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Abstra
t. Two sets of rules are said to be strongly equivalent to ea
h

other if repla
ing one by the other within any logi
 program preserves

the program's stable models. The familiar 
hara
terization of strong

equivalen
e of grounded programs in terms of the propositional logi


of here-and-there is extended in this paper to a large 
lass of logi


programs with variables. This 
lass in
ludes, in parti
ular, programs with


onditional literals and 
ardinality 
onstraints. The �rst-order version

of the logi
 of here-and-there required for this purpose involves two

additional non-intuitionisti
 axiom s
hemas.

1 Introdu
tion

The 
on
ept of a stable model was originally de�ned in [6℄ for sets of rules of

a very spe
ial synta
ti
 form. Later it was extended to arbitrary propositional

formulas [13, 5℄ and to arbitrary �rst-order senten
es [10, 11, 4℄. The extension

to formulas with quanti�ers is important, in parti
ular, in view of its 
lose

relation to 
onditional literals|an lparse 
onstru
t widely used in answer set

programming [14℄. For instan
e, a

ording to [4℄, the 
hoi
e rule

fq(x) : p(x)g


an be viewed as shorthand for the �rst-order formula

8x(p(x)! (q(x) _ :q(x))):

?
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Similarly, the lparse rule

2 fq(x) : p(x)g


an be thought of as shorthand for the formula

8x(p(x)! (q(x) _ :q(x)))^

9xy(p(x) ^ q(x) ^ p(y) ^ q(y) ^ x 6= y):

In this paper we extend the main theorem of [8℄ to stable models of �rst-order

senten
es. That theorem relates strong equivalen
e of propositional (grounded)

logi
 programs to the propositional logi
 of here-and-there. Re
all that two

sets of rules are said to be strongly equivalent to ea
h other if repla
ing

one by the other within any logi
 program preserves the program's stable

models; the propositional logi
 of here-and-there is the extension of propositional

intuitionisti
 logi
 obtained by adding the axiom s
hema

HOS F _ (F ! G) _ :G.

This is a simpli�ed form of an axiom from [7℄, proposed in [2℄. It is weaker than

the law of the ex
luded middle, but stronger than the weak law of the ex
luded

middle

WEM :F _ ::F .

(To derive WEM from HOS, take G to be :F .)

Su
h 
hara
terizations of strong equivalen
e are interesting be
ause they tell

us whi
h transformations 
an be used to simplify rules, or groups of rules, in a

logi
 program. For instan
e, if we repla
e the pair of rules

q  not p

q  fnot pg 0

in a logi
 program with the fa
t q then the stable models of the program will

remain the same. Indeed, the formula

(:p! q) ^ (::p! q)

is equivalent to q in the propositional logi
 of here-and-there. (Proof: use WEM

with p as F .)

There are several natural extensions of the logi
 of here-and-there to �rst-

order formulas; all of them in
lude the axioms and inferen
e rules of intuitionisti


predi
ate logi
, axiom s
hema HOS, and some other axioms. Our goal here is

to determine whi
h of these extensions 
orresponds to the strong equivalen
e of

�rst-order senten
es in the sense of [4℄.

The next se
tion is a review the de�nition of a stable model from [4℄. In

Se
tion 3 we state our main theorem, whi
h 
hara
terizes strong equivalen
e in

terms of a �rst-order version of the logi
 of here-and-there, and give examples

of the use of that logi
 for establishing the strong equivalen
e of formulas

and 
orresponding programs in the language of lparse. Se
tion 4 des
ribes

a 
hara
terization of our �rst-order logi
 of here-and-there in terms of Kripke



models; the soundness and 
ompleteness theorem stated in that se
tion is a key

element of the proof of the main theorem. Proofs are outlined in Se
tions 5

and 6. In Se
tion 7 the theorem on strong equivalen
e is extended from formulas

to theories|sets of formulas, possibly in�nite. Related work is dis
ussed in

Se
tion 8.

