sj41) is a transition, 0:s; UO:e; U 1:s;; is the

unique model of of

0:s; U O:ej U Lisjta o 0:s; 0:s; U 0:ej U 1isj41
D) = Dy UTy .

Reasoning much as before, it follows that 0:e; U1l:sj,1 is the unique model of
T((,):sj 0 DS g s equivalent to saying that j:e; U j+1:s;,1 is the unique
model of
Tj‘:sj U jieg U jtlisjen _ ;.
From the previous proposition, we can conclude also that 0:s¢ is the unique
model of DE.

Finally, since DX = D(),( ULgU---UIl,_1, we can conclude that X is the

unique model of DX and thus a model of D,,. 1

Proposition 5
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(a) Let D be an action description, L a static causal law, and ab a Boolean stati-
cally determined fluent. If ab does not occur in the heads of any causal laws of
D, then the transition system described by D U {L unless ab} is ezactly the

transition system described by D U {L} U {caused —ab}.

(b) Let D be an action description, L a dynamic causal law, and ab a Boolean
action constant. If ab does not occur in the heads of any causal laws of D, then
the transition system described by D U {L unless ab} is ezactly the transition

system described by D U {L} U {caused —ab after T}.

Proof

(a) First we will check that the two transition systems have the same set of states,
that is, (D U {L unless ab})q and (D U{L} U{caused —ab})y have the same
models. Let X be a model of (D U {L unless ab}). i.e.,

Dy
U (caused F if G A —ab)g

U (caused —ab if —ab)g

where L is caused F' if G.

It holds that X (0 : ab) = f. Otherwise (D U {L unless ab}){ does not
contain 0: ab and consequently it contradicts that X is the unique model of

(DU {L unless ab}){.

It is easy to see that

(D U{L unless ab})¥ DE U{L}f U{-0:ab}

DF U{L}¥ U{caused —ab}{

(DU{L} U {caused —ab}){.
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Proof in the other direction is similar.

The same reasoning applies to show that the transition systems have the same
edges, i.e., (D U{L unless ab}); and (D U {L} U {caused —ab}); have the

same models.

(b) The proof is similar to the proof of (a).

Proposition 6 If
(i) every constant in R is statically determined, and

(ii) for every causal law in D that contains a constant from R in the head, all

constants occurring in this law belong to R,

then the mapping I — I® is a 1-1 correspondence between the models of Dy, and

the models of DE.

Proof Using the fact that s'(c) = s(c) for every ¢ € R and for every transition
(s,e,s'), it is easy to verify that if I is a model of D,,, then I'? is a model of DE. In
other words, the mapping I — I is a function from the set of models of D,, into
the set of models of DE. Tt is also easy to see that the function is 1-1. It remains
to show that the function is onto.

Take any model J of DE. Define the interpretation I of the signature of D,

as follows:

J(e) ifc€eR,
I(i:c) =

J(i:c) otherwise.
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Then

I(0:¢c) = --- = I(m:c) (6.30)

for all ¢ € R, and I® = J. We will check that I is a model of D,,, that is to say,
the only model of D! .

For any formula F of the signature of D,,, let F'® be the result of dropping
the time stamps in front of all constants from R in F'. It is easy to see that [ satisfies

a formula F iff J satisfies F2. Tt follows that
(DEY —{FE . F e D!} (6.31)

Since J is a model of (DE)7 it follows that I is a model of D} . It remains to show
that D! has no other models.

Take any model I; of DL. By (6.31), I is a model of (DE)7. Since J is
the only model of (DE)’ IE = J. Let iy be a number from {0,...,m}. Define the

interpretation I of the signature of D,, as follows:

Li(ig:c) ifc€R,
Iy(i:c) =

Ii(i:c) otherwise.

We want to show that I is a model of D as well. Since I; is a model of D! |
I, satisfies all formulas from D/ that do not contain constants from R. Consider
a formula from D/ that contains at least one constant from R. Since all constants
in R are statically determined, this formula has the form ¢ : F' for some static causal
law (6.8) in D and some time stamp ¢ such that I satisfies ¢ : G. By condition
(ii), all constants occurring in F'; G belong to R. For every constant ¢ from R, I
assigns to i:c and ig:c the same value; consequently, I satisfies ¢y : G, so that ig : F'

belongs to D,In. It follows that I; satisfies ig : F'. Since Iy does not differ from I;
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on the constants occurring in this formula, it follows that I satisfies ig : F'. For
every constant ¢ from R, I assigns to ¢:c and ¢y :c the same value; consequently, Io
satisfies i : F. We have established that I indeed satisfies DL .

In view of this fact, it follows from (6.31) that IX satisfies (DE)’. We can
conclude that I = J. So, for every ¢ € R, I,(0:¢) = J(c), and consequently

I1(ig:c) = J(c). Since iy was arbitrary, we have proved that
Ii(0:¢) =--- =I1(m:c) (6.32)

for every ¢ € R. And since I® = J = If it follows from (6.30) and (6.32) that

I; = I. This shows that D! has no models other than I. 1§

Theorem 1 For any consistent ADL action description D, any interpretations s, s'

!

of oft, and any e € 0%, s' is the result of executing e in s according to D iff

transition (s, e, s') is a transition of the counterpart of D in language C+.

Proof Recall that (6.22) stands for

caused c=v if c=v after c=v
caused a=t if a=t

caused a=fif a=f

caused | if T after a=t A =Precond®

caused c=v if T after a=t A Updatel (v).

(Left-to-right) Assume that s’ is the result of executing e in s according
to D. For each fluent constant ¢, the formula 0:c=s(c) is in D?”UO:GUI:S’, and the

0:5U0:eU1:s’
Dy (

formula 1:c¢=s(c) is in consider two cases, depending on whether

s |= Updatel(v) for some v); for each action constant a, the formula 0:a=e(a) is in
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DYisW0:eUlis’s 16 other formulas are in the reduct. Consequently, 0: sU0:eU1: s'

is the only interpretation satisfying the reduct, i.e., (s,e, s’) is a transition of D.
(Right-to-left) Assume that (s, e, s') is a transition of D. Then s = Precond®,

D?:sUO:eUl:s’

because otherwise | would be in Take a fluent constant c. If, for

some v, s |= Update®(v), then 1:c=uv is in DY$Y0eULs" 56 that s'(¢) = v. If, on the
other hand, s |= =3z Updatel(z) then s'(c) = s(c). Indeed, suppose that s'(c) # s(c).
Then no formula of the form 1:¢=wv is in D0V’ But |Dom| > 2, because

s(c),s'(c) € Dom. Consequently, 1:s' cannot be the only interpretation satisfying

all formulas of the form 1:¢=v in DsU0eUl:s' g

For each interpretation I of o there is a corresponding interpretation I, of o,

such that f or all atoms A common to both signatures
IEA ff I.LEA,

and for all v € Dom(c)

I'=Ec=v ff I.Ec(v)=t.
The following lemma is easily proved by structural induction.
Lemma 1 For any formula F and any interpretation I, I = F iff I. = F, .
Proposition 7 For any set I' of formulas and any constant ¢, the elimination of c
from I' correctly reduces c in I,

Proof Follows from Lemma 1 and the fact that the models of elim,. are precisely

the interpretations of o. that correspond to an interpretation of 0. 1

100



Proposition 8 For any causal theory T' and any constant c, the general elimination

of ¢ from T correctly reduces c in T'.

Proof Let T, be the general elimination of ¢ from T'. Because of (6.24), any model
of T!, for any interpretation I of 0., corresponds to an interpretation of o. Consider
any interpretations I, J of o, and the corresponding interpretations I., J. of o.. It

is easy to verify (using Lemma 1) that
J=T1! iff J =T,

The result follows easily from these observations. 1

Proposition 9 For any causal theory T and any constant ¢ such that (i) Dom (c)
has at least two elements, and (ii) every head in which ¢ occurs is an atom, the

definite elimination of ¢ from T correctly reduces ¢ in T.
We begin the proof of Proposition 9 with a lemma.

Lemma 2 Let T, be the definite elimination of a constant ¢ from a causal theory T.
For any interpretations I, J of o, and the corresponding interpretations 1., J. of o,

if I(c)=J(c), then J |= TT iff J. = Tl-.

Proof From Lemma 1, Tl ={F, : FeT!} U {c(v)=f:v#1I(c)}.
(Left-to-right) Assume that J = T!. By Lemma 1, J. = {F, : FeT!}.

Since I(c)=J(c), J. = c(v)=f for every v different from I(c). Therefore J. = Te.
(Right-to-left) Assume that J, = Tc. Then J.={F,: F € T!}, and by

Lemma 1, J = T!. 1
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Proof of Proposition 9 Let T, be the definite elimination of ¢ from 7. We must
show that an interpretation is a model of T, iff it corresponds to a model of T'.

(Left-to-right) For any interpretation I of o., if T is satisfiable, then
by (6.26) at least one atom c(v)=t belongs to I, and by (6.25) at most one such
atom belongs to I. It follows that any model of 7, corresponds to an interpretation
of 0. Assume that I, is a model of T,. By Lemma 2, I |= T. Tt remains to show
that it is the only one. Since I, is the unique model of T¢, it follows that T/ entails
c(v) =t for v € Dom(c) such that I(¢) = v. Since any consequent of 7" in which ¢
occurs is an atom, so is any consequent of T, in which ¢(v) occurs. We can conclude
that c¢(v) =t belongs to Tf. By Lemma 1, it follows that c=v is in T!. Let J be
any model of T!. Then J |= c=wv, and consequently I(c) = J(c). By Lemma 2, it
follows that J, = TCIC. Since I, is the unique model of TCIC, J.=1.. Consequently
I=J. We proved that I is the only model of T".

(Right-to-left) Assume that I is a model of T. By Lemma 2, I, = Tlc. Since
any formula of T in which ¢ occurs must be an atom, and Dom/(c) has at least two
elements, we can conclude that ¢c=v is in T, where v is the element of Dom(c)
such that I = c=v. It follows by Lemma 1 that c(v)=t is in T)c. Moreover,
by (6.25), c(v')=f is in T for all v' € Dom(c) such that v' # v. So any model
of TCIC corresponds to an interpretation of o. Let J be any interpretation such that
Je |= T, Since Tl contains exactly one formula of the form c(v)=t and contains
c(v')=f for all v' € Dom(c) such that v’ # v, it follows that I.(c(v))=J.(c(v)) for
all v € Dom(c), or I(c)=J(c). By Lemma 2, it follows that J = TT. Since I is a
model of T, it follows that I=J. Consequently I.=J.. We proved that I. is the

only model of TJc. 1
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Propositions 10 and 11 follow from Propositions 8 and 9 each.
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Chapter 7

Representing the Zoo orld in
the Language of the Causal

Calculator

7.1 Introduction

Research on formalizing commonsense knowledge has been mostly focused on “toy
problems,” which can be formalized by, say, several lines of axioms, as in the Monkey
and Bananas problem. On the other hand, commonsense knowledge that humans
have includes many thousands or maybe millions of facts. In this sense we are not
close to the goal yet.

The work described in this chapter is intermediate between these two. We
formalize a domain which requires several pages of axioms to formalize. Thus testing

the the formalization by hand is not feasible, so that an automated system such as
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CCALC is essential to test the formalization.

The test domain discussed in this chapter, the Zoo World, is the one of the
challenge problems proposed by Erik Sandewall in his Logic Modelling Workshop
(LMW)!—an environment for communicating axiomatizations of action domains of
nontrivial size. The Zoo World consists of several cages and the exterior, gates
between them, and animals of several species, including humans. Actions in this
domain include moving within and between cages, opening and closing gates, and
mounting and riding animals. More details can be found in the next section, which
contains extensive quotes from the LMW descriptions of the domain.

In accordance with our goal, we have attempted to translate these descrip-
tions into the input language of CCALC as closely as we could, including the elements
that look somewhat arbitrary. One such element in the LMW description of the Zoo
World has to do with the “occupancy restriction” —there can be at most one large
animal in each position. On the one hand, LMW specifies that this restriction holds
even dynamically: a concurrent move, where one animal moves into a position at
the same time as another animal moves out of it, is only possible if at least one
of the animals is small. On the other hand, the specification tells us that an at-
tempt to mount an animal fails if the animal moves at the same time, in which case
“the result of the action is that the human moves to the position where the animal
was.” Thus a failed mount is an exception to the occupancy restriction. In view
of this fact, the occupancy restriction has to be formalized as a defeasible dynamic
law. It is interesting to note that expressing such laws in C+ calls for the use of

non-exogenous action constants—a new feature of this language, not available in its

"http://www.ida.liu.se/ext/etai/lmu/ .
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ancestor C.
We present our formalization of the Zoo World along with detailed comments

in Section 7.4, and show how we used CCALC to test it in Section 7.5.

7.2 The Description of the Zoo World

The following is the exact LMW description of the Zoo World that we want to

formalize:

The ZOO is a scenario world containing the main ingredients of a clas-
sical zoo: cages, animals in the cages, gates between two cages as well
as gates between a cage and the exterior. In the ZOO world there are
animals of several species, including humans. Actions in the world may
include movement within and between cages, opening and closing gates,
feeding the animals, one animal killing and eating another, riding ani-

mals, etc.

... A finite surface area consists of a large number of positions. For ex-
ample, one may let each position be a square, so that the entire area is
like a checkerboard. However, the exact shape of the positions is not sup-
posed to be characterized, and the number of neighbors of each position
is left open, except that each position must have at least one neighbor.
The neighbor relation is symmetric, of course, and the transitive closure

of the neighbor relation reaches all positions.

One designated location is called the outside; all other locations are

called cages... The distinction between a ‘large’ number of positions
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and a ‘small’ number of locations suggests in particular that locations
can be individually named under a unique names assumption, that every
location is thus named, but on the other hand that at most a few of the
positions are named, and that the number of positions is left unspecified

in every scenario.

Each position is included in exactly one location. Informally, each cage
as well as the outside consists of a set of positions, viewed for example
as tiles on the floor. Two locations are neighbors if there is one position

in each that are neighbors.

The scenario also contains a small number (in the same sense as above) of
gates. Informally, these are to be thought of as gates that can be opened
and closed, and that allow passage between a cage and the outside, or
between two cages. Formally, each gate is associated with exactly two
positions that are said to be at its sides, and these positions must belong

to different locations.

... Some designated animals will need to be named, but the set of animals
in a scenario may be large, and it may not be possible to know them all

or to name them all. Animals may be born and may die off over time.

Each animal belongs to exactly one of a number of species. All the
species are named and explicitly known. The membership of an animal
in a species does not change over time. The species human is always

defined, and there is at least one human-species animal in each scenario.

Each animal also has the boolean properties large and adult. Some
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species are large, some are not. Adult members of large species are large

animals; all other animals are small (non-large).

Each animal has a position at each point in time. Two large animals can
not occupy the same position, except if one of them rides on the other

(see below).

... Animals can move. In one unit of time, an animal can move to one
of the positions adjacent to its present one, or stay in the position where
it is. Moves to non-adjacent positions are never possible. Movement is
only possible to positions within the same location (for example, within
the same cage), and between those two positions that are to the side of
the same gate, but only provided the gate is open. Several animals can

move at the same time.

Movement actions must also not violate the occupancy restriction: at
most one large animal in each position. This restriction also holds within
the duration of moves, in the sense that a concurrent move where animal
A moves into a position at the same time as animal B moves out of it,

is only possible if at least one of A and B is a small animal.

This means in particular that two large animals can not pass through
a gate at the same time (neither in the same direction nor opposite

directions).

... The following actions can be performed by animals. ..

e Move To Position. Can be performed by any animal, under the re-

strictions described above, plus the restriction that a human riding
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an animal can not perform the Move-To-Position action (compare

below).

e Open Gate. Can be performed by a human when it is located in a
position to the side of the gate, and has the effect that the gate is

then open until the next time a Close Gate action is performed.

e Close Gate. Can be performed by a human when it is located in a
position to the side of the gate, and has the effect that the gate is

closed until the next time an Open Gate action is performed.

e Mount Animal. Can be performed by a human mounting a large
animal, when the human is in a position adjacent to the position of
the animal. The action fails if the animal moves at the same time,
and in this case the result of the action is that the human moves to
the position where the animal was. If successful, the action results
in a state where the human rides the animal. This condition holds
until the human performs a Getoff action or the animal performs a
Throwoff action.

When a human rides an animal, the human can not perform the
Move action, and his position is the same as the animal’s position

while the animal moves.

e Getoff Animal to Position. Can be performed by a human riding
an animal, to a position adjacent to the animal’s present position
provided that the animal does not move at the same time. Fails if

the animal moves, and in this case the rider stays on the animal.

e Throwoff. Can be performed by an animal ridden by a human, and
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results in the human no longer riding the animal and ending in a
position adjacent to the animal’s present position. The action is
nondeterministic since the rider may end up in any such position.
If the resultant position is occupied by another large animal then

the human will result in riding that animal instead.

7.3 More on the Language of the Causal Calculator

Below we explain the features of the language of CCALC which have not been

explained in Section 6.5 but are used in the formalization of the Zoo World.

1. Rigid constants (Section 6.2.6) can be declared as in the following example.

:— constants

sp(animal) :: species.
Function constant sp represents an operation that turns an animal into its species.

2. The arguments of constants are supposed to be objects; when a constant appears
as an argument of another constant, the former is understood as the value of the

constant. For instance, the schema
nonexecutable move (ANML,pos (ANML))

(“an animal cannot move into its current position”) has the same meaning as
nonexecutable move (ANML,P) if pos(ANML)=P

where P is a position variable.

