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Abstrat. Two sets of rules are said to be strongly equivalent to eah

other if replaing one by the other within any logi program preserves

the program's stable models. The familiar haraterization of strong

equivalene of grounded programs in terms of the propositional logi

of here-and-there is extended in this paper to a large lass of logi

programs with variables. This lass inludes, in partiular, programs with

onditional literals and ardinality onstraints. The �rst-order version

of the logi of here-and-there required for this purpose involves two

additional non-intuitionisti axiom shemas.

1 Introdution

The onept of a stable model was originally de�ned in [6℄ for sets of rules of

a very speial syntati form. Later it was extended to arbitrary propositional

formulas [13, 5℄ and to arbitrary �rst-order sentenes [10, 11, 4℄. The extension

to formulas with quanti�ers is important, in partiular, in view of its lose

relation to onditional literals|an lparse onstrut widely used in answer set

programming [14℄. For instane, aording to [4℄, the hoie rule

fq(x) : p(x)g

an be viewed as shorthand for the �rst-order formula

8x(p(x)! (q(x) _ :q(x))):
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Similarly, the lparse rule

2 fq(x) : p(x)g

an be thought of as shorthand for the formula

8x(p(x)! (q(x) _ :q(x)))^

9xy(p(x) ^ q(x) ^ p(y) ^ q(y) ^ x 6= y):

In this paper we extend the main theorem of [8℄ to stable models of �rst-order

sentenes. That theorem relates strong equivalene of propositional (grounded)

logi programs to the propositional logi of here-and-there. Reall that two

sets of rules are said to be strongly equivalent to eah other if replaing

one by the other within any logi program preserves the program's stable

models; the propositional logi of here-and-there is the extension of propositional

intuitionisti logi obtained by adding the axiom shema

HOS F _ (F ! G) _ :G.

This is a simpli�ed form of an axiom from [7℄, proposed in [2℄. It is weaker than

the law of the exluded middle, but stronger than the weak law of the exluded

middle

WEM :F _ ::F .

(To derive WEM from HOS, take G to be :F .)

Suh haraterizations of strong equivalene are interesting beause they tell

us whih transformations an be used to simplify rules, or groups of rules, in a

logi program. For instane, if we replae the pair of rules

q  not p

q  fnot pg 0

in a logi program with the fat q then the stable models of the program will

remain the same. Indeed, the formula

(:p! q) ^ (::p! q)

is equivalent to q in the propositional logi of here-and-there. (Proof: use WEM

with p as F .)

There are several natural extensions of the logi of here-and-there to �rst-

order formulas; all of them inlude the axioms and inferene rules of intuitionisti

prediate logi, axiom shema HOS, and some other axioms. Our goal here is

to determine whih of these extensions orresponds to the strong equivalene of

�rst-order sentenes in the sense of [4℄.

The next setion is a review the de�nition of a stable model from [4℄. In

Setion 3 we state our main theorem, whih haraterizes strong equivalene in

terms of a �rst-order version of the logi of here-and-there, and give examples

of the use of that logi for establishing the strong equivalene of formulas

and orresponding programs in the language of lparse. Setion 4 desribes

a haraterization of our �rst-order logi of here-and-there in terms of Kripke



models; the soundness and ompleteness theorem stated in that setion is a key

element of the proof of the main theorem. Proofs are outlined in Setions 5

and 6. In Setion 7 the theorem on strong equivalene is extended from formulas

to theories|sets of formulas, possibly in�nite. Related work is disussed in

Setion 8.

2 Stable Models of a First-Order Sentene

If p and q are prediate onstants of the same arity then p = q stands for the

formula

8x(p(x)$ q(x));

and p � q stands for

8x(p(x)! q(x));

where x is a tuple of distint objet variables. If p and q are tuples p

1

; : : : ; p

n

and q

1

; : : : ; q

n

of prediate onstants then p = q stands for the onjuntion

p

1

= q

1

^ � � � ^ p

n

= q

n

;

and p � q for

p

1

� q

1

^ � � � ^ p

n

� q

n

:

Finally, p < q is an abbreviation for p � q ^ :(p = q). In seond-order logi,

we will apply the same notation to tuples of prediate variables.

Aording to [4℄, for any �rst-order sentene (losed formula) F , SM[F ℄

stands for the seond-order sentene

F ^ :9u((u < p) ^ F

�

(u));

where p is the list of all prediate onstants p

1

; : : : ; p

n

ourring in F , u is a list

of n distint prediate variables u

1

; : : : ; u

n

, and F

�

(u) is de�ned reursively, as

follows:

{ p

i

(t

1

; : : : ; t

m

)

�

= u

i

(t

1

; : : : ; t

m

);

{ (t

1

= t

2

)

�

= (t

1

= t

2

);

{ ?