2 Stable Models of a First-Order Senten
e

If p and q are predi
ate 
onstants of the same arity then p = q stands for the

formula

8x(p(x)$ q(x));

and p � q stands for

8x(p(x)! q(x));

where x is a tuple of distin
t obje
t variables. If p and q are tuples p

1

; : : : ; p

n

and q

1

; : : : ; q

n

of predi
ate 
onstants then p = q stands for the 
onjun
tion

p

1

= q

1

^ � � � ^ p

n

= q

n

;

and p � q for

p

1

� q

1

^ � � � ^ p

n

� q

n

:

Finally, p < q is an abbreviation for p � q ^ :(p = q). In se
ond-order logi
,

we will apply the same notation to tuples of predi
ate variables.

A

ording to [4℄, for any �rst-order senten
e (
losed formula) F , SM[F ℄

stands for the se
ond-order senten
e

F ^ :9u((u < p) ^ F

�

(u));

where p is the list of all predi
ate 
onstants p

1

; : : : ; p

n

o

urring in F , u is a list

of n distin
t predi
ate variables u

1

; : : : ; u

n

, and F

�

(u) is de�ned re
ursively, as

follows:

{ p

i

(t

1

; : : : ; t

m

)

�

= u

i

(t

1

; : : : ; t

m

);

{ (t

1

= t

2

)

�

= (t

1

= t

2

);

{ ?

�

= ?;

{ (F �G)

�

= F

�

�G

�

, where � 2 f^;_g;

{ (F ! G)

�

= (F

�

! G

�

) ^ (F ! G);

{ (QxF )

�

= QxF

�

, where Q 2 f8; 9g.

(There is no 
lause for negation here, be
ause we treat :F as shorthand for

F ! ?.) A model of F is stable if it satis�es SM[F ℄.

This de�nition looks very di�erent from the original de�nition of a stable

model from [6℄, but it is a
tually a generalization of that de�nition, in the

following sense. Let F be (the senten
e 
orresponding to) a �nite set of rules

of the form

A

0

 A

1

; : : : ; A

m

;not A

m+1

; : : : ;not A

n

;



where A

0

; : : : ; A

n

are atomi
 formulas not 
ontaining equality. A

ording to

Proposition 1 from [4℄, the Herbrand stable models of F in the sense of the

de�nition above are identi
al to the stable models of F in the sense of the

original de�nition. For instan
e, the senten
e

p(a) ^ q(b) ^ 8x((p(x) ^ :q(x))! r(x)); (1)

representing the logi
 program

p(a);

q(b);

r(x)  p(x);not q(x);

(2)

has a unique Herbrand stable model

fp(a); q(b); r(a)g;

whi
h is the stable model of (2) in the sense of the 1988 de�nition.

Here is an example illustrating the relationship between the de�nition above

and the semanti
s of programs with 
onditional literals and 
hoi
e rules proposed

in [14℄. The senten
e

p(a) ^ p(b) ^ 8x(p(x)! (q(x) _ :q(x)));

representing the program

p(a);

p(b);

fq(x) : p(x)g;

(3)

has 4 Herbrand stable models

fp(a); p(b)g;

fp(a); p(b); q(a)g;

fp(a); p(b); q(b)g;

fp(a); p(b); q(a); q(b)g;

whi
h are identi
al to the stable models of (3) in the sense of [14℄.

3 Theorem on Strong Equivalen
e

About �rst-order senten
es F and G we say that F is strongly equivalent to G

if, for every �rst-order senten
e H (possibly of a larger signature), F ^ H has

the same stable models as G ^H [4℄.

By INT

=

we denote �rst-order intuitionisti
 logi
 with the usual axioms for

equality:

x = x

and

x = y ! (F (x)! F (y))



for every formula F (x) su
h that y is substitutable for x in F (x).

Our 
hara
terization of strong equivalen
e refers to the axiom s
hema

SQHT 9x(F (x) ! 8xF (x)):

The notation SQHT stands for \stati
 quanti�ed here-and-there"; see Se
tion 4

below for an explanation. We also need the \de
idable equality" axiom

DE x = y _ x 6= y.

Theorem on Strong Equivalen
e A senten
e F is strongly equivalent to a

senten
e G i� the equivalen
e F $ G is provable in

INT

=

+HOS+ SQHT +DE: (4)

We will denote system (4) by SQHT

=

.