3. Macros can be declared as in the following example.
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% two locations are neighbors if there is one position in each
% that are neighbors
:— macros
neighborl (#1,#2) ->
((#1)\=(#2) & [\/P \/P1 | loc(P)=(#1) & loc(P1)=(#2)

& neighbor(P,P1)]).

(#1,#2... are parameters for macros.) Upon reading an input file, CCALC replaces
every occurrence of a pattern in the left-hand side of -> with the corresponding

instance of the right-hand side.

7.4 Formalization of the Zoo World

Our formalization of the Zoo World shown below is also available online?,

We distinguish between the general assumptions about the Zoo World quoted
in Section 7.2 above, and specific details, such as the “topography” of the zoo
(including the number of cages and gates), names of species other than human, and
so forth. We formalize here the general assumptions only, and leave these details
unspecified. A description of all the specifics has to be added to our formalization
to get an input file accepted by CCALC. The specific topography used in our
computational experiments is described in Section 7.5.

The annotation (1lmw) found in many comments below refers to the Logic

Modelling Workshop description of the Zoo World quoted in Section 7.2.

%%% Z00 LANDSCAPE %%%

2http://www.cs.utexas.edu/users/tag/ccalc/zoo/ .
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:- sorts
position;

location >> cage;

gate.

:— variables
P,P1 :: position;
L :: location;
C 11 cage;
G,G1 :: gate.

:— constants

% Each position is included in exactly one location (1lmw)

loc(position) :: location;
neighbor(position,position) :: boolean;
sidel(gate) :: position;
side2(gate) :: position;
opened(gate) :: inertialFluent.

default -neighbor(P,P1).

% Each position must have at least one neighbor (1lmw)
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constraint [\/P1 | neighbor(P,P1)].

% The neighbor relation is irreflexive

constraint -neighbor(P,P).

% The neighbor relation is symmetric (1lmw)

constraint neighbor(P,P1) ->> neighbor(P1,P).

:— objects
% One designated location is called the outside (1lmw)

outside :: location.

% All other locations are cages (1lmw)

constraint [\/C | L=C] where L\=outside.

% Two positions are the sides of a gate
:- constants

sides(position,position,gate) :: boolean.

caused sides(P,P1,G) if sidel(G)=P & side2(G)=P1.
caused sides(P,P1,G) if sidel1(G)=P1 & side2(G)=P.

default -sides(P,P1,G).

% Each gate is associated with exactly two positions that are said to be

% at its sides, and these positions must belong to different locations
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%  (QAmw)

constraint loc(sidel(G))\=loc(side2(G)).

(As in 2 of Section 7.3, the argument of loc is supposed to be an object,
not a constant. Here side1(G), side2(G) are understood to be the value

of each constant.)

% No two gates have the same two sides

constraint sides(P,P1,G) & sides(P,P1,G1) ->> G=G1.

% Two positions are neighbors if they are the sides of a gate

constraint sides(P,P1,G) ->> neighbor(P,P1).

% Two positions in different locations are neighbors only if they are the
% two sides of a gate

constraint loc(P)\=loc(P1) & neighbor(P,P1) ->> [\/G | sides(P,P1,G)].

%%% ANIMALS %%%

:— sorts
animal >> human;

species.

:— variables

ANML, ANML1 :: animal;
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H,H1 :: human;

SP :: species.

:— objects
% One of the species is human (1lmw)

humanSpecies :: species.

:- constants

% Each animal belongs to exactly one of a number of species (1lmw)

% Membership of an animal in a species does not change over time (lmw)
sp(animal) :: species;

% Some species are large, some are not (lmw)
largeSpecies(species) :: boolean;

% Each animal has a position at each point in time (lmw)
pos(animal) :: inertialFluent(position) ;

% Boolean property of animals (1lmw)

adult (animal) :: boolean;

mounted (human,animal) :: inertialFluent.

default largeSpecies(SP).

default adult(ANML).

% Humans are a species called humanSpecies
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caused sp(H)=humanSpecies.

constraint sp(ANML)=humanSpecies ->> [\/H | ANML=H].

!~ macros
% Adult members of large species are large animals (lmw)

large(#1) -> adult(#1) & largeSpecies(sp(#1)).

% There is at least one human-species animal in each scenario (lmw)

constraint [\/H | true].

% Two large animals can not occupy the same position, except if one of them
% rides on the other (lmw)
constraint pos(ANML)=pos(ANML1) & large(ANML) & large(ANML1)

->> [\/H | (H=ANML & mounted(H,ANML1)) ++

(H=ANML1 & mounted(H,ANML))] where ANML@<ANMLI1.
(@< is a fixed total order.)

%%’% CHANGING POSITION %%%

:— constants

accessible(position,position) :: sdFluent.

caused accessible(P,P1)
if neighbor(P,P1) & -[\/G | sides(P,P1,G) & -opened(G)].

default -accessible(P,P1).
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b
b
b

In one unit of time, an animal can move to one of the positions
accessible from its present one, or stay in the position where it is.

Moves to non-accessible positions are never possible (1lmw)

constraint pos(ANML)\=P1 after pos(ANML)=P & -(P=P1 ++ accessible(P,P1)).

b
b
b
b
b
b

(The proposition constraint F' after G is an abbreviation for caused L if —F after G.)

A concurrent move where animal A moves into a position at the same time
as animal B moves out of it, is only possible if at least one of A and
B is a small animal. (lmw)

Exceptions for (failed) mount actions and certain occurrences of
throwOff -- when thrown human ends up where another large animal was

(see the first two propositions in ’%%% ACTIONS %%%’)

constraint -(pos(ANML)=P & pos(ANML1)\=P)

b
b

after pos(ANML)\=P & pos(ANML1)=P & large(ANML) & large (ANML1)

unless ab(ANML) .

Two large animals cannot pass through a gate at the same time

(neither in the same direction nor opposite directions) (lmw)

constraint -(pos(ANML)=P1 & pos(ANML1)=P1)

after pos(ANML)=P & pos(ANML1)=P & sides(P,P1,G)

& large(ANML) & large(ANML1) where ANML@<ANML1.

constraint -(pos(ANML)=P & pos(ANML1)=P1)

after pos(ANML)=P1 & pos(ANML1)=P & sides(P,P1,G)

& large(ANML) & large(ANML1) where ANML@<ANML1.
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% While a gate is closing, an animal cannot pass through it
constraint -opened(G) ->> pos(ANML)\=P1

after pos(ANML)=P & sides(P,P1,G) & opened(G).

%%% ACTIONS %%%

:— variables

A,A1 :: exogenousAction.

:- constants
move (animal ,position),
open(human,gate),
close(human,gate),
mount (human,animal),
get0ff (human,animal,position),

throwOff (animal ,human) :: exogenousAction.

:- macros
% Action #1 is executed by animal #2
doneBy (#1,#2) ->
([\/P | #1==move(#2,P)] ++
[\/G | #1==open(#2,G) ++ #1l==close(#2,G)] ++

[\/ANML | #1==mount (#2,ANML)] ++
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[\/ANML \/P | #1==getOff (#2,ANML,P)] ++

[\/H | #l==throw0ff(#2,H)]).

(Different from “=" used in an atom, “==" is a comparison operator.)

% A failed mount is not subject to the usual, rather strict,
% movement restriction on large animals

mount (H,ANML) causes ab(H).

% If the position a large human is thrown into was previously occupied by
% another large animal, the usual movement restriction doesn’t apply

throwOff (ANML,H) causes ab(H).

(The two propositions above describe exceptional circumstances for the

movement restriction between large animals. )

% Every animal can execute only one action at a time

nonexecutable A & Al if doneBy(A,ANML1) & doneBy(A1,ANML1) where A@<A1l.

% Direct effect of move action

move (ANML,P) causes pos(ANML)=P.

% An animal can’t move to the position where it is now

nonexecutable move (ANML,pos (ANML)) .

% A human riding an animal cannot perform the move action (lmw)

nonexecutable move(H,P) if mounted(H,ANML).
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% Effect of opening a gate

open(H,G) causes opened(G).

% A human cannot open a gate if he is not located at a position to the
% side of the gate (1lmw)

nonexecutable open(H,G) if -(pos(H)=sidel(G) ++ pos(H)=side2(G)).

% A human cannot open a gate if he is mounted on an animal

nonexecutable open(H,G) if mounted(H,ANML) .

% A human cannot open a gate if it is already opened

nonexecutable open(H,G) if opened(G).

% Effect of closing a gate

close(H,G) causes -opened(G).

% A human cannot close a gate if he is not located at a position to the

% side of the gate (lmw)

nonexecutable close(H,G) if -(pos(H)=sidel(G) ++ pos(H)=side2(G)).

% A human cannot close a gate if he is mounted on an animal

nonexecutable close(H,G) if mounted(H,ANML).
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% A human cannot close a gate if it is already closed

nonexecutable close(H,G) if -opened(G).

% When a human rides an animal, his position is the same as the animal’s
% position while the animal moves (lmw)

caused pos(H)=P if mounted(H,ANML) & pos(ANML)=P.

% If a human tries to mount an animal that doesn’t change position,
% mounting is successful

caused mounted(H,ANML) if pos(ANML)=P after pos(ANML)=P & mount (H,ANML) .

% The action fails if the animal changes position, and in this case the
% result of the action is that the human ends up in the position where
% the animal was (lmw)

caused pos(H)=P if pos(ANML)\=P after pos(ANML)=P & mount (H,ANML).

% A human already mounted on some animal cannot attempt to mount

nonexecutable mount (H,ANML) if mounted(H,ANML1).

% A human can only be mounted on a large animal

constraint mounted(H,ANML) ->> large(ANML).

% A human cannot attempt to mount a small animal (1lmw)

nonexecutable mount (H,ANML) if -large(ANML).
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% A large human cannot be mounted on a human

constraint mounted(H,H1) ->> -large(H).

% A large human cannot attempt to mount a human

nonexecutable mount(H,H1) if large(H).

% An animal can be mounted by at most one human at a time

constraint -(mounted(H,ANML) & mounted(H1,ANML)) where H@<H1.

% A human cannot attempt to mount an animal already mounted by a human

nonexecutable mount (H,ANML) if mounted(H1,ANML).

% A human cannot be mounted on a human who is mounted

constraint -(mounted(H,H1) & mounted(H1,ANML)).

% A human cannot attempt to mount an animal if the human is already

% mounted by a human

nonexecutable mount (H,ANML) if mounted(H1,H).

% A human cannot attempt to mount a human who is mounted

nonexecutable mount (H,H1) if mounted(H1,ANML).

% The getOff action is successful provided that the animal does not move
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% at the same time. It fails if the animal moves, and in this case the
% rider stays on the animal (lmw)

caused pos(H)=P if pos(ANML)=P1 after pos(ANML)=P1 & getOff (H,ANML,P).

caused -mounted(H,ANML) if pos(ANML)=P1

after pos(ANML)=P1 & getOff (H,ANML,P).

% The action cannot be performed by a human not riding an animal (1lmw)

nonexecutable get0ff (H,ANML,P) if -mounted(H,ANML).

% A human cannot attempt to getOff to a position that is not accessible
% from the current position

nonexecutable getO0ff (H,ANML,P) if -accessible(pos(ANML),P).

% The throwOff action results in the human no longer riding the animal
% and ending in a position adjacent to the animal’s present position.
% It is nondeterministic since the rider may end up in any position
% adjacent to the animal’s present position (lmw)

throw0ff (ANML,H) may cause pos(H)=P.

throwOff (ANML,H) causes -mounted(H,ANML).
% If the resultant position is occupied by another large animal then the
% human will result in riding that animal instead (lmw)

caused mounted(H,ANML1) if pos(H)=pos(ANML1) & large(ANML1)
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after throwOff (ANML,H) where H\=ANML1.

% The action cannot be performed by an animal not ridden by a human (1lmw)

nonexecutable throwOff (ANML,H) if -mounted(H,ANML).

% The actions getOff and throwOff cannot be executed concurrently

nonexecutable get0ff (H,ANML,P) & throwOff (ANML,H) .

7.5 Testing

To test our formalization, we gave CCALC queries and checked that its answers
matched our expectations. Queries related to action domains and their CCALC
representations are discussed in [Giunchiglia et al., 2004, Sections 3.3, 6]. Besides
the representation of the Zoo World shown above, the CCALC input included the
description of a specific landscape. The zoo we used for testing is small. It includes
2 locations—a cage and the outside—that are separated by a gate and consist of 4
positions each (Figure 7.1). All positions within the cage are each other’s neighbors,
as well as all outside positions. The input also included information about the

specific animals mentioned in each query.

1. The gate is closed, and Homer, an adult human, is in position 6. His goal is to
mount Jumbo, an adult elephant, which is in position 3 and is not going to move

around. How many steps are required to achieve this goal?

This question can be represented by the following CCALC query:

:— query
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outside

cageA

1 2 5 6

3 4 | 7 8
gateAO

Figure 7.1: A zoo landscape

maxstep :: 3..4;
0: -opened(gateAQ),
pos (homer)=6;
maxstep: mounted(homer, jumbo) ;

T=<maxstep ->> (T: pos(jumbo)=3).

(In the last line, T is a variable for the initial segment of integers—numbers from 0
to 10.)

CCALC has determined that the length of the shortest solution is 4. It found
a solution in which Homer walks to the gate, opens it, walks into the cage, and then

mounts Jumbo.

2. The gate was closed, and Homer was outside; after two steps, he was inside.

What can we say about his initial position?

To answer this question, we asked CCALC to find all models satisfying the conditions

0: -opened(gateAQ),
loc(pos(homer))=outside;

2: loc(pos(homer))=cageA.
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CCALC has determined that Homer’s only possible initial position is 7. Homer

opened the gate and moved to position 4.

3. Initially Homer was outside, and Snoopy, a dog, was inside the cage, with the
gate closed. Is it possible that they switched their locations in one step? in two
steps? If the elephant Jumbo is substituted for Snoopy, will the answers be the

same?

What is essential here is that small animals, unlike elephants, are not affected by
the occupancy restriction (Section 7.2); Homer and Snoopy can pass through the

gate simultaneously. In response to the query

1- query

maxstep :: 1..2;

0: -opened(gateAQ),
loc(pos(homer))=outside,
loc(pos(snoopy) )=cageA;

maxstep:
loc(pos(homer))=cageA,

loc(pos(snoopy))=outside.

CCALC reported that the length of the shortest solution is 2. In case of Jumbo,
CCALC surprised us by discovering that the length of the shortest solution is 4, and
not 5 as we had thought. Homer opens the gate, mounts Jumbo (on the other side),
dismounts (by either being thrown off or getting off ), following which Jumbo moves
out of the cage. When we told CCALC that Homer never mounts Jumbo, CCALC

agreed that the length of the shortest possible sequence of actions is 5.
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4. Can a large animal move into a position at the same time as another large animal

moves out of it?

The answer is yes. Although the occupancy restriction applies within the duration
of moves (Section 7.2), this scenario is possible in the process of a failed attempt
of the first animal to mount the second. There is also the possibility that the first
animal is thrown off into the position just vacated by the second.

To investigate this, we asked CCALC whether the following is possible:

[\/P | (0: -(pos(homer)=P)) &
(1: pos(homer)=P) &
(0: pos(jumbo)=P) &
(1: -(pos(jumbo)=P))];

0: mounted(homer,silver).

(Silver is a horse.) CCALC found a solution in which Silver throws off Homer. Then

we replaced the last line of the query with
0: [/\ANML| -throwOff (ANML,homer)].

CCALC found a solution in which Homer tried to mount Jumbo. On the other hand,
a horse cannot possibly move into a position at the same time as an elephant moves
out of it. Accordingly, CCALC determined that there is no model satisfying the

condition

[\/P | (0: -(pos(silver)=P)) &
(1: pos(silver)=P) &
(0: pos(jumbo)=P) &

(1: -(pos(jumbo)=P))].
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5. In position 1, Jumbo throws off Homer. What are the possible positions of Jumbo

and Homer after that?

This question illustrates the nondeterministic character of the Throwoff action (Sec-

tion 7.2). The given assumption can be represented by the condition

0: pos(jumbo)=1,

throwOff (jumbo,homer) .

According to CCALC, in the models satisfying this condition Homer is thrown into

positions 2, 3 and 4; Jumbo always stays in position 1.
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Chapter 8

Describing Additive Fluents and

Actions in C+

8.1 Concurrent Execution of Actions in C+

Consider a transition system representing the effect of buying a book on the number
of books that the person owns (Figure 8.1). It uses two fluent constants—Has(A)
(the number of books that Alice has) and Has(B) (the number of books that Bob
has)—with the domain {0,..., N}, where N is a fixed nonnegative integer, and
two Boolean action constants—Buy(A) (Alice buys a book) and Buy(B) (Bob buys
a book). Every state is represented by two equations showing the values of the
fluent constants. Every event is represented by the set of action constants that are
mapped to t. The loops are labeled by the trivial event () (no actions are executed).
The horizontal edges are labeled by the event in which Alice buys a book and Bob

doesn’t; along each of the vertical edges, Bob buys a book and Alice doesn’t. The
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0 ()@ ()@
Has(A)=0 Has(A)=1 o Has(A)=N
Has(B)=0 | {Buy(A)} Has(B)=0 {Buy(A;} T Has(B)=0

{Buy(B)} {Bléyu(ﬁﬁ)} {Buy(B)} {BLéyu(yA(E)} ) {Buy(B)}

0 0 NG ()@
Has(A)=0 Has(A)=1 o Has(A)=N
Has(B)=1 | {Buy(A)} Has(B)=1 | {Buy(A)} Has(B)=1

{Buy(B)} {Bléyu(ﬁﬁ)} {Buy(B)} {BLéyu(yA(E)} {Buy(B)}

Yo M N Hen VN i ¢
Has(A)=0 Has(A)=1 o Has(A)=N
Has(B)=N | {Buy(A)} Has(B)=N {Buy(A;} ] Has(B)=N

Figure 8.1: A transition system

diagonal edges correspond to Alice and Bob buying books concurrently.