�

= ?;

{ (F �G)

�

= F

�

�G

�

, where � 2 f^;_g;

{ (F ! G)

�

= (F

�

! G

�

) ^ (F ! G);

{ (QxF )

�

= QxF

�

, where Q 2 f8; 9g.

(There is no lause for negation here, beause we treat :F as shorthand for

F ! ?.) A model of F is stable if it satis�es SM[F ℄.

This de�nition looks very di�erent from the original de�nition of a stable

model from [6℄, but it is atually a generalization of that de�nition, in the

following sense. Let F be (the sentene orresponding to) a �nite set of rules

of the form

A

0

 A

1

; : : : ; A

m

;not A

m+1

; : : : ;not A

n

;



where A

0

; : : : ; A

n

are atomi formulas not ontaining equality. Aording to

Proposition 1 from [4℄, the Herbrand stable models of F in the sense of the

de�nition above are idential to the stable models of F in the sense of the

original de�nition. For instane, the sentene

p(a) ^ q(b) ^ 8x((p(x) ^ :q(x))! r(x)); (1)

representing the logi program

p(a);

q(b);

r(x)  p(x);not q(x);

(2)

has a unique Herbrand stable model

fp(a); q(b); r(a)g;

whih is the stable model of (2) in the sense of the 1988 de�nition.

Here is an example illustrating the relationship between the de�nition above

and the semantis of programs with onditional literals and hoie rules proposed

in [14℄. The sentene

p(a) ^ p(b) ^ 8x(p(x)! (q(x) _ :q(x)));

representing the program

p(a);

p(b);

fq(x) : p(x)g;

(3)

has 4 Herbrand stable models

fp(a); p(b)g;

fp(a); p(b); q(a)g;

fp(a); p(b); q(b)g;

fp(a); p(b); q(a); q(b)g;

whih are idential to the stable models of (3) in the sense of [14℄.

3 Theorem on Strong Equivalene

About �rst-order sentenes F and G we say that F is strongly equivalent to G

if, for every �rst-order sentene H (possibly of a larger signature), F ^ H has

the same stable models as G ^H [4℄.

By INT

=

we denote �rst-order intuitionisti logi with the usual axioms for

equality:

x = x

and

x = y ! (F (x)! F (y))



for every formula F (x) suh that y is substitutable for x in F (x).

Our haraterization of strong equivalene refers to the axiom shema

SQHT 9x(F (x) ! 8xF (x)):

The notation SQHT stands for \stati quanti�ed here-and-there"; see Setion 4

below for an explanation. We also need the \deidable equality" axiom

DE x = y _ x 6= y.

Theorem on Strong Equivalene A sentene F is strongly equivalent to a

sentene G i� the equivalene F $ G is provable in

INT

=

+HOS+ SQHT +DE: (4)

We will denote system (4) by SQHT

=

.

Example 1 In any program ontaining the rules

fq(x) : p(x)g

p(a)

q(a)

replaing the fat q(a) with the onstraint

 not q(a)

would not hange the program's stable models. Indeed, the formula

8x(p(x)! (q(x) _ :q(x))) ^ p(a) ^ q(a) (5)

is intuitionistially equivalent to

8x(p(x)! (q(x) _ :q(x))) ^ p(a) ^ ::q(a):

Proof: The �rst two onjuntive terms of (5) imply q(a)_:q(a), and onsequently

::q(a)$ q(a).

Replaing a fat by a onstraint an be viewed as a simpli�ation, beause

the e�et of adding a onstraint to a program on its stable models is easy to

desribe. For instane, adding the onstraint not q(a) to a program eliminates

its stable models that do not satisfy q(a). Adding the fat q(a) to a program

may a�et its stable models, generally, in a very ompliated way.

Example 2 Dropping x 6= y from the body of the rule

p(y) p(x); q(x; y); x 6= y

would not hange a program's stable models, beause the formula

8xy(p(x) ^ q(x; y) ^ x 6= y ! p(y)) (6)



is equivalent to

8xy(p(x) ^ q(x; y)! p(y)) (7)

in INT

=

+DE. Proof: By DE, (7) is equivalent to the onjuntion of (6) and

8xy(p(x) ^ q(x; y) ^ x = y ! p(y)):

The last formula is provable in INT

=

.

Example 3 A di�erent haraterization of strong equivalene is used in [4,

Setion 4℄ to show that :8xF (x) is strongly equivalent to 9x:F (x). To prove

this fat using the theorem above, observe that the equivalene

:8xF (x)$ 9x:F (x) (8)

is provable in INT + SQHT. (Proof: the impliation right-to-left is provable

intuitionistially; the impliation left-to-right is an intutionisti onsequene of

SQHT.) Furthemore, ::9xF (x) is strongly equivalent to 9x::F (x). (Proof: the

formula

::9xF (x) $ 9x::F (x): (9)

is intuitionistially equivalent to the instane of (8) in whih :F (x) is taken

as F (x).)