Example 1 In any program 
ontaining the rules

fq(x) : p(x)g

p(a)

q(a)

repla
ing the fa
t q(a) with the 
onstraint

 not q(a)

would not 
hange the program's stable models. Indeed, the formula

8x(p(x)! (q(x) _ :q(x))) ^ p(a) ^ q(a) (5)

is intuitionisti
ally equivalent to

8x(p(x)! (q(x) _ :q(x))) ^ p(a) ^ ::q(a):

Proof: The �rst two 
onjun
tive terms of (5) imply q(a)_:q(a), and 
onsequently

::q(a)$ q(a).

Repla
ing a fa
t by a 
onstraint 
an be viewed as a simpli�
ation, be
ause

the e�e
t of adding a 
onstraint to a program on its stable models is easy to

des
ribe. For instan
e, adding the 
onstraint not q(a) to a program eliminates

its stable models that do not satisfy q(a). Adding the fa
t q(a) to a program

may a�e
t its stable models, generally, in a very 
ompli
ated way.

Example 2 Dropping x 6= y from the body of the rule

p(y) p(x); q(x; y); x 6= y

would not 
hange a program's stable models, be
ause the formula

8xy(p(x) ^ q(x; y) ^ x 6= y ! p(y)) (6)



is equivalent to

8xy(p(x) ^ q(x; y)! p(y)) (7)

in INT

=

+DE. Proof: By DE, (7) is equivalent to the 
onjun
tion of (6) and

8xy(p(x) ^ q(x; y) ^ x = y ! p(y)):

The last formula is provable in INT

=

.

Example 3 A di�erent 
hara
terization of strong equivalen
e is used in [4,

Se
tion 4℄ to show that :8xF (x) is strongly equivalent to 9x:F (x). To prove

this fa
t using the theorem above, observe that the equivalen
e

:8xF (x)$ 9x:F (x) (8)

is provable in INT + SQHT. (Proof: the impli
ation right-to-left is provable

intuitionisti
ally; the impli
ation left-to-right is an intutionisti
 
onsequen
e of

SQHT.) Furthemore, ::9xF (x) is strongly equivalent to 9x::F (x). (Proof: the

formula

::9xF (x) $ 9x::F (x): (9)

is intuitionisti
ally equivalent to the instan
e of (8) in whi
h :F (x) is taken

as F (x).)

4 Kripke Models

Our proof of the theorem on strong equivalen
e refers to the 
lass of Kripke

models introdu
ed in [4℄. In this se
tion we dis
uss two reasons why this 
lass

of models is relevant. On the one hand, system SQHT

=

, introdu
ed above in


onne
tion with the problem of strong equivalen
e, turns out to be a sound and


omplete axiomatization of this 
lass of models. On the other hand, a

ording

to Proposition 4 from [4℄, the �rst-order equilibrium logi
 based on this 
lass of

models provides a 
hara
terization of the 
on
ept of a stable model that we are

interested in.

The de�nition of this 
lass of models uses the following notation. If I is

an interpretation of a signature � (in the sense of 
lassi
al logi
) then by �

I

we denote the extension of � obtained by adding pairwise distin
t symbols �

�

,


alled names, for all elements � of the universe of I as obje
t 
onstants. We will

identify I with its extension to �

I

de�ned by I(�

�

) = �. The value that I assigns

to a ground term t of signature �

I

will be denoted by t

I

. By �

f

we denote the

part of � 
onsisting of its fun
tion 
onstants (in
luding obje
t 
onstants, whi
h

are viewed as fun
tion 
onstants of arity 0).

An HT-interpretation of � is a triple hI

f

; I

h

; I

t

i, where

{ I

f

is an interpretation of �

f

, and

{ I

h

, I

t

are sets of atomi
 formulas formed using predi
ate 
onstants from �

and obje
t 
onstants �

�

for arbitrary elements � of the universe of I

f

, su
h

that I

h

� I

t

.



The symbols h, t are 
alled worlds; they are ordered by the relation h<t.

Note that a

ording to this de�nition the two worlds share a 
ommon

universe. In this sense, our Kripke models are stati
; this explains the use of

the word \stati
" in the name of the axiom SQHT (Se
tion 3). The worlds share

also a 
ommon equality relation: in both of them, equality is understood as

identity.