The transition system can be described by the following action description:

inertial Has(x)
exogenous Buy(z)
Buy(z) causes Has(x)=k+1 if Has(z)=k

nonexecutable Buy(z) if Has(x)=N

where ¢ € {A,B} and k € {0,...,N — 1}.
This action description does not say explicitly that the trivial event () has no
effect on the values of Has(A) and Has(B), or that event {Buy(A)} does not affect

the value of Has(B). Nevertheless, every edge of the transition system labeled () is a
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loop, and every edge labeled { Buy(A)} is horizontal, because of the first line of (8.1)
that expresses, under the semantics of C+, the persistence property of Has(z).

Similarly, action description (8.1) does not say anything about the concurrent
execution of actions Buy(A) and Buy(B). But the edges labeled {Buy(A), Buy(B)}
in Figure 8.1 are directed diagonally, in accordance with our commonsense expec-
tations. This fact illustrates the convenience of the approach to concurrency incor-
porated in the semantics of C+.

However, as discussed in Section 5.6, this built-in mechanism is not directly
applicable to the effects of actions on additive fluents, such as the number of books
available in the bookstore in the presence of the concurrent execution of buying
actions. In this chapter we extend C+ with the additional notation that resolves
this difficulty. We introduce here a syntactic construct, increments, that allows us
to describe the effects of actions on additive fluents. Semantically this construct is
treated as “syntactic sugar” on top of C+: the propositions involving that construct
are viewed as abbreviations for causal laws of C+. The interpretation of increments

described below has been used to extend CCALC to cover additive fluents.

8.2 Increment Laws

In our proposed extension of C+, some of the simple fluent constants can be des-
ignated as additive. The domain of every additive fluent constant is assumed to
be a finite set of numbers. We understand “numbers” as (symbols for) elements of
any set with an associative and commutative binary operation + that has a neutral

element 0.! Effects of actions on additive fluents are described in an extended C+ by

'The additive group of integers is the main example we are interested in, and this is the case
that has been implemented. The max operation on an ordered set with the smallest element is
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causal laws of a new kind—“increment laws.” Accordingly, we modify the definition
of a causal law shown in Section 6.2.1 in two ways. First, in causal laws of the
forms (6.8) and (6.9) formula F' is not allowed to contain additive fluent constants.
Second, we extend the class of causal laws by including increment laws—expressions
of the form

a increments c by n if G (8.2)
where
e a is a Boolean action constant,
e c is an additive fluent constant,
e 1 is a number, and

e (G is a formula that contains no Boolean action constants.

We will drop ‘if G’ in (8.2) if G is T.

In the next section we define the semantics of the extended C+ by describing
a translation that eliminates increment laws in favor of additional action constants.

As an example, consider the effects of actions Buy(A), Buy(B) on the num-
ber of books available in the bookstore where Alice and Bob are buying books. A
description of these effects in extended C+ is shown in Figure 8.2 (as before, N is a
fixed nonnegative integer). The transition system represented by the translation of
Figure 8.2 in the non-extended language C+ is depicted in Figure 8.3 (with the aux-
iliary action constants dropped from the edge labels). The causal laws in Figure 8.2
do not say explicitly that the trivial event () has no effect on the value of Available, or

that the concurrent execution of actions Buy(A) and Buy(B) decrements the value

another interesting case.
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Notation: z ranges over {A, B}.

Action constants:
Buy(z)

Additive fluent constant:

Available

Causal laws:

Domains:
Boolean

Domain:

(0,...,

Buy(z) increments Awvailable by —1

exogenous Buy(z)

N}

Figure 8.2: An action description in extended C+

Available = 0

{Buy(A)} | {Buy(B)}

Available = 1

Bave)s

{Buy(A)} | {Buy(B)}

Available = 2

Bave)s

{Buy(A)} | {Buy(B)}

{Buy(A)} 1 {Buy(B)}

S Eeh

Available = N

Figure 8.3: The transition system described by Figure 8.2
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of this fluent by 2. Nevertheless, every edge of the corresponding transition system
labeled 0 is a loop, and every edge labeled {Buy(A), Buy(B)} goes up 2 levels, in
accordance with our commonsense expectations. This happens because Figure 8.2
classifies Available as an additive fluent constant.

The causal laws in this action description do not say explicitly that actions
Buy(z) are not executable when Awailable =0, and that actions Buy(A), Buy(B)
cannot be executed concurrently when Awailable =1. This is taken care of by our
semantics of increment laws, in view of the fact that the domain of Awvailable does

not contain negative numbers.

8.3 Translating Increment Laws

Let D be an action description in extended C+. In connection with the increment
laws (8.2) in D, the following terminology will be used: about the Boolean action
constant a, the additive fluent constant ¢ and the number n in (8.2) we will say that
a is a c-contributing constant, and that n is a contribution of a to c.

The auxiliary action constants introduced in the translation are expressions
of the form Contribution(a,c), where ¢ is an additive fluent constant, and a is a
c-contributing action constant. The domain of Contribution(a,c) consists of all
contributions of a to ¢ and number 0.

To translate the increment laws from D, we

(i) replace each increment law (8.2) in D with the action dynamic law

caused Contribution(a,c)=n if a=t A G, (8.3)
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(ii) for every auxiliary constant Contribution(a,c), add the action dynamic law
caused Contribution(a,c)=0 if Contribution(a,c)=0, (8.4)
(iii) add the fluent dynamic laws

caused c=v + Y., v, if T after c=v A A, Contribution(a,c)=v, (8.5)

for every additive fluent constant ¢, every v € Dom(c), and every function
a — v, that maps each c-contributing constant a to an element of the domain

of Contribution(a,c) so that v + ) v, is in the domain of c.

The sum and the multiple conjunction in (8.5) range over all c-contributing con-
stants a.

Causal law (8.3) interprets increment law (8.2) as the assertion that execut-
ing a (possibly along with other actions) causes constant Contribution(a,c) to get
the value n, under some conditions characterized by formula G. Causal laws (8.4)
say that the value of this constant is 0 by default, that is to say, when another value
is not required by any increment law. Causal laws (8.5) say that the value of an
additive fluent constant after an event can be computed as the sum of the value of
this constant prior to the event and the contributions of all actions to this constant.

The result of translating increment laws from Figure 8.2 is shown in Fig-
ure 8.4. In this case, the translation described above introduces two auxiliary action
constants: Contribution(Buy(A), Available) and Contribution(Buy(B), Available).
The domain of each of them has 2 elements: the contribution —1 of Buy(z) to Available
and number 0.

The edges of the transition system described by Figure 8.4, and the corre-

sponding events, can be computed using the methods presented in Section 6.1.3.
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Notation: x ranges over {4, B}.

Action constants: Domains:
Buy(z) Boolean
Contribution(Buy(x), Available) {-1,0}

Additive fluent constant: Domain:
Available {0,...,N}

Causal laws:

caused Contribution(Buy(z), Available)=—1 if Buy(z)=t
caused Contribution(Buy(z), Available) =0 if Contribution(Buy(z), Available)=0
caused Awailable=v-+v;+ve if T after Available=v A
Contribution(Buy(A), Available) =v; A Contribution(Buy(B), Available) =vs
for all v € {0,..., N} and vy,vy € {—1,0} such that v + vy + vy >0
exogenous Buy(z)

Figure 8.4: The result of translating increment laws from Figure 8.2
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Every event assigns values to each action constant, including the auxiliary con-

stants Contribution(Buy(x), Available). For instance, the labels

0, {Buy(A)}, {Buy(B)}, {Buy(A), Buy(B)}
in Figure 8.3 represent the following events Ey, ..., E3 respectively:

Eo(Buy(A)) = f, Eyg(Contribution(Buy(A), Available)) = 0,

Ey(Buy(B)) = f, Ey(Contribution(Buy(B), Available)) = 0,

Eq(Buy(A)) = t, Ei(Contribution(Buy(A), Available)) = —1,

Eq(Buy(B)) = f, Eqi(Contribution(Buy(B), Available)) = 0,

Es(Buy(A)) = f, Ey(Contribution(Buy(A), Available)) = 0,

Es(Buy(B)) = t, Es(Contribution(Buy(B), Available)) = —1,

E5(Buy(A)) = t, E3(Contribution(Buy(A), Available)) = —1,
E5(Buy(B)) = t, Es(Contribution(Buy(B), Available)) = —1.

For specific values of IV, the set of edges can also be generated mechanically,
by running CCALC. The translation of Figure 8.2 into the input language of CCALC
is shown in Figure 8.5. When instructed to find the edges of the corresponding
transition system for n equal to 2, CCALC displays 8 solutions, in the following

format:

Solution 4:

0: available=2
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% File: ’available’

:— sorts
person.
:— objects
a, b :: person.
:— variables
X :: person.
:— constants
available :: additiveFluent(0..n);
buy (person) :: exogenousAction.

buy(X) increments available by -1.

Figure 8.5: The description from Figure 8.2 in the language of CCALC
ACTIONS: buy(a) buy(b)

1: available=0

8.4 Reasoning about Money

As an application of these ideas to automated commonsense reasoning, consider the

following example:

I have $6 in my pocket. A newspaper costs $1, and a magazine costs $3.
Can I buy two newspapers and one magazine? Or one newspaper and

two magazines?
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% File: ’buying’

:— sorts
agent;
resource >> item.

:— variables
Ag :: agent;
Res :: resource;
It :: item;
M,N :: 0..maxAFValue.
:— objects
buyer,seller :: agent;
money :: resource.
:— constants
price(item) :: 0..maxAFValue;
has(agent ,resource) :: additiveFluent (0. .maxAFValue);
buy(item) :: exogenousAction;
howmany (item) :: attribute(0..maxAFValue) of buy(item).

buy(It) increments has(buyer,It) by N if howmany(It)=N.
buy (It) decrements has(seller,It) by N if howmany(It)=N.

buy(It) increments has(seller,money) by M*N
if howmany(It)=N & price(It)=M where M*N =< maxAFValue.

buy(It) decrements has(buyer,money) by MxN
if howmany(It)=N & price(It)=M where M*N =< maxAFValue.

Figure 8.6: File buying: Buying and selling
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% File: ’buying-test’
:— maxAFValue :: 7.
:— include ’buying’.

:— objects
newspaper,magazine 1t item.

price(newspaper)=1.
price(magazine)=3.

% I have $6 in my pocket. A newspaper costs $1, and a magazine
% costs $3. Do I have enough money to buy 2 newspapers and a magazine?
% A newspaper and 2 magazines?

:— query
label :: 1;
maxstep :: 1;
0: has(buyer,money) = 6,
buy (newspaper) ,
howmany (newspaper) = 2,
buy (magazine),
howmany (magazine)

]
—

:— query
label :: 2;
maxstep :: 1;

0: has(buyer,money)
buy (newspaper) ,
howmany (newspaper) = 1,
buy (magazine),
howmany (magazine) = 2.

6,

:— show has(buyer,money) .

Figure 8.7: File buying-test: Do I have enough cash?
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These questions are about the executability of some concurrently executed actions,
and the answers are determined by the effects of these actions on an additive fluent—
the amount of money that I have.

Figure 8.6 describes the relevant properties of buying and selling in the input
language of the new CCALC. There are objects of four sorts in this domain: agents,
resources, items (to be purchased) and (nonnegative) integers; items are a subset of
resources. The buyer and the seller are agents; money is a resource; 0, ..., maxInt
are integers. The price of an item is an integer. The number of units of a resource
that an agent has is an integer-valued additive fluent. Buying is an exogenous action.
The four causal laws that follow these declarations are self-explanatory; decrements
is an abbreviation defined in terms of increments.

Figure 8.7 expresses the two questions stated at the beginning of this section.
The first question is whether the transition system contains an edge that begins in
a state in which the buyer has $6, and whose label includes buying two newspapers
and one magazine. CCALC responds to this query by finding such an edge.?
| ?- query 1.

% Shifting atoms and clauses... done. (0.00 seconds)

% After shifting: 2156 atoms (including new atoms), 8134 clauses
% Writing input clauses... done. (0.35 seconds)

% Calling mChaff spelt3... done.

% Reading output file(s) from SAT solver... done.

% Solution time: 0.11 seconds (prep 0.09 seconds, search 0.02 seconds)

o

has(buyer ,money)=6

2This example involves the concurrent execution of two actions, but in general the CCALc
implementation of additive fluents does not impose any specific restriction on the number of actions
that can be executed concurrently.
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ACTIONS: buy(newspaper,howmany=2) buy(magazine,howmany=1)

1: has(buyer,money)=1

Its reply to a similar question about one newspaper and two magazines is negative:

| ?- query 2.

% Shifting atoms and clauses... done. (0.01 seconds)

% After shifting: 2156 atoms (including new atoms), 8134 clauses
% Writing input clauses... done. (0.34 seconds)

% Calling mChaff spelt3... done.

% Reading output file(s) from SAT solver... done.

% Solution time: 0.11 seconds (prep 0.09 seconds, search 0.02 seconds)

No solution with maxstep 1.

8.5 Reasoning about Motion

Some additive fluents mentioned in the introduction—for instance, the velocity of a
particle—are real-valued, rather than integer-valued. CCALC cannot deal with real
numbers yet, and its input language does not allow us to express properties of such
fluents.

But let’s imagine a movable object that is immune to this complication—
the spacecraft Integer. Far away from stars and planets, the Integer is not affected
by any external forces. As its proud name suggests, the mass of the spacecraft is
an integer. For every integer ¢, the coordinates and all three components of the
Integer’s velocity vector at time ¢ are integers; the forces applied to the spacecraft

by its jet engines over the interval (¢,¢ + 1), for any integer ¢, are constant vectors
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whose components are integers as well. If the crew of the Integer attempts to violate
any of these conditions, the jets fail to operate!

The motion of the Integer is described in Figure 8.8. The three fluents of the
form pos(axis) represent the current position of the Integer. The additive fluents
vel(axis) are the components of its velocity. According to Newton’s Second Law,
the acceleration created by firing a jet can be computed by dividing the force by the
mass of the spacecraft. The first proposition in Figure 8.8 expresses this fact without
mentioning the acceleration explicitly, in terms of the change in the velocity over
a unit time interval. Symbol // stands for integer division; the second proposition
tells us that firing a jet is impossible if this division gives a non-zero remainder.

The third proposition says that the position of the spacecraft at time t+1 can
be computed by adding its average velocity over the interval (¢,¢+ 1) to its position
at time ¢t. Because the acceleration over this interval is constant, the average velocity
is computed as the arithmetic mean of the velocities at times ¢ and ¢+ 1. We do not
include any assumptions about the case when the division by 2 involved in computing
this arithmetic mean produces a fraction. The semantics of the language of CCALC
guarantee actually that firing jets to achieve this result would be impossible.

Finally, to make planning for the Integer more interesting, we use the con-
stant maxForce to limit the power of the jets.

To test our representation, we instruct CCALC to answer the following ques-

tion (Figure 8.9):

The mass of the Integer is 1. The Integer has two jets, and the force
that can be applied by each jet along each axis is at most 2. The current

position of the Integer is (—1,0,1), and its current velocity is (0,1, 1).
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% File: ’spacecraft’

:- sorts
integer;
axis;
jet.
:— objects
-maxAFValue. .maxAFValue :: integer;
X,y,2 1: axis;
jetl,jet2 1 jet.
:— variables
Ax 1: axis;
J 1 jet;
F,v,V1i,P :: integer.
:— constants
pos(axis) :: simpleFluent (integer) ;
vel(axis) :: additiveFluent (integer);
fire(jet) :: exogenousAction;
force(jet,axis) :: attribute(integer) of fire(jet).

fire(J) increments vel(Ax) by V // mass if force(J,Ax) = V.
nonexecutable fire(J) if force(J,Ax) mod mass \= O.
caused pos(Ax) = P+((V+V1)//2) if vel(Ax) = V1
after vel(Ax) = V & pos(Ax) = P where (V+V1) mod 2 = O,
P+((V+V1)//2) >= -maxAFValue,
P+((V+V1)//2) =< maxAFValue.

nonexecutable fire(J) if abs(force(J,Ax)) > maxForce.

Figure 8.8: File spacecraft: The spacecraft Integer
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% File: ’spacecraft-test’

maxAFValue :: 7.
macros
mass —-> 1;

maxForce -> 2.

include ’spacecraft’.

1= query

maxstep :: 1;
0: (pos(x) = -1 & pos(y) = 0
0: (vel(x) = 0 & vel(y) = 1
1: (pos(x) = 0 & pos(y) = 3

show pos(Ax); vel(Ax).

& pos(z)
& vel(z)
& pos(z)

1);
1);
1).

Figure 8.9: File spacecraft-test: How to get there?

How can it get to (0,3,1) within 1 time unit?

Here is one of the nine answers produced by CCALC:

Solution 1:

0:

ACTIONS:

pos(x)=-1 pos(y)=0 pos(z)=1

vel(x)=0

fire(jet2,force(x)=1,force(y)=2,force(z)=0)

1:

pos(x)=0 pos(y)=3 pos(z)=1

vel(x)=2
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vel(y)=5

vel(z)=1

fire(jetl,force(x)=1,force(y)=2,force(z)= -2)

vel(z)
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8.6 Additive Action Constants

Besides additive fluent constants, we can introduce “additive action constants,” as
follows. Some of the action constants can be designated as additive. Their domains,
just as the domains of additive fluent constants, are assumed to consist of numbers.
Additive action constants are not allowed in formula F' in action dynamic laws (6.9).