4 Kripke Models

Our proof of the theorem on strong equivalene refers to the lass of Kripke

models introdued in [4℄. In this setion we disuss two reasons why this lass

of models is relevant. On the one hand, system SQHT

=

, introdued above in

onnetion with the problem of strong equivalene, turns out to be a sound and

omplete axiomatization of this lass of models. On the other hand, aording

to Proposition 4 from [4℄, the �rst-order equilibrium logi based on this lass of

models provides a haraterization of the onept of a stable model that we are

interested in.

The de�nition of this lass of models uses the following notation. If I is

an interpretation of a signature � (in the sense of lassial logi) then by �

I

we denote the extension of � obtained by adding pairwise distint symbols �

�

,

alled names, for all elements � of the universe of I as objet onstants. We will

identify I with its extension to �

I

de�ned by I(�

�

) = �. The value that I assigns

to a ground term t of signature �

I

will be denoted by t

I

. By �

f

we denote the

part of � onsisting of its funtion onstants (inluding objet onstants, whih

are viewed as funtion onstants of arity 0).

An HT-interpretation of � is a triple hI

f

; I

h

; I

t

i, where

{ I

f

is an interpretation of �

f

, and

{ I

h

, I

t

are sets of atomi formulas formed using prediate onstants from �

and objet onstants �

�

for arbitrary elements � of the universe of I

f

, suh

that I

h

� I

t

.



The symbols h, t are alled worlds; they are ordered by the relation h<t.

Note that aording to this de�nition the two worlds share a ommon

universe. In this sense, our Kripke models are stati; this explains the use of

the word \stati" in the name of the axiom SQHT (Setion 3). The worlds share

also a ommon equality relation: in both of them, equality is understood as

identity.

The satisfation relation between an HT-interpretation I = hI

f

; I

h

; I

t

i, a

world w and a sentene F of the signature �

U

, where U is the universe of I

f

, is

de�ned reursively:

{ I; w j= p(t

1

; : : : ) if p((t

I

1

)

�

; : : : ) 2 I

w

,

{ I; w j= t

1

= t

2

if t

I

1

= t

I

2

,

{ I; w 6j= ?,

{ I; w j= F ^G if I; w j= F and I; w j= G,

{ I; w j= F _G if I; w j= F or I; w j= G,

{ I; w j= F ! G if, for every world w

0

suh that w � w

0

,

I; w

0

6j= F or I; w

0

j= G,

{ I; w j= 8xF (x) if, for eah � from the universe of I

f

, I; w j= F (�

�

),

{ I; w j= 9xF (x) if, for some � from the universe of I

f

, I; w j= F (�

�

).

We write I j= F if I; h j= F .

1

For any set � of sentenes and any sentene F , we write � j= F if every

HT-interpretation satisfying all formulas in � satis�es F also. We write � ` F

if F is derivable from � in SQHT

=

.

Soundness and Completeness Theorem � j= F i� � ` F .

In the next setion we outline a proof of the more diÆult part of this laim,

the impliation left-to-right.

The orresponding onept of an equilibrium model is de�ned as follows.

An HT-interpretation hI

f

; I

h

; I

t

i is total if I

h

= I

t

. A total HT-interpretation

hI; J; Ji is an equilibrium model of F if

(i) hI; J; Ji j= F , and

(ii) for any proper subset J

0

of J , hI; J

0

; Ji 6j= F .

We an represent an interpretation I of � in the sense of lassial logi

as the pair hI j

�

f ; I

0

i, where I

0

is the set of all atomi formulas, formed using

prediate onstants from � and names �

�

, whih are satis�ed by I . Aording to

Proposition 4 from [4℄, an interpretation hI; Ji is a stable model of a sentene F

i� hI; J; Ji is an equilibrium model of F . Thus stable models of a sentene are

essentially idential to its equilibrium models.

1

This de�nition looks di�erent from the de�nition of satisfation proposed in [4℄, but

it easy to hek that they are equivalent to eah other.



5 Proof of Completeness

Assume that � 6` F . We will de�ne an HT-interpretation I that satis�es all

formulas in � but does not satisfy F .

There exists a signature �

0

, obtained from � by adding new objet onstants,

and a set �

h

of sentenes of this signature, satisfying the following onditions:

(i) � � �

h

,

(ii) F 62 �

h

,

(iii) �

h

is losed under `,

(iv) for any sentene of the form G _H in �

h

, G 2 �

h

or H 2 �

h

,

(v) for any sentene of the form 9xF (x) in �

h

there exists an objet onstant 

in �

0

suh that F () 2 �

h

.