The satisfa
tion relation between an HT-interpretation I = hI

f

; I

h

; I

t

i, a

world w and a senten
e F of the signature �

U

, where U is the universe of I

f

, is

de�ned re
ursively:

{ I; w j= p(t

1

; : : : ) if p((t

I

1

)

�

; : : : ) 2 I

w

,

{ I; w j= t

1

= t

2

if t

I

1

= t

I

2

,

{ I; w 6j= ?,

{ I; w j= F ^G if I; w j= F and I; w j= G,

{ I; w j= F _G if I; w j= F or I; w j= G,

{ I; w j= F ! G if, for every world w

0

su
h that w � w

0

,

I; w

0

6j= F or I; w

0

j= G,

{ I; w j= 8xF (x) if, for ea
h � from the universe of I

f

, I; w j= F (�

�

),

{ I; w j= 9xF (x) if, for some � from the universe of I

f

, I; w j= F (�

�

).

We write I j= F if I; h j= F .

1

For any set � of senten
es and any senten
e F , we write � j= F if every

HT-interpretation satisfying all formulas in � satis�es F also. We write � ` F

if F is derivable from � in SQHT

=

.

Soundness and Completeness Theorem � j= F i� � ` F .

In the next se
tion we outline a proof of the more diÆ
ult part of this 
laim,

the impli
ation left-to-right.

The 
orresponding 
on
ept of an equilibrium model is de�ned as follows.

An HT-interpretation hI

f

; I

h

; I

t

i is total if I

h

= I

t

. A total HT-interpretation

hI; J; Ji is an equilibrium model of F if

(i) hI; J; Ji j= F , and

(ii) for any proper subset J

0

of J , hI; J

0

; Ji 6j= F .

We 
an represent an interpretation I of � in the sense of 
lassi
al logi


as the pair hI j

�

f ; I

0

i, where I

0

is the set of all atomi
 formulas, formed using

predi
ate 
onstants from � and names �

�

, whi
h are satis�ed by I . A

ording to

Proposition 4 from [4℄, an interpretation hI; Ji is a stable model of a senten
e F

i� hI; J; Ji is an equilibrium model of F . Thus stable models of a senten
e are

essentially identi
al to its equilibrium models.

1

This de�nition looks di�erent from the de�nition of satisfa
tion proposed in [4℄, but

it easy to 
he
k that they are equivalent to ea
h other.



5 Proof of Completeness

Assume that � 6` F . We will de�ne an HT-interpretation I that satis�es all

formulas in � but does not satisfy F .

There exists a signature �

0

, obtained from � by adding new obje
t 
onstants,

and a set �

h

of senten
es of this signature, satisfying the following 
onditions:

(i) � � �

h

,

(ii) F 62 �

h

,

(iii) �

h

is 
losed under `,

(iv) for any senten
e of the form G _H in �

h

, G 2 �

h

or H 2 �

h

,

(v) for any senten
e of the form 9xF (x) in �

h

there exists an obje
t 
onstant 


in �

0

su
h that F (
) 2 �

h

.

(Conditions (iii){(v) 
an be expressed by saying that �

h

is prime.) The proof is

the same as in Henkin's proof of 
ompleteness of intuitionisti
 logi
 [1, Se
tion 3℄.

For any ground terms t

1

and t

2

of the signature �

0

, we write t

1

� t

2

if the formula

t

1

= t

2

belongs to �

h

. Let �

t

be a maximal superset of �

h

that is 
onsistent and


losed under 
lassi
al logi
; su
h a superset exists by the Lindenbaum lemma.

Now I = hI

f

; I

h

; I

t

i is de�ned as follows:

(i) the universe of I

f

is the set of equivalen
e 
lasses of the relation �;

(ii) for ea
h obje
t 
onstant 
 from �, I

f

[
℄ is the equivalen
e 
lass of � that


ontains 
,

(iii) for ea
h fun
tion 
onstant g from � of arity n > 0, I

f

[g℄(�

1

; : : : ; �

n

) is the

equivalen
e 
lass of � that 
ontains g(t

1

; : : : ; t

n

) for all terms t

1

2 �

1

,: : : ,

t

n

2 �

n

.

(iv) for ea
h world w, I

w

is the set of formulas of the form p(�

�

1

; : : : ; �

�

n

) su
h

that �

w


ontains p(t

1

; : : : ; t

n

) for all terms t

1

2 �

1

; : : : ; t

n

2 �

n

.