An increment law is now defined as an expression of the form (8.2), where

a is a Boolean action constant,

c is an additive fluent constant or an additive action constant,

n is a number,

e (G is an action formula that contains neither Boolean action constants nor

additive action constants.

In the translation of increment laws (8.2) described in Section 8.3, in the case when

¢ is an additive action constant, clause (iii) is modified as follows:

(iii') add the action dynamic laws

caused C:Z vg if /\ Contribution(a,c) =v,

a a

for every function a — v, that maps each c-contributing constant a to an
element of the domain of Contribution(a,c) so that ) v, is in the domain of

C.

These causal laws say that the value of an additive action constant during an event
can be computed as the sum of the contributions of all actions to this action constant

during that event.
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Figure 8.10: A transition system with an additive action constant

Here is an example of the use of additive action constants for representing
commonsense knowledge. In Section 8.2 we described how the number of books
available in the bookstore is affected by actions of customers. We can ask, on the
other hand, how the actions of customers determine the total number of books
that are being sold to them at a particular moment; in the case of 2 customers, that
number is either 0, 1 or 2. The number of books that are being sold is associated with
an event occurring between two successive states, and not with a state. Accordingly,
we represent that number by an additive action constant, rather than an additive
fluent constant. Extend the action description shown in Figure 8.2 by the additive

action constant Sold with the domain {0, 1,2}, and by the causal law

Buy(z) increments Sold by 1.

The transition system represented by this extension of Figure 8.2 is shown in Fig-

ure 8.10.

147



8.7 Improving Plans

In satisfiability planning, when a plan without concurrent actions is desired, it is
usual to make the process of plan generation more efficient by allowing a subset of
actions to be executed concurrently as long as that subset is “serializable.” In such a
plan, the actions that are scheduled for the same time period can be instead executed
consecutively, in any order. For example, the restrictions on blocks world plans in
file bw.t (Figure 4.6) ensure serializability. The 2-step plan shown in Section 6.5 can
be turned into a 4-step sequential plan by ordering the actions move (a,table) and
move (c,table) in an arbitrary way, and then ordering move (b,a) and move(d,c)
in an arbitrary way.

Generating serializable solutions is a computationally useful trick, but there
is a difficulty associated with it. As observed in [Kautz and Walser, 1999], when
the shortest possible serializable plan is found, we cannot generally expect that a
sequential plan obtained from it by serialization will be optimal in the sense of
the number of steps. Consider, for instance, the blocks world benchmark problem
large.c from [Kautz and Selman, 1996] and [Niemeli, 1999]. The problem involves 15
blocks. The shortest serializable solution to this problem consists of 8 steps. Such a
solution, found by CCALC using SATO as the search engine, includes 52 moves; there
will be only 38 moves, however, if RELSAT is used instead. The shortest serializable
solution to large.c found by SMODELS 2.25 on the basis of the formalization given
in [Niemeld, 1999] consists of 29 moves. But all these numbers are actually much
larger than necessary: as discussed below, there exists a serializable solution to
large.c that has length 8 and consists of 18 moves.

Let’s define the cost of a solution to a blocks world planning problem to be
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% File: ’bw-cost’
:— include ’bw’.

:— constants
cost :: additiveFluent (0. .maxAFValue).

move (B) increments cost by 1.

Figure 8.11: File bw-cost: Computing the cost of a plan

the total number of move actions in it. In the case of a serializable plan, this is
the same as the length of a sequential plan obtained from it by serialization. Using
the additive fluent mechanism, we can easily characterize the cost of a plan in the
language of CCALC (Figure 8.11). Then CCALC can be used to check whether the
cost of a plan that it has found is minimal. For instance, in Figure 8.12 we instruct
CCALC to find a serializable solution to large.c whose length is 8 and whose cost is

at most 18. It produces the following plan:

% Calling mChaff...

% Solution time: 9.23 seconds (prep 2.51 seconds, search 6.72 seconds)
0: cost=0

ACTIONS: move(c,destination=table) move(i,destination=table)

move (k,destination=table)

1: cost=3

ACTIONS: move(b,destination=table) move(h,destination=table)
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% File: ’bw-cost-test’
:— maxAFValue :: 19.
:— macros

length -> 8;

maxCost -> 18.

:— include ’bw-cost’.

:— variables
N :: 0..maxAFValue.
:— objects
a,b,c,d,e,f,g,h,i,j,k,1,m,n,0 :: block.
:— query
maxstep :: (length-1)..length;
0: cost=0, loc(m)=table, loc(l)=m, loc(a)=1, loc(b)=a, loc(c)=b,

loc(o)=table, loc(n)=o, loc(d)=n, loc(e)=d, loc(j)=e,
loc(k)=j, loc(f)=table, loc(g)=f, loc(h)=g, loc(i)=h;

maxstep: cost=<maxCost, loc(e)=j, loc(a)=e, loc(n)=a, loc(i)=d,
loc(h)=1i, loc(m)=h, loc(o)=m, loc(k)=g, loc(c)=k, loc(b)=c,
loc(1)=b.

:— show cost.

Figure 8.12: File: bw-cost-test: Finding an economical solution to large.c
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move (j,destination=table)

2: cost=6

ACTIONS: move(e,destination=j) move(k,destination=g)

3: cost=8

ACTIONS: move(a,destination=e) move(c,destination=k)

move (d,destination=table)

4: cost=11

ACTIONS: move(b,destination=c) move(i,destination=d)

5: cost=13

ACTIONS: move(h,destination=i) move(l,destination=b)

move (n,destination=a)

6: cost=16

ACTIONS: move(m,destination=h)

7: cost=17

ACTIONS: move(o,destination=m)

8: cost=18

yes

If we make maxCost equal to 17 then CCALC tells us that the problem is not
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Length of serializable plan | Smallest possible cost
8 18
9 16
10 15
11 15
12 15
13 14
14 14

Figure 8.13: Trade-off between length and cost in solutions to large.c

solvable.

It is interesting to note that large.c has sequential solutions whose length
is less than 18. Such solutions cannot be obtained, however, by serializing short
concurrent solutions. This kind of trade-off between the length of a serializable
solution and the length of the corresponding sequential solution was demonstrated
by Kautz and Walser [1999] in the logistics domain. We have used CCALC to
investigate this phenomenon in the case of problem large.c. According to the results
shown in Figure 8.13, the length of the shortest sequential solution is 14, but such

a plan cannot be obtained from a serializable plan whose length is less than 13.

8.8 Properties of Additive Constants

By examining Figure 8.3 in isolation from its symbolic description in Figure 8.2 we
can see that the constant Awailable exhibits some features typical for additive fluent
constants.

Consider, for instance, the edges that start at the vertex Awailable = 2

and are labeled by the events {Buy(A)} and {Buy(B)}. Each of them leads to
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the vertex Awailable = 1, so that each of these two events, when it occurs in the
state Awvailable =2, increments the value of Awvailable by —1. In accordance with the
intuitive idea of an additive fluent, we can expect that the “union” of these events,
when it occurs in the same state, will increment the value of Available by (—1)+(—1).
And this is true, because the edge in Figure 8.3 that starts at the vertex Available =2
and is labeled {Buy(A), Buy(B)} leads to the vertex Available=0.

Proposition 12 below generalizes this observation to a class of action descrip-
tions in the language C+ extended as described in Sections 8.2, 8.3. By D we denote
any action description in this language.

About events ey, e1,...,e, (n > 0) in the transition system represented by D

we say that eg is a disjoint union of e1,...,e, if, for every Boolean action constant a,

e if ¢g(a) =t then there exists a unique ¢ > 0 such that e;(a) = t; for this ¢,

eo(a’) = e;(a’) for every non-Boolean action constant a';
e if eg(a)=f then, for all i > 0, ¢;(a)=f.

In the rest of this section we assume that the set of numbers is a commutative

group.

Proposition 12 Let ¢ be an additive fluent constant, let s, sg,...,8, (n > 0) be
states, and let eq, ..., e, be events such that ey is a disjoint union of e1,...,en. If,
for all i € {0,...,n}, the transition system represented by D contains an edge that

leads from s to s; and is labeled e; then

so(e) = s(e) = D (sile) = s(c)),
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The special case corresponding to n = 0 tells us that additive fluent constants
are not affected by “trivial” events. In this sense, they are similar to the fluent

constants for which inertia is postulated.

Corollary 1 Let e be an event such that for every Boolean action constant a,
e(a) =f. If the transition system represented by D contains an edge that leads

from a state s to a state s' and is labeled e then, for any additive fluent constant c,

The special case corresponding to n = 1 implies that the effects of any set of

actions on an additive fluent is deterministic:

Corollary 2 If the transition system represented by D contains an edge that leads
from a state s to a state sy and is labeled e, and an edge that leads from s to a

state s1 and is also labeled e, then, for any additive fluent constant ¢, so(c) = s1(c).

Here are the counterparts of the three facts stated above for additive action

constants:

Proposition 13 Let ¢ be an additive action constant, let s be a state, and let
€0,--,€n (N > 0) be events such that ey is a disjoint union of ey, ...,e,. If, for
all i € {0,...,n}, the transition system represented by D contains an edge that

starts at s and is labeled e; then
n
eo(c) = Z ei(e).
i=1
Corollary 3 Let e be an event occurring in the transition system represented by D.

If, for every Boolean action constant a, e(a) = f then, for any additive action con-

stant ¢, e(c) = 0.
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Corollary 4 Let s be a state, and let ey, e1 be events such that for every non-
additive action constant a, eg(a) = e1(a). If the transition system represented by D
contains an edge that starts at s and is labeled ey, and an edge that starts at s and

is labeled ey, then, for any additive action constant ¢, eg(c) = e1(c).

8.9 Discussion

In this chapter we showed how an implemented, declarative language for describing
actions can be used to talk about the effects of actions on additive fluents. This was
accomplished by extending the syntax of the action language C+ from [Giunchiglia
et al., 2004] by increment laws and by showing how to treat these laws as abbre-
viations.

It is interesting to note that this treatment of additive fluents would have
been impossible if, instead of C+, we used its predecessor C. Non-Boolean, non-
exogenous action constants such as Contribution(a,c), and action dynamic laws
such as (8.3) and (8.4) are among the features of C+ that were not available in C.

In literature on planning, fluents with numerical values are often referred to
as “resources” [Koehler, 1998]. The concurrent execution of the actions that involve
resources is usually limited to the “serializable” case, when all ways of sequencing
the concurrent actions are well-defined and equivalent. This condition is not satis-
fied, however, for many uses of additive fluents, including the space travel example
(Section 8.5). For instance, in the spacecraft example, firing the jets in one direction
and then in the other direction is not the same as firing them concurrently. This

example shows that firing jets is not serializable.
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8.10 Proofs

Proposition 12 Let ¢ be an additive fluent constant, let s, sg,...,$p, (n > 0) be
states, and let eq, ..., e, be events such that ey is a disjoint union of e, ..., e,. If,
for all i € {0,...,n}, the transition system represented by D contains an edge that

leads from s to s; and is labeled e; then

so(e) = s(e) = D_(sile) = s(c),

Proof Assume that (s, eq,so),(s,€1,51),...,(S,€n, Sp) are transitions. Consider the
reduct DY 7 %€ Y15 where ¢ > 0. Since (8.3) and (8.4) are the only causal laws
in D that contain constants of the form Contribution(a,c) in the heads, there exists
a unique v, such that 0 : Contribution(a,c) = v, € DY*Y ¥V S for every 0 :
Contribution(a,c) (Otherwise (s,e;, s;) would not be a transition). If there is a
causal law (8.3) in D such that e;(a) = t, ¢; = G, s = H, then v, = n, a contribution
of a to ¢. Otherwise v, = 0. Since 0:e¢; satisfies every atom 0: Contribution(a,c),
(0:€4)(0: Contribution(a,c)) = vq. Let ¢; =, v,-

Note that (8.5) is the only causal law in D that contains ¢ in the head. So
the reduct contains a unique atom

l:c=(0:5)(0:¢c) + Z(O:ei)(o: Contribution(a,c))

a

for constant 1:c. Since 1:s; satisfies the atom, it follows that s;(c) = s(c) + ¢, or
ci = si(c) — s(c).
Now consider the reduct D)™ %€ V150 = Again since (8.3) and (8.4) are the

only causal laws in D that contain constants of the form Contribution(a,c) in the
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heads, there exists a unique v, such that 0: Contribution(a,c) = v, € D?:s U 0:e0 U 1:50

for every 0: Contribution(a,c). Notice that

e v, = (0:¢;)(0: Contribution(a,c)) for any e; such that e;(a) =t if eg(a) =t

(indeed there is a unique such e;), and
e v, =0ifeg(a) =1

(Indeed, suppose eg(a) = t. There exists a unique e; such that e;(a) = t. If there
is a causal law (8.3) in D such that eg(a) = t, eg = G, s |= H, then e;j(a) = t,
e; = G also. So 0 : Contribution(a,c) = n belongs to both DY 00 U150 44
DYs U 0e U Lsi 1f oi(a) = t, but either ey j~ G or s = H, then either e; = G or s b~
H. So according to (8.4), 0: Contribution(a,c) = 0 belongs to both DY Y 0:e0 U 1:50
plis U Oies U Lisi

and

Since 0:¢g satisfies the atoms, it follows that, for every a,
(0:€0)(0: Contribution(a,c)) = (0:¢€;)(0: Contribution(a,c))
for any e; such that e;(a) =t if eg(a) = t and
(0:e9)(0: Contribution(a,c)) = 0

if eg(a) =1£.
Note that (8.5) is the only causal law in D that contains ¢ in the head. So

the reduct contains a unique atom

l:c=(0:5)(0:c) + Z(O:eg)(O: Contribution(a,c))

a

for constant 1:c.
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We see that

Z(O:eg)(O: Contribution(a,c)) = Z (0:e9)(0: Contribution(a,c))
a eo(a)=t

= Z Z (0:€;)(0: Contribution(a,c))

1<i<n ¢;(a)=t

Y oa= Y (sil) - s(0)

1<i<n 1<i<n

Since 1:s¢ satisfies the atom, it follows that

so(e) =s(e) + Y (si(e) — (<))

1<i<n

The proof of Proposition 13 is similar to the proof of Proposition 12.
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Chapter 9

Elaborations of the Missionaries

and Cannibals Puzzle

As discussed in Section 2.5, McCarthy used elaborations of the Missionaries and
Cannibals Puzzle to illustrate the idea of elaboration tolerance. Lifschitz [2000]
showed how to formalize McCarthy’s elaborations of MCP in an early version of
CCaALc. His representation did not introduce names for individual missionaries or
cannibals; rather, a state was described in terms of the number of members of each
group on each bank of the river. As noted in Section 5.6, the “difficult” concurrency
identified in that paper has led to the investigation of additive fluents (Chapter 8).

Our formalization presented in this chapter overcomes several limitations of
Lifschitz’s formalization thanks to the improvements of the language of CCALC.
This includes the implementations of additive fluents, defeasible causal laws, and
attributes. Rather than presenting all elaborations, we list some of them which

illustrate these points.
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9.1 Formalization of the Basic Problem

As in [Lifschitz, 2000], we start with formalizing the parts that are common for all
elaborations. File commonl describes the action of crossing using an attribute that

denotes the destination.

% File ’commonl’

:— sorts

vessel;

location. % objects of these sorts should be defined elsewhere
:— variables

V' :: vessel;

L,L1 :: location.
:— constants

loc(vessel) :: inertialFluent(location);

cross(vessel) :: exogenousAction;

to(vessel) :: attribute(location) of cross(vessel).

cross(V) causes loc(V)=L if to(V)=L unless abl(V,L).

nonexecutable cross(V) if to(V)=loc(V) unless ab2(V).

The line
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to(vessel) :: attribute(location) of cross(vessel)

declares that to is an attribute of action cross whose value is a location. The
attribute describes the destination of crossing.

All causal laws in the file are made defeasible. In each elaboration later, if
necessary, some of the laws here will be retracted.

File common?2 extends common1 by introducing new attributes, howmany (vessel, group)
that denote how many members of various groups are crossing. As discussed in Sec-
tion 5.6, the number of members of a group G in a location L should be treated as
an additive fluent to handle “difficult” concurrency. afValue is a predefined sort in

CCALC that ranges over numbers an additive fluent can take.

% File ’common?2’

:— include ’commonl’.

:- sorts
group. % group objects should be defined elsewhere
:— variables
N,N1 :: afValue;
G :: group.
:- constants
num(group,location) :: additiveFluent (afValue);
howmany (vessel, group) :: attribute(afValue) of cross(vessel).
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cross(V) increments num(G,L) by N if to(V)=L & howmany(V,G)=N
unless ab3(V,G,L).
cross(V) decrements num(G,L) by N if loc(V)=L & howmany(V,G)=N

unless ab4(V,G,L).

File basic describes the specifics about the original Missionaries and Canni-
bals Puzzle, including objects such as the boat, banks, and groups, and constraints
such as missionaries should not be outnumbered. This file will be included in all

elaborations. Again, all assertions in it are made defeasible.

% File ’basic’

:— include ’common2’.

:— objects
boat :: vessel;
bankl, bank2 :: location;
mi,ca :: group.
:- constants
capacity(vessel) :: 1..maxCapacity.

exogenous capacity(V) unless ab5(V).