Note that I 
an be viewed as an HT-interpretation of the extended

signature �

0

if we extend 
lause (ii) to all obje
ts 
onstants from �

0

. In the

rest of this se
tion, terms and formulas are understand as terms and formulas of

the extended signature.

Lemma 1 For any ground terms t

1

, t

2

, (t

1

= t

2

) 2 �

t

i� (t

1

= t

2

) 2 �

h

.

Proof The if part follows from the fa
t that �

h

� �

t

. Only if: Assume that

(t

1

= t

2

) 62 �

h

. Sin
e �

h


ontains the instan
e t

1

= t

2

_ t

1

6= t

2

of DE and is

prime, it follows that (t

1

6= t

2

) 2 �

h

. Sin
e �

t

is a 
onsistent superset of �

h

, we


an 
on
lude that (t

1

= t

2

) 62 �

t

.

Lemma 2 For any senten
e of the form 9xG(x) there exists an obje
t 
onstant 


su
h that the formula

9xG(x) ! G(
) (10)

belongs to �

t

.

Proof Case 1: 9xG(x) 2 �

t

. Sin
e �

h


ontains the instan
e

:9xG(x) _ ::9xG(x)



of WEM and is prime, �

h


ontains one of its disjun
tive terms. But the �rst

disjun
tive term 
annot belong to �

h

be
ause the 
onsistent superset �

t

of �

h


ontains 9xG(x). Consequently ::9xG(x) 2 �

h

. Sin
e equivalen
e (9) belongs

to �

h

, it follows that 9x::G(x) 2 �

h

. Sin
e �

h

is prime, it follows that there

exists an obje
t 
onstant 
 su
h that ::G(
) 2 �

h

. Sin
e �

h

� �

t

and (10) is

a 
lassi
al 
onsequen
e of ::G(
), it follows that (10) belongs to �

t

. Case 2:

9xG(x) 62 �

t

. Sin
e �

t

is maximally 
onsistent, it follows that :9xG(x) 2 �

t

.

Sin
e (10) is a 
lassi
al 
onsequen
e of :9xG(x), it follows that (10) belongs

to �

t

.

Re
all that our goal is to prove two properties of the interpretation I : it

satis�es all formulas in � but does not satisfy F . By the 
hoi
e of �

h

, this is

immediate from the following lemma:

Lemma 3 For any senten
e G of signature �

0

and any world w,

I; w j= G i� G 2 �

w

:

Proof: by indu
tion on G. We will 
onsider the three 
ases where reasoning is

di�erent than in the similar proof for intuitionisti
 logi
 [1, Se
tion 3℄: t

1

= t

2

,

G! H , and 8xG(x).

1. To 
he
k that

I; w j= t

1

= t

2

i� t

1

= t

2

2 �

w

we show that ea
h side is equivalent to t

1

� t

2

. For the left-hand side, this follows

from the fa
t that for every ground term t, t

I

f

is the equivalen
e 
lass of � that


ontains t (by indu
tion on t). For the right-hand side, if w = h then this is

immediate from the de�nition of �; if w = t then use Lemma 1.

2. Assume that

I; w j= G i� G 2 �

w

and

I; w j= H i� H 2 �

w

;

we want to show that

I; w j= G! H i� G! H 2 �

w

:

The if part follows from the indu
tion hypothesis and the 
lause for ! in the

de�nition of satisfa
tion. To prove the only if part for w = t, use the indu
tion

hypothesis and the fa
t that, by the maximal 
onsisten
y of �

t

, this set 
ontains

either G or :G. For w = h, we 
on
lude from the indu
tion hypothesis and the

assumption I; h j= G! H that

G 62 �

h

or H 2 �

h

(11)

and

G 62 �

t

or H 2 �

t

: (12)



Case 1: G 2 �

h

. Then, by (11), H 2 �

h

and 
onsequently G ! H 2 �

h

.

Case 2: :G 2 �

h

. Sin
e :G ` G ! H , G ! H 2 �

h

. Case 3: G;:G 62 �

h

.

Sin
e �

h


ontains the instan
e :G _ ::G of WEM and is prime, it follows that

::G 2 �

h

� �

t

. Then G 2 �

t

and, by (12), H 2 �

t

. Sin
e �

t

is 
onsistent

and 
ontains �

h

, :H 62 �

h

. On the other hand, �

h


ontains the instan
e

G _ (G ! H) _ :H of HOS and is prime; sin
e neither G nor :H belongs

to �

h

, G! H 2 �

h

.