.~ macros
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outnumbered (#1,#2) % #1 missionaries are

=> (#2 > #1) & (#1 > 0). % outnumbered by #2 cannibals

% missionaries should not be outnumbered in any location

constraint —-outnumbered(num(mi,L) ,num(ca,L)) unless ab6(L).

% additional preconditions for crossing:
%  someone should be in the boat

nonexecutable cross(V) if howmany(V,mi)+howmany(V,ca)=0 unless ab7(V).

%  but not too many
nonexecutable cross(V)

if howmany (V,mi)+howmany(V,ca) > capacity(V) unless ab8(V).

% missionaries should not be outnumbered on the way
nonexecutable cross(V) if outnumbered(howmany(V,mi) ,howmany(V,ca))

unless ab9(V).

% boat capacity

constraint capacity(boat)=2 unless abl0.

To test this formalization, we use the following file basic-test. Test files

for other elaborations which ask to find plans are similar to this one.

% File ’basic-test’: original MCP
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:— maxAFValue :: 3.

!~ macros

maxCapacity —-> 2.

:— include ’basic’.

:— query

maxstep :: 10..11;

0: num(mi,bank1)=3, num(ca,bankl1)=3, num(mi,bank2)=0, num(ca,bank2)=0,
loc(boat)=banki;

maxstep: num(mi,bank2)=3, num(ca,bank2)=3.

The directive maxAFValue specifies the maximum value an additive fluent
can take. It also instructs CCALC that additive fluents will be used.

The query instructs CCALC to try to find a plan of length 10 and if there is
no such plan, try length 11. Since the shortest step solution for the basic problem
involves at least 11 steps, CCALC answered that there is no plan of length 10, and
returned a plan of length 11. The solution returned by CCALC, along with solutions

for other elaborations, is shown in Appendix A.

9.2 Two Boats

Before presenting formalizations of McCarthy’s elaborations, let us consider a simple

elaboration in which we allow one more boat which holds only one person. This
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modification is more difficult to formalize than the original form of MCP. Besides
the difficulty described in Section 5.6, there are other difficulties. Consider the
original form of the problem, and imagine that there is a single cannibal with the
boat on the left bank. Our postulates should make it impossible, of course, for two
cannibals to cross in this state. In the absence of a second boat, we don’t have to
worry about this: two cannibals leaving would have made the number of cannibals
on the left bank negative, which is impossible. With two boats, this reasoning does
not apply any more, because a cannibal crossing simultaneously in the opposite
direction would make the number of cannibals on the left bank equal to 0, which
is a legal value. To prohibit such actions, we need to say that the total number
of members of a group leaving a location does not exceed the number of members
of the group in that location. This is expressed in the formalization below using
additive action constant departing(G,L): the total number of members of group G
who are departing from location L.

Another problem which is similar to the above has to do with a constraint on
the number of missionaries and cannibals during an event. Imagine that there are
two missionaries and two cannibals on the left bank, and only one of the missionaries
is leaving. This should be prohibited and indeed if there were only one boat, this
would be achieved by the first constraint proposition in File basic. However,
with two boats, if the third missionary arrives into the location simultaneously,
the constraint proposition does not prohibit the event. Besides the constraint on
the number of groups in a location in each state, we need to represent a similar
constraint during an event. Below this is expressed using staying(G,L), a macro

defined in terms of departing(G,L).
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% File ’departing’

:— constants

departing(group,location) :: additiveAction(afValue).

!~ macros

staying (#1,#2) -> num(#1,#2)-departing(#1,#2).

cross(V) increments departing(G,L) by N if loc(V)=L & howmany(V,G)=N

unless ab11(V,G,L).

% the number of people departing from a location does not exceed the number
% of people there

always departing(G,L)=<num(G,L) unless ab13(G,L).

% the missionaries staying in a location should not be outnumbered by
% the cannibals there.

always staying(mi,L)\=0 ->> staying(mi,L)>=num(ca,L) unless ab12(L).

File two-boats below includes departing, and introduces one more boat,
boat1, that holds at most one person. Given a query similar to basic-test above,
CCALC has determined that a solution requires at least 7 steps, and returned a plan

of that length.

% File ’two-boats’
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!~ macros

maxInt -> 3.

:— include ’basic’; ’departing’.
:— objects
boatl :: vessel.

caused capacity(boatl)=1 unless abl4.

9.3 Four Missionaries and Four Cannibals

There are four missionaries and four cannibals. The problem is now unsolvable.
We simply use a query of the new form available in CCALC, which was given

in Section 6.6

9.4 Boat Can Carry Three

The boat can carry three. Five pairs can cross, but not six. The assumption in File

basic that the boat can carry only two people should be retracted.

% File ’jmc4’: McCarthy’s Elaboration No. 4

% retract constraint capacity(boat)=2 unless abl0.
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:— include ’basic’.

caused abi0.

constraint capacity(boat)=3 unless abl4.

CCALC has determined that at least 11 steps are required if there are five
pairs, and returned a plan of that length. It also verified that no solution exists no

matter how many steps are given if there are six pairs.

% File ’jmc4-test’

:— maxAFValue :: 6.

!~ macros

maxCapacity -> 3.

:— include ’jmcé4’.

% Five pairs can cross.
:— query
label :: 1;
maxstep :: 10..11;
0: num(mi,bank1)=5, num(ca,bankl)=5, num(mi,bank2)=0, num(ca,bank2)=0,
loc(boat)=bankl;

maxstep:
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num(mi,bank2)=5, num(ca,bank2)=5.

% Six pairs can’t cross.
:- query
label :: 2;
maxstep :: any;
0: num(mi,bank1)=6, num(ca,bankl)=6, num(mi,bank2)=0, num(ca,bank2)=0,
loc(boat)=banki;
maxstep:
num(mi,bank2)=6, num(ca,bank2)=6;
invariant:
num(mi,bankl)+num(mi,bank2)=6 & num(ca,bankl)+num(ca,bank?2)=6
& (loc(boat)=bankl & num(mi,bankl)>=4

++ loc(boat)=bank2 & num(mi,bank2)=<3).

9.5 Converting Cannibals

Three missionaries alone with a cannibal can convert him into a missionary. Lif-

schitz [2000] noted:

Do we allow crossing the river and converting a cannibal to occur in
parallel? Can a solution begin, for instance, with two cannibals crossing
to Bank 2 while the third cannibal is being converted into a missionary
on Bank 17 If yes, this is an example of “difficult” concurrency (Section

5) that the approach of this paper does not allow.

169



Here we do allow the concurrency of this kind. The problem can be solved

in 9 steps, one step shorter than the solution reported in [Lifschitz, 2000].

% File ’jmcl11’: McCarthy’s elaboration No. 11

:— include ’basic’; ’departing’.
:- constants
convert (location) :: exogenousAction.

convert (L) increments num(mi,L) by 1 unless abl4(L).

convert (L) decrements num(ca,L) by 1 unless abl5(L).

% converting is possible only if there are three missionaries and only one
% cannibal in the bank

always convert(L) ->> (staying(mi,L)>=3 & staying(ca,L)=1) unless abl6(L).

9.6 Walking on Water

One of the missionaries is Jesus Christ, who can walk on water. This is similar, but
not quite equivalent to the elaboration in Section 9.2.

We treat jc as a singleton subset of group mi. The fact that jc is a subset of
mi is expressed by the postulates that prohibit the states in which the number of jc
is greater than the number of mi in the same location, and that prohibit the events

in which the number of jc crossing is greater than the number of mi crossing.
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Since walking and crossing may be executed at the same time, this is another
instance of “difficult” concurrency. CCALC has determined that the shortest step

solution involves at least 7 steps, and returned a plan of that length.

% File ’jmc10’: McCarthy’s Elaboration No. 10

:— include ’basic’; ’departing’.
:— objects
jc :: group.
:- constants
walk :: exogenousAction;
walk_to :: attribute(location) of walk.

% jc is a subgroup of missionaries
constraint num(jc,L)=<num(mi,L) unless ab14(L).

nonexecutable cross(V) if howmany(V,jc)>howmany(V,mi) unless ab15(V).

% jc can be present at most one location
constraint num(jc,L)=1 ->> num(jc,L1)=0 where L\=L1.

nonexecutable walk if howmany(V,jc)>0 unless abl7(V).

% cannot walk to the same location

nonexecutable walk_to=L if num(jc,L)>0 unless ab18(L).
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walk increments num(mi,L) by 1 if walk_to=L unless abl9(L).

walk decrements num(mi,L) by 1 if walk_to=L1 & L\=L1 unless ab20(L,L1).

walk increments num(jc,L) by 1 if walk_to=L unless ab21(L).

walk decrements num(jc,L) by 1 if walk_to=L1 & L\=L1 unless ab22(L,L1).

walk increments departing(mi,L) by 1 if walk_to=L1 & L\=L1 unless ab23(L,L1).

walk increments departing(jc,L) by 1 if walk_to=L1 & L\=L1 unless ab23(L,L1).

9.7 The Bridge

There is a bridge, wide enough for two to cross at once. This is another instance of
“difficult” concurrency since using the bridge and the boat concurrently affects the
number of people in a location at the same time.

CCALC returned a shortest step solution that involves 4 steps, one step

shorter than the solution reported in [Lifschitz, 2000].

% File ’jmc13’: McCarthy’s elaboration No. 13

:— include ’basic’; ’departing’.

:- constants
useBridge :: exogenousAction;

useBridge_from,
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useBridge_to :: attribute(location) of useBridge;

useBridge_howmany (group) :: attribute(afValue) of useBridge.

useBridge increments num(G,L) by N

if useBridge_to=L & useBridge_howmany(G)=N unless ab14(G,L).
useBridge decrements num(G,L) by N

if useBridge_from=L & useBridge_howmany(G)=N unless ab15(G,L).
useBridge increments departing(G,L) by N

if useBridge_from=L & useBridge_howmany(G)=N unless ab16(G,L).

nonexecutable useBridge if useBridge_from=L & useBridge_to=L1

unless ab17(G,L) where -((L=bankl & Li=bank2) ++ (L=bank2 & Li=bankl)).

always useBridge ->> useBridge_howmany (mi)+useBridge_howmany(ca)>0 &
useBridge_howmany (mi)+useBridge_howmany (ca)=<2

unless abil8.
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Chapter 10

Loop Formulas for Causal Logic

By adding so-called “loop formulas” to completion, Lin and Zhao ensured that
the answer sets of a normal logic program are exactly the models of the modified
completion. This idea has been extended to more general classes of logic programs,
such as programs that allow classical negation, infinite programs, and programs with
nested expressions [Lee and Lifschitz, 2003; Lee, 2005]. In this chapter we show how
to reduce the general case of causal theories to propositional formulas using the idea
of loop formulas.

For simplicity, we limit our attention to Boolean causal theories, that is, to
causal theories in the sense of Section 3.3. From Proposition 8 (Section 6.4.2) we

know that, in principle, any causal theory can be reduced to a theory of this kind.

10.1 Review of the Lin/Zhao Theorem

Let IT be a normal program (Section 3.1). The positive dependency graph of II is

the directed graph such that
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Figure 10.1: The dependency graph of IIy
e its vertices are the atoms occurring in II, and
e its edges go from p; to pa,...pn, for each rule (3.1) of II.

A nonempty set L of atoms is called a loop of II if, for every pair p;, ps of
atoms in L, there exists a path from p; to ps in the positive dependency graph of I1
such that all vertices in this path belong to L. A loop is called trivial if the loop
consists of a single atom such that there is no edge from the atom to itself in the
positive dependency graph.!

For example, consider the following program II;:

p<q
q<p
R ]
ST
pénotr

T < not p.

The positive dependency graph of I1y, shown in Figure 10.1, has six loops: {p}, {q},

{r}, {s}, {p, a3, {r, s}.

!The example of a singleton loop shows that a loop of I does not necessarily correspond to
a loop (or cycle) of the positive dependency graph of IT in the sense of graph theory. Lin and
Zhao [2004] did not allow paths of length 0.
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For any set Y of atoms, the external support formula for Y is the disjunction
of the conjunctions

BAF (10.1)
for all rules (3.2) of IT such that

e p; €Y, and

e BNY =0.

We denote this external support formula by ESty. The (disjunctive) loop formula

of a loop L for II is the formula
VL > ESn.’ (10.2)
By LF (II) we denote the set of formulas (10.2) for all nontrivial loops L of II.

Theorem [Lin and Zhao, 2004, Theorem 1] For any normal program II, a set of

atoms is an answer set of I1 iff it is a model of Comp(II) U LF(II).

If we include loop formulas for trivial loops, we can reformulate the theorem
as follows without referring to completion. In the following we identify II with a
propositional theory by identifying ‘not’ with ‘=’ ‘’ with ‘A’, ¢}’ with ‘V’, and ‘<’

with implication.

Corollary [Lee, 2005] For any normal program II, a set of atoms is an answer set

of I1 iff it is a model of

I A A\ (VLDESH7L>.

L is a loop of II

*When V/ is applied to a set L as in the antecedent of this formula, it stands for the disjunction
of all elements of L.
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10.2 Loop Formulas for Causal Theories in Canonical

Form

10.2.1 Main Theorem for Canonical Theories

Recall that a (Boolean) causal rule is an expression of the form
F <G,

where F', G are propositional formulas.
If the head of a causal rule is a conjunction, then the rule can be broken into

simpler rules: replacing a rule

FNG<H

in a causal theory by the rules
F<H G H

does not change the set of models. This fact allows us to replace any rule in a
causal theory by several rules whose heads are clauses. We will call such causal
rules canonical.

A canonical causal theory is a finite set of canonical causal rules.

Let T be a canonical causal theory. The head dependency graph of T is the

directed graph such that
e its vertices are the literals of o, and

e for each rule [y V--- VI, <= F of T, it has an edge from each [; to each E

where j #i,1<1i,j7<n3

3T denotes the literal complementary to literal I.
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—p—" X o —p—" X o
Tg T3

Figure 10.2: The head dependency graphs of T3, T3

Thus head dependency graphs of causal theories differ from positive dependency
graphs of logic programs in two ways. First their vertices are literals, and not only
atoms. Second, the edges of a graph come from the heads of the rules.

For instance, the head dependency graphs of T5 and T3 (Section 3.3) are
shown in Figure 10.2.1.

Similarly to logic programs, a nonempty consistent set L of literals is called
a loop of T if, for every pair [y, Iy of literals in L, there exists a path from I; to ls in
the head dependency graph of T' such that all vertices in this path belong to L. A
loop is called trivial if the loop consists of a single literal such that there is no edge
from the literal to itself in the head dependency graph.

For instance, T5 has six loops: {p}, {-»p}, {q}, {—q}, {p,q}, {—p, ~q}, among
which the first four are trivial.

The following fact easily follows from the definition of a loop. Given a set L

of literals, L is the set of literals complementary to literals in L.

Fact 1 For any canonical causal theory T, if a set L of literals is a loop of T, L is

a loop of T also.

For any set Y of atoms, the external support formula for Y is the disjunction

178



of the conjunctions

for all rules F' <= G of T such that
e FNY %@, and
e FNY =0.

We denote the external support formula by ES7y.

Given a canonical causal theory T', propositional theory Try(T') consists of

(¢) the implications

GDOF

for all rules F <= G in T,

(4i) the implications
VY D ESry (10.3)

for all consistent sets Y of literals of o.

Propositional theory Tr.(T') is defined in the same way except that instead of for-

mulas (10.3),

e theory Tr.(T) includes

AL > ESry (10.4)
for all loops L of T'.

When L is a loop, we call formula (10.4) the conjunctive loop formula of L for T.

Theorem 2 For any canonical causal theory T and any interpretation X of the

signature of T, the following conditions are equivalent to each other:
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(a) X is a model of T.
(b) X is a model of Try(T).

(¢) X is a model of Tr.(T).
Since conditions (b) and (c) of Theorem 2 are equivalent to each other, any
intermediate condition between the two is also equivalent to (a)—(c). In particular

we consider the following translations, Try; and Tr., which are defined in the same

way as Try except that instead of formulas (10.3),

e theory Try(T) includes
/\Y D) EST,Y

for all nonempty consistent sets Y of literals of 0.4

e theory Tre(T) includes
\/L > ESrL (10.5)

for all loops L of T'.

When L is a loop, we call formula (10.5) the disjunctive loop formula of L for T.

Corollary 5 For any canonical causal theory T and any interpretation X of the

signature of T, the following conditions are equivalent to each of conditions (a)—(c)

of Theorem 2:
(d) X is a model of Try(T).

(e) X is a model of Tre(T).

“The requirement that Y be consistent can be dropped since the implication is trivially true in
this case.
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Notice that the set of formulas in each of the conditions (b)—(e) consists of two
parts. The first is a modular translation of T" into propositional logic: it reads each
rule of T' as an implication. On the other hand, the second part is a non-modular
translation. For instance, to find loops and to write the consequents of (10.4), one
has to look at the whole theory.