3. Assume that for every obje
t 
onstant 


I; w j= G(
) i� G(
) 2 �

w

;

we need to show that

I; w j= 8xG(x) i� 8xG(x) 2 �

w

:

The if part follows from the indu
tion hypothesis and the 
lause for 8 in the

de�nition of satisfa
tion. To prove the only if part for w = t, take an obje
t


onstant 
 su
h that the formula

9x:G(x) ! :G(
) (13)

belongs to �

t

(Lemma 2). It follows from the indu
tion hypothesis and the 
lause

for 8 in the de�nition of satisfa
tion that G(
) belongs to �

t

too; 8xG(x) is a


lassi
al 
onsequen
e of (13) and G(
). To prove the only if part for w = h,


onsider the instan
e

9x(G(x) ! 8xG(x))

of SQHT. Sin
e �

h

is prime, there exists an obje
t 
onstant 
 su
h that �

h


ontains the formula

G(
)! 8xG(x): (14)

By the indu
tion hypothesis and the 
lause for 8 in the de�nition of satisfa
tion,

G(
) 2 �

h

; 8xG(x) is an intuitionisti
 
onsequen
e of G(
) and (14).

6 Proof of the Strong Equivalen
e Theorem

In view of the soundness and 
ompleteness theorem, the theorem on strong

equivalen
e 
an be rewritten as: a senten
e F is strongly equivalent to a

senten
e G i� F and G are satis�ed by the same HT-interpretations.

If F and G are satis�ed by the same HT-interpretations then F^H and G^H

are satis�ed by the same HT-interpretations; then F ^ H and G ^ H have the

same equilibrium models, and 
onsequently the same stable models.

For the 
onverse, let us assume that F ^ H and G ^ H have the same

stable models for every �rst order senten
e H . Then these formulas have the

same equilibrium models. For any predi
ate 
onstant P , let C(P ) stand for the

senten
e

8x(::P (x) ! P (x)):



Note �rst that F and G have the same total models. Indeed, let H

0

be the


onjun
tion of senten
es C(P ) for all predi
ate 
onstants P o

urring in F or G;

the total models of F 
an be 
hara
terized as the equilibrium models of F ^H

0

,

and the total models of G 
an be 
hara
terized as the equilibrium models of

G ^H

0

.

Assume that hI

f

; I

h

; I

t

i satis�es F but not G, and 
onsider the total HT-

interpretation hI

f

; I

t

; I

t

i. It is 
lear that the total interpretation hI

f

; I

t

; I

t

i

satis�es F , and 
onsequently G. Let H

0

be the 
onjun
tion of senten
es C(P )

for all predi
ate 
onstants P o

urring in G, and let H

1

be the impli
ation

G ! H

0

. The HT-interpretation hI

f

; I

h

; I

t

i satis�es H

1

. Indeed, it does not

satisfy its ante
edent G, and I

t

satis�es its 
onsequent H

0

. Therefore hI

f

; I

t

; I

t

i

is not an equilibrium model of F ^ H

1

. Then hI

f

; I

t

; I

t

i is not an equilibrium

model of G ^H

1

either. But this is impossible, be
ause G ^ H

1

implies H

0

, so

that all models of that set are total.

7 Strong Equivalen
e for Theories

The de�nition of a stable model from [4℄, reprodu
ed here in Se
tion 2, 
an

be extended to �nite sets of �rst-order senten
es: a model of su
h a set �

is 
alled stable if it satis�es SM

�

V

F2�

F

�

. The relationship between stable

models and equilibrium models, dis
ussed at the end of Se
tion 4, suggests a

way to further extend this de�nition to \theories"|arbitrary sets of �rst-order

senten
es, possibly in�nite. We say that a total HT-interpretation hI; J; Ji is an

equilibrium model of a set � of �rst order senten
es if

(i) hI; J; Ji j= � , and

(ii) for any proper subset J

0

of J , hI; J

0

; Ji 6j= � .

An interpretation hI; Ji is a stable model of � i� hI; J; Ji is an equilibriummodel

of � .