For example, consider 75 from Section 3.3. The theory is not definite, so
that we cannot use the literal completion method to find its models. But condition

(c¢) of Theorem 2 tells us that the models of T, are exactly the models of

(pV—-g)A(=pVaq)
ANp2g)A(@2p)A(=pD =) A (=g D —p)A(pAgD L)A(=pA—gD L)
Theory T3 from Section 3.3 is another example to which we cannot apply literal

completion. According to Theorem 2, the models of T3 are exactly the models of

(V=g AN(=pV APV AN(PDgV-g)A(gDpVp)
A=pD=q) A (=g D —p)A(pAgD T)A(-pA—gD L)

Note that all translations (b)—(e) involve the exponential number of loops
in the worst case, and this may be seen as a defect of the translations. However,
assuming a conjecture from the theory of computational complexity which is widely
believed to be true, we can show that any equivalent transformation from causal
theories to propositional formulas without introducing new atoms involves a signif-
icant increase in size, in the worst case. This is a consequence of a similar result for
logic programs proved by Lifschitz and Razborov [2004], in combination with the

lemma from [Giunchiglia et al., 2004, Section 8.3].
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10.2.2 Completion and Tight Causal Theories

We can extend the literal completion method to canonical theories, not necessarily
definite, as follows. The (literal) completion of a canonical theory T, denoted by

Comp(T), is the conjunction of T" with the implications
D EST,{l}

for all literals [ of the signature of T'. Note that this definition is a generalization of
the literal completion of definite theories (Section 3.4).

Since every singleton set of literals is a (trivial) loop, Comp(T') can be viewed
as the conjunction of T" with loop formulas of all trivial loops of T'. Thus it is clear
that Tr.(T) implies Comp(T'), but not vice versa. The following is a corollary to

Theorem 2 (Section 10.2.1):

Corollary 6 For any canonical theory T, if X ts a model of T then it is a model

of Comp(T).

As in the case of logic programs (see Section 3.1), we can define a “tight”
causal theory, for which the implication in the other direction also holds. Our
definition is based on the notion of a loop. For a canonical causal theory T', we will
say that T is tight if all loops of T' are trivial. It is clear that any definite theory
is tight. On the other hand, theories 75 and T3 (Section 3.3) are not tight. The

following example is a nondefinite theory which is tight:

pV—-qg &= T
rVqg <= T

or <= T
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Since Comp(T) and Tr.(T) are the same if T is tight, we get the following

corollary to Theorem 2, which generalizes the proposition from Section 3.4.

Corollary 7 For any tight canonical causal theory T and any interpretation X of

the signature of T, X is a model of T iff X is a model of Comp(T).

For tight theories, the translations from the previous section give polynomial-

size propositional formulas.

10.2.3 Turning Nondefinite Theories into Definite Theories

A corollary of Theorem 2 tells us that any nondefinite theory can be turned into
an equivalent definite theory. Let T be a canonical causal theory of a signature o.
For every rule F <= G of T, the corresponding set of definite rules DR(F <= G) is
defined as follows:
DR(F<=G):{Z = G6n N\ T lEF}
rer\{I}

if |F| > 1; DR(F <= G) = {F < G} otherwise.

The set of definite rules corresponding to T' is the union of DR(r) for all

rules r in T":

DR(T) = ] DR(r).
reT

Note that DR(T) = T when T is definite.
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For example, for T3 from Section 3.3, DR(T3) is

P <=4q
g <= Tp
P = g
q<=p
P <= —q
q < P,
and its only model is {p, ¢}, which is the only model of T3 also.

For T5 from Section 3.3, which has no models, DR(T3) is

P <= q
(10.6)
q < P
which has two models, {p, ¢} and {-p, —q}.
According to Proposition 5 from [Giunchiglia et al., 2004], adding a constraint
1 <= F (Section 3.3) to a causal theory T' does not introduce new models, but simply

eliminates the models of T' that does not satisfy F'. Thus we get the following as a

corollary to Theorem 2.

Corollary 8 For any canonical causal theory T, the following conditions are equiv-

alent to each other:
(a) X is a model of T.

(b) X is a model of DR(T)U{L <= —=(VY D ESry):Y is a consistent set of literals of o}.
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(¢c) X is a model of DR(T)U{L <= =(AL D ESty): L is a nontrivial loop of T}.

(d) X is a model of DR(T)

U{L <= -(AY DESry):Y is a nonempty consistent set of literals of o}.
(e) X is a model of DR(T)U{L <= =(\/ L D ESt 1) : L is a nontrivial loop of T'}.

For example, the constraints that express the conjunctive loop formulas of

nontrivial loops for T, are

1l<=-(prgD 1)
(10.7)
L<=-(pA=gD 1)
Corollary 8 tells us that the models of T5 are exactly the models of the causal theory

which consists of (10.6) and (10.7).
As another example, consider the action description shown in Figure 5.1.
Recall that it is nondefinite because of the last causal law, which is translated into

a set of causal rules:
i: Turning(1) = i: Turning(2) <= i: Connected. (10.8)

According to Corollary 8, the causal theory corresponding to Figure 5.1 can be
turned into a definite theory with the same set of models by replacing the rule (10.8)

with the following rules 5:
i:2Turning(z) <= i:—Turning(z1) A i: Connected (x # 1)

i: Turning(z) <= i: Turning(xz1) A i: Connected (z # x1) (10.9)

L < (A, i: Turning(z) D\, i: MotorOn(z)).

®The first rule can be dropped without changing the set of models.
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10.2.4 Transitive Closure

The comparison of the definition of a loop in logic programs and in causal logic
can guide us in translating a representation from one formalism to the other. For
example, the dependency graph of p < ¢ and the dependency graph of p <= ¢ are
different: while the former has an edge from p to ¢, the latter has no edges. On
the other hand, ¢ D p <= T has two edges: one from p to ¢, and the other from —gq
to —p.

In logic programming the following set of rules describes the transitive closure

tc of a binary relation p on a set A:

p(x,y) for any pair x,y € A such that p(z,y) holds

te(z,y) + p(x,y) (10.10)
te(z, z) < p(z,y), te(y, 2).
One might be tempted to write the corresponding representation in causal

logic as follows:

p(z,y) <= T for any pair x,y € A such that p(z,y) holds

te(x,y) <= p(z,y)

(
(
te(z,z) <= p(z,y) A tc(y, z) (10.11)
—p(z,y) <= —p(z,y)
—te(z,y) <= —te(z,y).

Note that the completion of (10.10) is equivalent to the completion of (10.11).
If p is acyclic, then tc in (10.11) describes the transitive closure correctly. Other-

wise, the representation may allow spurious models that do not correspond to the

transitive closure.
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The presence of the spurious models is related to the “cyclic causality” in the
third rule of (10.11). The loop formulas for (10.11) are not equivalent to the loop
formulas for (10.10). In (10.10) the third rule tells us that the positive dependency
graph has edges that go from tc(z, z) to tc(y, z), while in (10.11) the corresponding
rule does not contribute to the edges of the head dependency graph. Indeed, (10.11)
has trivial loops only.

This problem can be corrected by moving tc(y, z) in the third rule from the
body to the head, to ensure that the head dependency graph contains the corre-
sponding edges:

te(y, z) D te(z, 2) <= p(z,y).b

The modified causal theory may have more loops than (10.10), but the loop
formulas for these extra loops are tautologies, because each of the loops contains
at least one negative literal, and there is a rule —=¢ <= —c¢ in the theory for every
atom c. Thus it is easy to see that the loop formulas for the modified causal theory
are equivalent to the loop formulas for (10.10). The translation of the causal logic
representation of transitive closure to the corresponding logic program provides an
alternative proof of Theorem 2 from [Dogandag et al., 2004], which shows the cor-
rectness of the modified casual theory for representing transitive closure. According
to Corollary 8, tc can also be described by definite theories using the translation

from Section 10.2.3.

% According to Proposition 2 of [Lee, 2004], we can also write p(z,y) A te(y, z) D te(z,z) <= T.
Since p(z,y) does not contribute to any loops, moving p(z,y) from the head to the body does not
change loop formulas. The case is similar with the second rule of (10.11).
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10.3 Loop Formulas for Arbitrary Causal Theories

We can extend Theorem 2 to arbitrary causal theories, not necessarily canonical.
An example of a non-canonical causal theory is given in Section 10.2.3; the theory
is non-canonical because some rules have equivalences in the heads.

About an occurrence of a literal [ in a formula, we say that it is singular if [ is
a positive literal preceded by —, and that it is regular otherwise. Given a formula F,
NNF (F) denotes the negation normal form of F, that is, the formula obtained from
F' by distributing — over A and V until it applies to atoms only.

Let T be a causal theory of a signature ¢. The head dependency graph of T

is the directed graph such that
e its vertices are the literals of o, and

e it includes an edge from a vertex [ to a vertex ' if thereisarule F <= G in T

such that I occurs regularly in NNF(F), and I’ occurs regularly in NNF(F).

This definition reduces to the earlier definition (Section 10.2.1) when T is canonical.
Given a formula F' and a consistent set Y of literals, by Fy we denote the

formula obtained from F' by replacing
e each occurrence of atom a such that a € Y by 1, and
e each occurrence of atom a such that —a € Y by T.

By Ty we denote the theory obtained from T' by replacing all rules F' <= G in T
with Fy <= G. Note that in the process of constructing Ty we transform only the

heads of the rules.
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In application to canonical causal theories, this operation is closely related

to external support formula:

Proposition 14 Let T be a canonical causal theory of a signature o, and X an
interpretation of o that satisfies T'. For any consistent set Y of literals of o, X

satisfies ESTy iff X does not satisfy Ty .

The translations Try, Tr., Trg, Tre from Section 10.2 can be extended to

arbitrary causal theories as follows: propositional theory Tr,(7T') consists of

(7) the implications
GDOF
for all rules F <= G in T, and
(7i) the implications
VY o -1y (10.12)

for all consistent sets Y of literals of o.

In the case when T is canonical, this definition differs from the definition
from Section 10.2.1 only in that in formulas (10.12) we use Ty instead of ESty. In
view of Proposition 14 this difference is not essential.

The translations Tr., Trg, and Tr. are defined in the same way except that

instead of formulas (10.12),

e theory Tr.(T) includes

AL > -1 (10.13)

for all loops L of T,
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e theory Try(T) includes

/\Y o Ty

for all nonempty consistent sets Y of literals of o,

e theory Tr.(T') includes

VLo -1, (10.14)

for all loops L of T'.

Theorem 3 For any causal theory T and any interpretation X of the signature

of T, the following conditions are equivalent to each other:
(a) X is a model of T.
(b) X is a model of Try(T).
(¢) X is a model of Tr.(T).
Corollary 9 For any causal theory T and any interpretation X of the signature

of T, the following conditions are equivalent to each of conditions (a)—(c) of Theo-

rem 3:
(d) X is a model of Try(T).
(e) X is a model of Tr.(T).

The idea above can also be used to prove theorems about the relationship
between logic programs and causal logic. For instance, the proof of Proposition 2
from [Lee, 2004], which shows how to embed disjunctive logic programs into causal
logic, is given by turning both logic programs and causal theories into propositional

theories and showing that these propositional theories are equivalent to each other.
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10.4 Proofs

In this section, we prove Proposition 14 and Theorem 3. These two theorems imply
Theorem 2.

We will sometimes identify a causal theory T" with the corresponding proposi-
tional theory, and say that an interpretation satisfies T if it satisfies the propositional

theory.

10.4.1 Proof of Proposition 14

Proposition 14 Let T be a canonical causal theory of a signature o, and X an
interpretation of o that satisfies T. For any consistent set Y of literals of o, X

satisfies ESTy iff X does not satisfy Ty .

Proof (Left-to-right) Assume that X = ES7y. Then there is a rule
F<G (10.15)
in T" such that
X G,
XN(F\Y)=0
(10.16)
FNY #0, and
FNnY =0.
It follows that X [~ Fy, and consequently, X %~ Ty.
(Right-to-left) Assume that X [~ Ty. We first show that X satisfies Fy <= G

for every rule F' <= G that does not satisfy (10.16).

e For every rule F <= G such that X £ G, XN (F\Y)#0,or FNY #0, X

satisfies Fy <= G trivially.

191



e For every rule F' <= G such that FNY = (), since X satisfies T, it follows that
X #=G,or XN(F\Y) # 0. In either case, it is easy to check that X satisfies

<= G.

It follows that there exists a rule that satisfies (10.16). Therefore X = ES7y. I

10.4.2 Proof of Theorem 3

The proof of Theorem 3 uses the following lemma, proved in Section 10.4.3.

Main Lemma Let T be a causal theory of a signature o, X an interpretation of o
that satisfies T', and Y a nonempty consistent set of literals of o. If X does not

satisfy Ty, for any loop L that is contained in Y, then X does not satisfy Ty .

The proof of Theorem 3 uses the following facts as well.

Fact 2 For any causal theory T and any interpretation X of the signature of T,

X ETiff X =T%.
This is immediate by structural induction.

Fact 3 Let F be a formula, T a causal theory, X an interpretation of the signature

of T, and Y a consistent set of literals.
(i) X = Fy iff (X\Y)UY = F.
(ii) X =Ty iff (X\Y)UY |=TX.
Part (7) is immediate by structural induction. Part (i7) follows from ().

Theorem 3 For any causal theory T and any interpretation X of the signature

of T, the following conditions are equivalent to each other:
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(a) X is a model of T.
(b) X is a model of Try(T).

(¢) X is a model of Tr.(T).

Proof From (b) to (c) is clear.

From (a) to (b): Let X be a model of T'. From the definition of a model, it
follows that X satisfies T. Let Y be any consistent set of literals such that YNX # ().
Since X is a model of T', (X \ Y )UY, which is different from X, does not satisfy 7.

By Fact 3, it follows that X does not satisfy Ty .

From (c) to (a): Assume that X satisfies T', and, for every loop L of T' that
is contained in X, X does not satisfy Ty. First, by Fact 2, X = TX. Let Y be any
interpretation that is different from X. We will show that Y £ TX. Let Z = X \Y.
Since Z is nonempty, and X [ Ty, for any loop L that is contained in Z, by the
main lemma, it follows that X & Tz, which is equivalent to (X \ Z)UZ [~ TX, i.e.,

Y [ TX by Fact 2. Therefore X is the unique interpretation satisfying 7X. 1

10.4.3 Proof of the Main Lemma

Lemma 3 Let T be a causal theory of a signature o, X an interpretation of o that
satisfies T', Y a consistent set of literals of o, and L a nonempty subset of Y such
that the head dependency graph of T has no edge from a literal in L to a literal

in Y\ L. If X does not satisfy T, then X does not satisfy Ty .
Proof Assume that X does not satisfy T7,. There exists a rule

H«+ B
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in T such that X satisfies B, but does not satisfy Hy. By Fact 3,
(X\L)UL |~ H. (10.17)

On the other hand,

X=H (10.18)

because X satisfies T. From (10.17) and (10.18), it follows that at least one literal
in L occurs regularly in NNF(H).

Next we will show that X [~ Ty. Since the head dependency graph of T' has
no edge from a literal in L to a literal in Y \ L, it follows that there is no literal

1 € Y\ L such that [ occurs regularly in NNF(H). It follows from (10.17) that
(X\Y)UY j=H,

which is equivalent to X = Hy by Fact 3. Therefore, X = Ty. |1

Main Lemma Let T be a causal theory of a signature o, X an interpretation of o
that satisfies T, and Y a nonempty consistent set of literals of o. If X does not

satisfy Ty, for any loop L that is contained in Y, then X does not satisfy Ty .

Proof In view of Lemma 3, it is sufficient to show that there exists a loop L such
that the head dependency graph of T" has no edge from a literal in L to a literal
in Y\ L. We will show the existence of such loops.

Let G be the subgraph of the head dependency graph of T induced by Y,
and let G' be the graph obtained from G by collapsing the strongly connected
components of G (that is, the vertices of G’ are the strongly connected components

of G and G' has an edge from vertex V to vertex V' if G has an edge from a literal
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in V to a literal in V'). Since Y is nonempty, there is at least one loop in Y.
Consequently, there is at least one vertex in G'.

It follows that there exists a terminal vertex in G'. Let L be that vertex. It
is clear that there is no edge from a literal in L to a literal in Y \ L in the head

dependency graph of 7. 1
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Chapter 11

Splitting Causal Theories

The splitting set theorem [Lifschitz and Turner, 1994] allows us, under certain con-
ditions, to split a logic program into two parts and determine how the answer sets of
the first part are affected by adding the second part. In this chapter, we extend this
idea to causal logic. The proof of the theorem uses Theorem 3 from the previous
chapter. In Section 11.2; we illustrate the usefulness of the splitting set theorem by
using it to prove a proposition regarding the use of statically determined fluents in

C+.

11.1 Splitting Set Theorem for Causal Logic

Let us consider T (Section 3.3). Without the first rule, the theory consists of the

rules of the signature {g}, that is,

q <= q
(11.1)
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This theory, assuming its signature is {¢}, has two models: {q}, {—q}. If we select
{¢}, and “plug in the value” to the first rule, then the resulting theory consists of a
rule of the signature {p}, that is

p<=T. (11.2)

This theory, assuming its signature is {p}, has one model: {p}. The union of the
two models, {¢} U {p}, coincides with the model of Tj.

On the other hand, if we select {—q}, the theory is
p<=1, (11.3)

which has no models.

The example gives us an idea how a causal theory can be “split.” More
precisely, we have the following result, which is similar to the splitting set theorem
for logic programs [Lifschitz and Turner, 1994].

Let T be a causal theory of a signature o. A subset U of o is a splitting
set for T if, for every rule F' <= G in T such that F' contains a constant from U,
all constants occurring in F' or G belong to U also. The bottom of T relative to a
splitting set U, denoted by by (T'), is the causal theory of the signature U consisting
of all rules F' <= G from T such that all constants occurring in F' or G belong to U.
By ty(T) (the top of T relative to U) we denote the causal theory of the signature
o that consists of all rules of T' not included in by (7).

For example, {q} is a splitting set for T7; the bottom of T3 relative to {q},
bigy(T1), is theory (11.1) with the signature {g}; the top of T3 relative to {q},
t1q1(T1), consists of the first rule of 7y with the signature {p}.

Let F be a formula of the signature o, U a subset of o, and X a set of atoms

¢ =wv such that ¢ € U. By ey(F,X) we denote the formula obtained from F by
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replacing each occurrence of atom c=v with ¢ € U by T if it belongs to X and by
| otherwise. For a causal theory T of the signature o, by ey (T, X) we denote the
causal theory of the signature o\ U that consists of the rules ey (F, X) <= ey(G, X)
for all rules F' <= G of T

For example, the theory eqy (t(43 (71, {q}) is (11.2); the theory efo1 (t1q1 (T, {—q})

is (11.3).

Theorem 4 Let T be a causal theory whose signature is o, and U a splitting set
for T'. An interpretation of o is a model of T iff it can be written as X UY where

X is a model of by(T) and Y is a model of ey (ty(T), X).

According to Theorem 4, the model of T} can be written as {¢} U {p} where
{q} is a model of bg;y(T1) and {p} is a model of eggy (11 (T1), {q})-
11.2 Proof of Proposition 4

Proposition 4 Let D be an action description whose signature is o, Q) a set
of statically determined fluent constants such that 0 N Q = 0, and Dg an action

description which consists of causal laws of the form
caused q if F
where ¢ € Q and F is a formula of o, and the causal laws
caused —q if —gq.

or a € . en e transition sysitem o U 18 1somorpnic to e transition
llq Then the transition syst DUDy is i phic to the transiti

system of D.
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Proof First, take the signature U = 0:0 as a splitting set of (D U Dg)y. Then
by ((D U Dgq)o) is Dy and ty((D U Dg)o) is (Dg)o. By Theorem 4, any model of
(DU Dg)p can be written as X UY where X is a model of Dy and Y is a model of
ev((Dg)o, X). Since cNQ = 0, it is easy to check that given X, ey ((Dg)o, X) has a
unique model of the signature 0:Q (consider the completion of ey ((D U Dg)g, X)).
Thus it follows that there is a 1-1 correspondence between the states of D and the
states of D U Dg.

Now take the signature U = 0:0 U1:0 as a splitting set of (DU Dg);. Then
by((D U Dg)1) is Dy and ty((D U Dg)1) is (Dg)1. By Theorem 4, any model of
(D U Dg): can be written as X UY where X is a model of D; and Y is a model
of ey ((Dg)1,X). Since 0 N Q = 0, it is easy to check that given X, ey ((Dg)1,X)
has a unique model of the signature 0:Q U 1:@Q (again, consider the completion of
ey((DUDg)1,X)). Thus it follows that there is a 1-1 correspondence between the

transitions of D and the transitions of DU Dg. 1§

11.3 Related Work

The splitting set theorem presented in this chapter is closely related to is the splitting
set theorem for default logic presented in [Turner, 1996]. Since a Boolean causal
theory can be viewed as a default theory in the sense of [Reiter, 1980] by identifying

a causal rule F' <= G with the default
: G
F

[Giunchiglia et al., 2004, Proposition 10], one can also derive a splitting set theorem

for causal logic from Turner’s theorem. However, a straightforward derivation would
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require that each body of a rule be either a formula of the signature U or the
signature o \ U, which our splitting set theorem does not require. Moreover, our

theorem is not limited to Boolean theories.

11.4 Proof of the Splitting Set Theorem

Lemma 4 For any causal theory T' whose signature is o, and any splitting set U

for T, every loop L of T is either a loop of by (T') or a loop of ty(T') over o \ U.

Proof Easily follows from the fact that the head dependency graph of T' has no

edge from a literal of U to a literal of o\ U. 1

Lemma 5 Let T be a causal theory whose signature is o, U a splitting set for T,

and X an interpretation of o that satisfies T
(i) For every loop L of by (T),
Xk by(T); iff X =T,
(13) For every loop L of T'\ by(T) over o \ U,
X = (T\by(T))L iff X =T

Proof Follows from Lemma 4. 1

Lemma 6 Let T be a causal theory whose signature is o, U a splitting set for T,

and X an interpretation of U. For any loop L of ty(T) over o\ U,

ev(tu(T), X)) = ey (tu(T)r, X).
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Proof Clear from the definitions of ey and T7,. |

Theorem 4 Let T be a causal theory whose signature is o, and U a splitting set
for T'. An interpretation of o is a model of T iff it can be written as X UY where

X is a model of by(T) and Y is a model of ey (ty(T), X).

Proof (Left-to-right) Assume that Z is a model of 7. We will show that Z = XUY
for two sets X and Y of literals such that X is a model of by (T'), and Y is a model
of ey (ty(T),X). Take X to be the set of literals of U that belong to Z and Y to
be the set of literals of o \ U that belong to Z. It is clear that Z = X UY. By
Theorem 3, Z =T and Z [~ T}, for every loop L of T.

First we will show that X is a model of by (T'). Since Z |= T and the signature
of by(T') is U, it follows that

X = by (7).

Since Z W T7, for every loop L of by (T'), by Lemma 5 (i), it follows that
X bu(T)r

for every loop L of byy(T'). Therefore, by Theorem 3, X is a model of by (7).
Next we will show that Y is a model of ey (ty(T'), X). Since X UY = ty(T),

by the definition of e,

Y | ey(tu(T), X).
On the other hand, since Z [~ T}, for every loop L of T', by Lemma 5 (i),
XUY FEtu(T)e
for every loop L of ty(T') over o \ U. By the definition of ey,
Y £ ey (tu(T)L, X),
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or by Lemma 6,
Y l# eU(tU(T),X)L,

for the same loops. Therefore, by Theorem 3, Y is a model of ey (ty(T), X).

(Right-to-left) Assume that X is a model of by(T") and Y is a model of
ey (tu(T), X). Then we need to show that X UY is a model of T'.

It is clear that X satisfies by (T"). From Y = ey (ty(T'), X), it holds that
XUY E=ty(T).

Therefore X UY |= by(T) Uty(T) =T.
Next we will show that X UY £ Ty, for every loop L of T'. Take any loop L

of T. By lemma 4, L is a loop of either by (T) or a loop of ty(T) over o\ U.

e If L is a loop of by(T'), then by Theorem 3, X }~ by(T)r. By Lemma 5 (i),

X #ETg.
e If L is a loop of ty(T') over o \ U, then by Theorem 3,
Y i~ eu(tu(T), X)i,

and by Lemma 6,
Y P& eU(tU(T)L’X)-

By the definition of ey, it follows that
XUY % tU(T)L,

and by Lemma 5 (1),

XUYI;&TL.

Therefore Z is a model of T" by Theorem 3. 1
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Chapter 12

Conclusion

12.1 Summary of Contributions
The main contributions of this dissertation are as follows.

e We identified several essential limitations of the McCain—-Turner causal logic
and action language C in application to describing commonsense knowledge
about actions, and proposed multi-valued causal logic and language C+, which
overcome these limitations. Language C+, a high level notation for multi-
valued causal theories, can represent non-propositional fluents, defined fluents,
rigid constants, and defeasible causal laws. Despite many advanced features,

it has a simple and elegant formal semantics.

e We redesigned and reimplemented CCALC to account for these extensions.
The input language of the new CCALC provides a convenient and concise

syntax for writing action descriptions in the definite fragment of C+.

e We identified the concept of an additive fluent and proposed a method for
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describing additive fluents in C+. We extended CCALC accordingly to cover

additive fluents, and applied it to several examples of commonsense reasoning.

e We tested expressive possibilities of C+ by formalizing action domains of non-

trivial size, much more complicated than “toy problems.”

e By formalizing McCarthy’s elaborations of the Missionaries and Cannibals
Puzzle, we showed that, to a certain degree, the goal of elaboration tolerance
is met by the input language of the extended CCALC. Each enhancement was

obtained from the basic formalization by simply adding more postulates.

e We showed how to turn an arbitrary causal theory, not necessarily definite, into
a set of formulas in propositional logic using the concept of a loop formula. As
a corollary we showed that any nondefinite theory can be turned into a definite
theory. The result provides a way to extend CCALC to deal with arbitrary

causal theories.

12.2 Topics for Future Work

The following is a list of topics for future work that would improve upon the results

of this dissertation.

e We have not yet considered how to incorporate sensing actions—actions that
affect the agent’s knowledge but have no effect on the world, and we have not

shown how to incorporate probabilistic reasoning in C+.

e Used as a planner, CCALC does not rely on domain-specific control knowledge.

It has been noted that declarative control knowledge sometimes drastically
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improves the performance of planners. Although CCALC can solve prediction
and postdiction problems with incomplete information, it does not handle
“conformant planning”—generating plans that are guaranteed to succeed with

incomplete initial conditions.

CCALC has mainly been a research tool used to test the expressiveness of
its input language. For CCALC to be used as a more practical system, the

implementation should consider efficiency and optimization more seriously.

The current version of CCALC does not operate with real numbers, and even
integer arithmetic is implemented in a way that becomes inefficient when large
integers are needed. It may be possible to lift these limitations by develop-
ing an interface with search engines other than SAT solvers, such as those
based on linear programming, as in [Wolfman and Weld, 1999], or on integer

programming, as in [Kautz and Walser, 1999].

Our translation of an arbitrary causal theory into formulas in propositional
logic (or into a definite theory) can be used to extend CCALC to handle nondef-
inite theories. We may be able to identify a useful subclass of causal theories,
which is more general than the class of definite theories but still can be com-
puted efficiently. One such extension was proposed in [Dogandag et al., 2004].

Also there is a need to better understand how loops can be computed.

CCALC may serve as a general-purpose reasoning tool which is far more ex-
pressive than many other reasoning systems. For instance, CCALC may be
used to formalize the behavior of software/hardware systems, which would al-

low “deep reasoning” about their behavior. This will lead to many interesting
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applications such as online help systems, for which an elaboration tolerant
formalism can be useful for maintaining knowledge bases. CCALC may be
applied to formalizing and testing workflows, a series of tasks performed by

various cooperative and coordinated agents to achieve a desired goal.
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Appendix A

Solutions for Elaborations of

MCP found by CCALC

A.1 Solution for the Basic Problem

| ?- loadf ’basic-test’.

% loading file /v/filer3/v2q021/appsmurf/ccalc/macros.std
% loading file /v/filer3/v2q021/appsmurf/mcp/basic-test

% loading file /v/filer3/v2q021/appsmurf/ccalc/additive

% loading file /v/filer3/v2q021/appsmurf/ccalc/arithmetic
% loading file /v/filer3/v2q021/appsmurf/mcp/basic

% loading file /v/filer3/v2q021/appsmurf/mcp/common?2

% loading file /v/filer3/v2q021/appsmurf/mcp/commonl

% in transition mode...

% 130 atoms, 246 rules, 809 clauses (92 new atoms)

% Grounding time: 3.53 seconds

% Completion time: 0.56 seconds

% Total time: 4.09 seconds

yes

| ?- query O.
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% Shifting atoms and clauses... done. (0.02 seconds)

% After shifting: 2004 atoms (including new atoms), 7685 clauses
% Writing input clauses... done. (0.56 seconds)

% Calling mChaff spelt3... done.

% Reading output file(s) from SAT solver... done.

% Solution time: 1.11 seconds (prep 0.09 seconds, search 1.02 seconds)
No solution with maxstep 10.

% Shifting atoms and clauses... done. (0.03 seconds)

% After shifting: 2202 atoms (including new atoms), 8449 clauses

% Writing input clauses... done. (0.62 seconds)

% Calling mChaff spelt3... done.

% Reading output file(s) from SAT solver... done.

% Solution time: 2.3 seconds (prep 0.10 seconds, search 2.20 seconds)

capacity(boat)=2

0: num(mi,bankl1)=3 num(mi,bank2)=0 num(ca,bankl)=3 num(ca,bank2)=0
loc (boat)=bank1

ACTIONS: cross(boat,to=bank2,howmany(mi)=1,howmany(ca)=1)

1: num(mi,bankl)=2 num(mi,bank2)=1 num(ca,bankl)=2 num(ca,bank2)=1
loc (boat)=bank2

ACTIONS: cross(boat,to=bankl,howmany(mi)=1,howmany(ca)=0)

2: num(mi,bank1)=3 num(mi,bank2)=0 num(ca,bankl)=2 num(ca,bank2)=1
loc(boat)=bank1

ACTIONS: cross(boat,to=bank2,howmany(mi)=0,howmany(ca)=2)

3: num(mi,bank1)=3 num(mi,bank2)=0 num(ca,bankl1)=0 num(ca,bank2)=3

208



loc (boat)=bank?2

ACTIONS: cross(boat,to=bankl,howmany(mi)=0,howmany(ca)=1)

4: num(mi,bank1)=3 num(mi,bank2)=0 num(ca,bankl)=1 num(ca,bank2)=2
loc(boat)=bank1

ACTIONS: cross(boat,to=bank2,howmany(mi)=2,howmany(ca)=0)

5: num(mi,bankl)=1 num(mi,bank2)=2 num(ca,bankl)=1 num(ca,bank2)=2
loc(boat)=bank?2

ACTIONS: cross(boat,to=bankl,howmany(mi)=1,howmany(ca)=1)

6: num(mi,bankl1)=2 num(mi,bank2)=1 num(ca,bankl)=2 num(ca,bank2)=1
loc (boat)=bank1

ACTIONS: cross(boat,to=bank2,howmany(mi)=2,howmany(ca)=0)

7: num(mi,bankl1)=0 num(mi,bank2)=3 num(ca,bankl)=2 num(ca,bank2)=1
loc (boat)=bank2

ACTIONS: cross(boat,to=bankl,howmany(mi)=0,howmany(ca)=1)

8: num(mi,bank1)=0 num(mi,bank2)=3 num(ca,bankl1)=3 num(ca,bank2)=0
loc (boat)=bank1

ACTIONS: cross(boat,to=bank2,howmany(mi)=0,howmany(ca)=2)

9: num(mi,bank1)=0 num(mi,bank2)=3 num(ca,bankl)=1 num(ca,bank2)=2
loc(boat)=bank?2

ACTIONS: cross(boat,to=bankl,howmany(mi)=1,howmany(ca)=0)

209



10: num(mi,bankl)=1 num(mi,bank2)=2 num(ca,bankl)=1 num(ca,bank2)=2
loc(boat)=bank1

ACTIONS: cross(boat,to=bank2,howmany(mi)=1,howmany(ca)=1)
11: num(mi,bankl1)=0 num(mi,bank2)=3 num(ca,bankl1)=0 num(ca,bank2)=3

loc(boat)=bank?2

yes

A.2 Solution for Two Boats

% Calling mChaff spelt3... done.
% Reading output file(s) from SAT solver... done.

% Solution time: 1.05 seconds (prep 0.24 seconds, search 0.81 seconds)

capacity(boat)=2 capacity(boatl)=1

0: num(mi,bankl1)=3 num(mi,bank2)=0 num(ca,bankl)=3 num(ca,bank2)=0
loc(boat)=bankl 1loc(boatl)=bankl

ACTIONS: cross(boat,to=bank2,howmany(mi)=0,howmany(ca)=2)
cross(boatl,to=bank2,howmany (mi)=0,howmany(ca)=1) departing(mi,bankl)=0

departing(mi,bank2)=0 departing(ca,bankl1)=3 departing(ca,bank2)=0

1: num(mi,bankl)=3 num(mi,bank2)=0 num(ca,bankl)=0 num(ca,bank2)=3
loc(boat)=bank2 loc(boatl)=bank2

ACTIONS: cross(boat,to=bankl,howmany(mi)=0,howmany(ca)=1)
cross(boatl,to=bankl,howmany (mi)=0,howmany(ca)=1) departing(mi,bankl)=0

departing(mi,bank2)=0 departing(ca,bankl1)=0 departing(ca,bank2)=2

2: num(mi,bankl1)=3 num(mi,bank2)=0 num(ca,bankl)=2 num(ca,bank2)=1
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loc(boat)=bankl 1loc(boatl)=bankil

ACTIONS: cross(boat,to=bank2,howmany(mi)=2,howmany(ca)=0)
cross(boatl,to=bank2,howmany (mi)=1,howmany(ca)=0) departing(mi,bankl)=3
departing(mi,bank2)=0 departing(ca,bankl1)=0 departing(ca,bank2)=0

3: num(mi,bankl1)=0 num(mi,bank2)=3 num(ca,bankl)=2 num(ca,bank2)=1
loc(boat)=bank2 1loc(boatl)=bank2

ACTIONS: cross(boat,to=bankl,howmany(mi)=1,howmany(ca)=0)
cross(boatl,to=bankl,howmany (mi)=1,howmany(ca)=0) departing(mi,bankl)=0
departing(mi,bank2)=2 departing(ca,bankl1)=0 departing(ca,bank2)=0

4: num(mi,bank1)=2 num(mi,bank2)=1 num(ca,bankl)=2 num(ca,bank2)=1
loc(boat)=bankl 1loc(boatl)=bankl

ACTIONS: cross(boat,to=bank2,howmany(mi)=2,howmany(ca)=0)
cross(boatl,to=bank2,howmany (mi)=0,howmany(ca)=1) departing(mi,bankl)=2
departing(mi,bank2)=0 departing(ca,bankl)=1 departing(ca,bank2)=0

5: num(mi,bankl1)=0 num(mi,bank2)=3 num(ca,bankl)=1 num(ca,bank2)=2
loc(boat)=bank2 loc(boatl)=bank2

ACTIONS: cross(boat,to=bankl,howmany(mi)=0,howmany(ca)=1)
cross(boatl,to=bankl,howmany (mi)=0,howmany(ca)=1) departing(mi,bankl)=0
departing(mi,bank2)=0 departing(ca,bankl1)=0 departing(ca,bank2)=2

6: num(mi,bankl1)=0 num(mi,bank2)=3 num(ca,bankl)=3 num(ca,bank2)=0
loc(boat)=bankl 1loc(boatl)=bankl

ACTIONS: cross(boat,to=bank2,howmany(mi)=0,howmany(ca)=2)

cross(boatl,to=bank2,howmany (mi)=0,howmany(ca)=1) departing(mi,bankl)=0
departing(mi,bank2)=0 departing(ca,bankl1)=3 departing(ca,bank2)=0
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7: num(mi,bank1)=0 num(mi,bank2)=3 num(ca,bankl1)=0 num(ca,bank2)=3
loc(boat)=bank2 loc(boatl)=bank2

A.3 Solution for Four Missionaries and Four Cannibals

% Verifying that the problem is not solvable...