About sets � , � of �rst-order senten
es we say that � is strongly equivalent

to � if, for any set � of �rst-order senten
es (possibly of a larger signature),

�[� has the same stable models as�[�. This relation between sets of formulas


an be 
hara
terized in the same way as the strong equivalen
e relation between

formulas:

Theorem on Strong Equivalen
e for Theories A set � of senten
es is

strongly equivalent to a set � of senten
es i� � is equivalent to � in SQHT

=

.

This theorem, in 
ombination with the theorem on strong equivalen
e for

formulas, shows that the new de�nition of strong equivalen
e is a generalization

of the de�nition from Se
tion 3: F and G are strongly equivalent to ea
h other

as senten
es i� fFg and fGg are strongly equivalent to ea
h other as theories.

The proof is similar to that in the previous se
tion, but 
onsidering the

(possibly in�nite) set �

0

of formulas C(P ) instead of the 
onjun
tion H

0

of

these formulas, and the set of impli
ations G! C(P ) instead of H

1

.



8 Related Work

An alternative proof that the logi
 SQHT

=


aptures strong equivalen
e for

theories in the sense of the previous se
tion 
an be found in [12℄. The two proofs

highlight di�erent properties. In ea
h 
ase it is shown that when two theories �

and � are not equivalent in SQHT

=

, an extension � 
an be 
onstru
ted su
h

that the equilibrium models of � [ � and � [ � di�er. From the proof given

in Se
tion 7 above it is 
lear that � 
an be 
onstru
ted in the same signature,

without additional 
onstants. From the proof given in [12℄ the extension may use

obje
t 
onstants not appearing in � or �. However, � is shown there to have

a very simple form: its elements are \unary" formulas, that is, ground atomi


formulas and impli
ations F ! G where F and G are ground atomi
 formulas.

From this observation it follows that if � and � 
onsist of logi
 program rules

and are not strongly equivalent then there exists a set of program rules � (of

a simple form) su
h that � [ � and � [� have di�erent equilibrium or stable

models.

Strong equivalen
e for non-ground logi
 programs under the answer set

semanti
s has also been de�ned and studied in [9, 3℄. In the 
ase of [3℄ the


on
ept is similar to the one presented in the previous se
tion, ex
ept that the

equivalen
e is de�ned with respe
t to a somewhat di�erent notion of stable

model than the one used here, and equality is not expli
itly treated. In general

the two 
on
epts are di�erent sin
e stable or equilibrium models as de�ned here

are not required to satisfy the unique name assumption. As a 
onsequen
e not

every equilibrium model need be a stable model or answer set in the sense of [3℄.

However for the safe programs without equality studied in [3℄ we 
an establish a

simple 
hara
terisation of strong equivalen
e. Let us denote by SQHT the logi


SQHT

=

without an equality predi
ate and axioms for equality:

SQHT = INT+HOS+ SQHT +DE:

Disjun
tive logi
 programs are de�ned in the usual way, and rules where ea
h

variable appears in at least one positive body atom are 
alled safe; a program is

safe if all its rules are safe. A

ording to a theorem from [12℄, two safe disjun
tive

programs are strongly equivalent in the sense of [3℄ if and only if they are

equivalent in the logi
 SQHT. The proof makes use of the fa
t that if � and �

are non-strongly equivalent safe programs then there exists a set of � of unary

program rules su
h that � [ � and � [ �, whi
h are both safe, have di�erent

stable models. For safe programs, this theorem also en
ompasses the notion of

strong equivalen
e found in [9℄.

9 Con
lusion

In this paper we understand logi
 programs with variables in a very general way,

as arbitrary �rst-order formulas with equality. The logi
 SQHT

=

is the �rst-

order version of the logi
 of here-and-there that 
hara
terizes strong equivalen
e

for su
h programs. This logi
 is an extension of the intuitionisti
 �rst-order logi




with equality. One of its three additional postulates is the axiom s
hema HOS,

familiar from the propositional logi
 of here-and-there. Another is the well-known

de
idable equality axiom DE. The third, SQHT, is apparently new; it 
an be

thought of as the result the �rst step towards 
onverting the trivial impli
ation

8xF (x)! 8xF (x) to prenex form. Studying properties of this intermediate logi


is a topi
 for future work.
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