% Verifying the given invariant...

% Shifting atoms and clauses... done. (0.00 seconds)

% After shifting: 326 atoms (including new atoms), 1186 clauses
% Writing input clauses... done. (0.08 seconds)

% Calling mChaff spelt3... done.

% Reading output file(s) from SAT solver... done.

% Solution time: 0.09 seconds (prep 0.03 seconds, search 0.06 seconds)

No solution with maxstep 1.

% Verified the invariant.

% Verifying that initial state satisfies the invariant...

% Shifting atoms and clauses... done. (0.00 seconds)

% After shifting: 44 atoms (including new atoms), 91 clauses
% Writing input clauses... done. (0.04 seconds)

% Calling mChaff spelt3... done.

% Reading output file(s) from SAT solver... done.

% Solution time: 0.02 seconds (prep 0.02 seconds, search 0.00 seconds)

capacity(boat)=2
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0: num(mi,bankl1)=4 num(mi,bank2)=0 num(ca,bankl)=4 num(ca,bank2)=0
loc (boat)=bank2

% Initial state satisfies the invariant.

% Verifying that every goal state does not satisfy the invariant...

% Shifting atoms and clauses... done. (0.00 seconds)

% After shifting: 44 atoms (including new atoms), 91 clauses
% Writing input clauses... done. (0.04 seconds)

% Calling mChaff spelt3... done.

% Reading output file(s) from SAT solver... done.

% Solution time: 0.02 seconds (prep 0.01 seconds, search 0.01 seconds)
No solution with maxstep O.

% Every goal state does not satisfy the invariant.

% Verified that the problem is not solvable for any number of steps.

A.4 Solution for the Boat Carrying Three

A.4.1 Five Pairs

% Calling mChaff spelt3... done.

% Reading output file(s) from SAT solver... done.

% Solution time: 10.32 seconds (prep 0.25 seconds, search 10.07 seconds)
capacity(boat)=3

0: num(mi,bankl1)=5 num(mi,bank2)=0 num(ca,bankl)=5 num(ca,bank2)=0
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loc (boat)=bank1l

ACTIONS: cross(boat,to=bank2,howmany(mi)=1,howmany(ca)=1)

1: num(mi,bankl)=4 num(mi,bank2)=1 num(ca,bankl)=4 num(ca,bank2)=1
loc(boat)=bank2

ACTIONS: cross(boat,to=bankl,howmany(mi)=1,howmany(ca)=0)

2: num(mi,bank1)=5 num(mi,bank2)=0 num(ca,bankl)=4 num(ca,bank2)=1
loc (boat)=bank1

ACTIONS: cross(boat,to=bank2,howmany(mi)=0,howmany(ca)=3)

3: num(mi,bankl1)=5 num(mi,bank2)=0 num(ca,bankl)=1 num(ca,bank2)=4

loc(boat)=bank?2

ACTIONS: cross(boat,to=bankl,howmany(mi)=0,howmany(ca)=1)

4: num(mi,bankl)=5 num(mi,bank2)=0 num(ca,bankl)=2 num(ca,bank2)=3
loc(boat)=bank1

ACTIONS: cross(boat,to=bank2,howmany(mi)=3,howmany(ca)=0)

5: num(mi,bankl1)=2 num(mi,bank2)=3 num(ca,bankl)=2 num(ca,bank2)=3
loc (boat)=bank2

ACTIONS: cross(boat,to=bankl,,howmany(mi)=1,howmany(ca)=1)

6: num(mi,bank1)=3 num(mi,bank2)=2 num(ca,bankl1)=3 num(ca,bank2)=2
loc (boat)=bank1

ACTIONS: cross(boat,to=bank2,howmany(mi)=3,howmany(ca)=0)
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7: num(mi,bank1)=0 num(mi,bank2)=5 num(ca,bankl)=3 num(ca,bank2)=2
loc (boat)=bank2

ACTIONS: cross(boat,to=bankl,,howmany(mi)=0,howmany(ca)=1)

8: num(mi,bank1)=0 num(mi,bank2)=5 num(ca,bankl)=4 num(ca,bank2)=1
loc (boat)=bank1

ACTIONS: cross(boat,to=bank2,howmany(mi)=0,howmany(ca)=3)

9: num(mi,bankl1)=0 num(mi,bank2)=5 num(ca,bankl)=1 num(ca,bank2)=4
loc(boat)=bank?2

ACTIONS: cross(boat,to=bankl,howmany(mi)=1,howmany(ca)=0)

10: num(mi,bankl)=1 num(mi,bank2)=4 num(ca,bankl)=1 num(ca,bank2)=4
loc(boat)=bank1

ACTIONS: cross(boat,to=bank2,howmany(mi)=1,howmany(ca)=1)

11: num(mi,bankl1)=0 num(mi,bank2)=5 num(ca,bankl1)=0 num(ca,bank2)=5
loc (boat)=bank?2

A.4.2 Six Pairs

% Verifying that the problem is not solvable...

% Verifying the given invariant...

% Shifting atoms and clauses... done. (0.00 seconds)

% After shifting: 513 atoms (including new atoms), 2013 clauses
% Writing input clauses... done. (0.20 seconds)

% Calling mChaff spelt3... done.

% Reading output file(s) from SAT solver... done.
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% Solution time: 0.19 seconds (prep 0.06 seconds, search 0.13 seconds)

No solution with maxstep 1.

% Verified the invariant.

% Verifying that initial state satisfies the invariant...

% Shifting atoms and clauses... done. (0.00 seconds)

% After shifting: 62 atoms (including new atoms), 146 clauses
% Writing input clauses... done. (0.13 seconds)

% Calling mChaff spelt3... done.

% Reading output file(s) from SAT solver... done.

% Solution time: 0.05 seconds (prep 0.04 seconds, search 0.01 seconds)

capacity(boat)=3

0: num(mi,bankl1)=6 num(mi,bank2)=0 num(ca,bankl)=6 num(ca,bank2)=0
loc(boat)=bank1

% Initial state satisfies the invariant.

% Verifying that every goal state does not satisfy the invariant...

% Shifting atoms and clauses... done. (0.00 seconds)

% After shifting: 62 atoms (including new atoms), 146 clauses
% Writing input clauses... done. (0.12 seconds)

% Calling mChaff spelt3... done.

% Reading output file(s) from SAT solver... done.
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% Solution time: 0.04 seconds (prep 0.04 seconds, search 0.00 seconds)
No solution with maxstep O.

% Every goal state does not satisfy the invariant.

% Verified that the problem is not solvable for any number of steps.

A.5 Solution for Converting Cannibals

% Calling mChaff spelt3... done.
% Reading output file(s) from SAT solver... done.

% Solution time: 9.34 seconds (prep 2.24 seconds, search 7.10 seconds)
capacity(boat)=2

0: num(mi,bank1)=3 num(mi,bank2)=0 num(ca,bankl1)=3 num(ca,bank2)=0
loc(boat)=bankl

ACTIONS: cross(boat,to=bank2,howmany(mi)=0,howmany(ca)=2)
departing(mi,bank1)=0 departing(mi,bank2)=0 departing(ca,bankl)=2
departing(ca,bank2)=0

1: num(mi,bankl1)=3 num(mi,bank2)=0 num(ca,bankl)=1 num(ca,bank2)=2
loc(boat)=bank?2

ACTIONS: cross(boat,to=bankl,howmany(mi)=0,howmany(ca)=1) convert(bankl)
departing(mi,bank1)=0 departing(mi,bank2)=0 departing(ca,bankl)=0

departing(ca,bank2)=1

2: num(mi,bankl1)=4 num(mi,bank2)=0 num(ca,bankl)=1 num(ca,bank2)=1
loc(boat)=bank1
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ACTIONS: cross(boat,to=bank2,howmany(mi)=2,howmany(ca)=0)
departing(mi,bank1)=2 departing(mi,bank2)=0 departing(ca,bankl)=0
departing(ca,bank2)=0

3: num(mi,bankl1)=2 num(mi,bank2)=2 num(ca,bankl)=1 num(ca,bank2)=1
loc (boat)=bank2

ACTIONS: cross(boat,to=bankl,howmany(mi)=1,howmany(ca)=0)
departing(mi,bank1)=0 departing(mi,bank2)=1 departing(ca,bankl)=0
departing(ca,bank2)=0

4: num(mi,bankl1)=3 num(mi,bank2)=1 num(ca,bankl)=1 num(ca,bank2)=1
loc(boat)=bank1

ACTIONS: cross(boat,to=bank2,howmany(mi)=2,howmany(ca)=0)
departing(mi,bankl)=2 departing(mi,bank2)=0 departing(ca,bank1)=0
departing(ca,bank2)=0

5: num(mi,bankl)=1 num(mi,bank2)=3 num(ca,bankl)=1 num(ca,bank2)=1
loc(boat)=bank?2

ACTIONS: cross(boat,to=bankl,howmany(mi)=1,howmany(ca)=0)
departing(mi,bankl1)=0 departing(mi,bank2)=1 departing(ca,bank1)=0
departing(ca,bank2)=0

6: num(mi,bankl1)=2 num(mi,bank2)=2 num(ca,bankl)=1 num(ca,bank2)=1
loc (boat)=bank1

ACTIONS: cross(boat,to=bank2,howmany(mi)=1,howmany(ca)=1)
departing(mi,bankl)=1 departing(mi,bank2)=0 departing(ca,bankl)=1

departing(ca,bank2)=0

7: num(mi,bankl1)=1 num(mi,bank2)=3 num(ca,bankl1)=0 num(ca,bank2)=2
loc (boat)=bank2
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ACTIONS: cross(boat,to=bankl,howmany(mi)=1,howmany(ca)=0)
departing(mi,bankl1)=0 departing(mi,bank2)=1 departing(ca,bank1)=0
departing(ca,bank2)=0

8: num(mi,bankl1)=2 num(mi,bank2)=2 num(ca,bankl1)=0 num(ca,bank2)=2
loc (boat)=bank1

ACTIONS: cross(boat,to=bank2,howmany(mi)=2,howmany(ca)=0)
departing(mi,bank1)=2 departing(mi,bank2)=0 departing(ca,bankl)=0
departing(ca,bank2)=0

9: num(mi,bank1)=0 num(mi,bank2)=4 num(ca,bankl1)=0 num(ca,bank2)=2
loc (boat)=bank2

A.6 Solution for Walking on Water

% Calling mChaff spelt3... done.
% Reading output file(s) from SAT solver... done.
% Solution time: 1.59 seconds (prep 0.31 seconds, search 1.28 seconds)

capacity(boat)=2

0: num(mi,bank1)=3 num(mi,bank2)=0 num(ca,bankl)=3 num(ca,bank2)=0
num(jc,bankl)=1 num(jc,bank2)=0 loc(boat)=bankl

ACTIONS: cross(boat,to=bank2,howmany(mi)=0,howmany(ca)=2,howmany(jc)=0)
departing(mi,bank1)=0 departing(mi,bank2)=0 departing(ca,bankl)=2

departing(ca,bank2)=0 departing(jc,bankl1)=0 departing(jc,bank2)=0

1: num(mi,bankl)=3 num(mi,bank2)=0 num(ca,bankl)=1 num(ca,bank2)=2

num(jc,bankl)=1 num(jc,bank2)=0 loc(boat)=bank2

ACTIONS: cross(boat,to=bankl,,howmany(mi)=0,howmany(ca)=1,howmany(jc)=0)
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departing(mi,bank1)=0 departing(mi,bank2)=0 departing(ca,bankl)=0
departing(ca,bank2)=1 departing(jc,bankl1)=0 departing(jc,bank2)=0

2: num(mi,bankl1)=3 num(mi,bank2)=0 num(ca,bankl)=2 num(ca,bank2)=1

num(jc,bankl)=1 num(jc,bank2)=0 loc(boat)=bankl

ACTIONS: cross(boat,to=bank2,howmany (mi)=0,howmany(ca)=2,howmany(jc)=0)
departing(mi,bank1)=0 departing(mi,bank2)=0 departing(ca,bankl)=2
departing(ca,bank2)=0 departing(jc,bankl1)=0 departing(jc,bank2)=0

3: num(mi,bankl1)=3 num(mi,bank2)=0 num(ca,bankl)=0 num(ca,bank2)=3
num(jc,bankl)=1 num(jc,bank2)=0 loc(boat)=bank2

ACTIONS: cross(boat,to=bankl,howmany(mi)=0,howmany (ca)=1,howmany(jc)=0)
departing(mi,bankl1)=0 departing(mi,bank2)=0 departing(ca,bank1)=0
departing(ca,bank2)=1 departing(jc,bankl1)=0 departing(jc,bank2)=0

4: num(mi,bank1)=3 num(mi,bank2)=0 num(ca,bankl)=1 num(ca,bank2)=2
num(jc,bankl1)=1 num(jc,bank2)=0 loc(boat)=bankl

ACTIONS: cross(boat,to=bank2,howmany(mi)=2,howmany (ca)=0,howmany(jc)=0)
departing(mi,bank1)=2 departing(mi,bank2)=0 departing(ca,bankl)=0
departing(ca,bank2)=0 departing(jc,bankl1)=0 departing(jc,bank2)=0

5: num(mi,bankl)=1 num(mi,bank2)=2 num(ca,bankl)=1 num(ca,bank2)=2
num(jc,bankl)=1 num(jc,bank2)=0 loc(boat)=bank2

ACTIONS: cross(boat,to=bankl,howmany(mi)=0,howmany(ca)=1,howmany(jc)=0)
walk(walk_to=bank2) departing(mi,bankl)=1 departing(mi,bank2)=0
departing(ca,bankl1)=0 departing(ca,bank2)=1 departing(jc,bankl)=1
departing(jc,bank2)=0

6: num(mi,bank1)=0 num(mi,bank2)=3 num(ca,bankl)=2 num(ca,bank2)=1
num(jc,bank1)=0 num(jc,bank2)=1 loc(boat)=bankl

220



ACTIONS: cross(boat,to=bank2,howmany(mi)=0,howmany (ca)=2,howmany(jc)=0)
departing(mi,bankl1)=0 departing(mi,bank2)=0 departing(ca,bankl)=2
departing(ca,bank2)=0 departing(jc,bankl1)=0 departing(jc,bank2)=0

7: num(mi,bank1)=0 num(mi,bank2)=3 num(ca,bankl1)=0 num(ca,bank2)=3
num(jc,bank1)=0 num(jc,bank2)=1 loc(boat)=bank2

A.7 Solution for the Bridge

% Calling mChaff spelt3... done.
% Reading output file(s) from SAT solver... done.

% Solution time: 0.7 seconds (prep 0.29 seconds, search 0.41 seconds)
capacity(boat)=2

0: num(mi,bankl1)=5 num(mi,bank2)=0 num(ca,bankl)=5 num(ca,bank2)=0
loc (boat)=bank1l

ACTIONS: wuseBridge(useBridge_from=bankl,useBridge_to=bank2,
useBridge_howmany (mi)=0,useBridge_howmany(ca)=2) departing(mi,bankl)=0

departing(mi,bank2)=0 departing(ca,bankl)=2 departing(ca,bank2)=0

1: num(mi,bankl)=5 num(mi,bank2)=0 num(ca,bankl1)=3 num(ca,bank2)=2
loc(boat)=bank1

ACTIONS: wuseBridge(useBridge_from=bank1l,useBridge_to=bank2,
useBridge_howmany (mi)=2,useBridge_howmany(ca)=0) departing(mi,bankl)=2

departing(mi,bank2)=0 departing(ca,bankl1)=0 departing(ca,bank2)=0

2: num(mi,bankl1)=3 num(mi,bank2)=2 num(ca,bankl)=3 num(ca,bank2)=2
loc (boat)=bank1

ACTIONS: cross(boat,to=bank2,howmany(mi)=2,howmany(ca)=0)
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useBridge (useBridge_from=bankl,useBridge_to=bank2,useBridge_howmany (mi)=1,
useBridge_howmany(ca)=1) departing(mi,bank1)=3 departing(mi,bank2)=0
departing(ca,bankl)=1 departing(ca,bank2)=0

3: num(mi,bank1)=0 num(mi,bank2)=5 num(ca,bankl)=2 num(ca,bank2)=3
loc (boat)=bank2

ACTIONS: wuseBridge(useBridge_from=bankl,useBridge_to=bank2,
useBridge_howmany (mi)=0,useBridge_howmany(ca)=2) departing(mi,bankl)=0

departing(mi,bank2)=0 departing(ca,bankl)=2 departing(ca,bank2)=0

4: num(mi,bankl1)=0 num(mi,bank2)=5 num(ca,bankl)=0 num(ca,bank2)=5
loc (boat)=bank2
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