(Conditions (iii){(v) an be expressed by saying that �

h

is prime.) The proof is

the same as in Henkin's proof of ompleteness of intuitionisti logi [1, Setion 3℄.

For any ground terms t

1

and t

2

of the signature �

0

, we write t

1

� t

2

if the formula

t

1

= t

2

belongs to �

h

. Let �

t

be a maximal superset of �

h

that is onsistent and

losed under lassial logi; suh a superset exists by the Lindenbaum lemma.

Now I = hI

f

; I

h

; I

t

i is de�ned as follows:

(i) the universe of I

f

is the set of equivalene lasses of the relation �;

(ii) for eah objet onstant  from �, I

f

[℄ is the equivalene lass of � that

ontains ,

(iii) for eah funtion onstant g from � of arity n > 0, I

f

[g℄(�

1

; : : : ; �

n

) is the

equivalene lass of � that ontains g(t

1

; : : : ; t

n

) for all terms t

1

2 �

1

,: : : ,

t

n

2 �

n

.

(iv) for eah world w, I

w

is the set of formulas of the form p(�

�

1

; : : : ; �

�

n

) suh

that �

w

ontains p(t

1

; : : : ; t

n

) for all terms t

1

2 �

1

; : : : ; t

n

2 �

n

.

Note that I an be viewed as an HT-interpretation of the extended

signature �

0

if we extend lause (ii) to all objets onstants from �

0

. In the

rest of this setion, terms and formulas are understand as terms and formulas of

the extended signature.

Lemma 1 For any ground terms t

1

, t

2

, (t

1

= t

2

) 2 �

t

i� (t

1

= t

2

) 2 �

h

.

Proof The if part follows from the fat that �

h

� �

t

. Only if: Assume that

(t

1

= t

2

) 62 �

h

. Sine �

h

ontains the instane t

1

= t

2

_ t

1

6= t

2

of DE and is

prime, it follows that (t

1

6= t

2

) 2 �

h

. Sine �

t

is a onsistent superset of �

h

, we

an onlude that (t

1

= t

2

) 62 �

t

.

Lemma 2 For any sentene of the form 9xG(x) there exists an objet onstant 

suh that the formula

9xG(x) ! G() (10)

belongs to �

t

.

Proof Case 1: 9xG(x) 2 �

t

. Sine �

h

ontains the instane

:9xG(x) _ ::9xG(x)



of WEM and is prime, �

h

ontains one of its disjuntive terms. But the �rst

disjuntive term annot belong to �

h

beause the onsistent superset �

t

of �

h

ontains 9xG(x). Consequently ::9xG(x) 2 �

h

. Sine equivalene (9) belongs

to �

h

, it follows that 9x::G(x) 2 �

h

. Sine �

h

is prime, it follows that there

exists an objet onstant  suh that ::G() 2 �

h

. Sine �

h

� �

t

and (10) is

a lassial onsequene of ::G(), it follows that (10) belongs to �

t

. Case 2:

9xG(x) 62 �

t

. Sine �

t

is maximally onsistent, it follows that :9xG(x) 2 �

t

.

Sine (10) is a lassial onsequene of :9xG(x), it follows that (10) belongs

to �

t

.

Reall that our goal is to prove two properties of the interpretation I : it

satis�es all formulas in � but does not satisfy F . By the hoie of �

h

, this is

immediate from the following lemma:

Lemma 3 For any sentene G of signature �

0

and any world w,

I; w j= G i� G 2 �

w

:

Proof: by indution on G. We will onsider the three ases where reasoning is

di�erent than in the similar proof for intuitionisti logi [1, Setion 3℄: t

1

= t

2

,

G! H , and 8xG(x).

1. To hek that

I; w j= t

1

= t

2

i� t

1

= t

2

2 �

w

we show that eah side is equivalent to t

1

� t

2

. For the left-hand side, this follows

from the fat that for every ground term t, t

I

f

is the equivalene lass of � that

ontains t (by indution on t). For the right-hand side, if w = h then this is

immediate from the de�nition of �; if w = t then use Lemma 1.

2. Assume that

I; w j= G i� G 2 �

w

and

I; w j= H i� H 2 �

w

;

we want to show that

I; w j= G! H i� G! H 2 �

w

:

The if part follows from the indution hypothesis and the lause for ! in the

de�nition of satisfation. To prove the only if part for w = t, use the indution

hypothesis and the fat that, by the maximal onsisteny of �

t

, this set ontains

either G or :G. For w = h, we onlude from the indution hypothesis and the

assumption I; h j= G! H that

G 62 �

h

or H 2 �

h

(11)

and

G 62 �

t

or H 2 �

t

: (12)



Case 1: G 2 �

h

. Then, by (11), H 2 �

h

and onsequently G ! H 2 �

h

.

Case 2: :G 2 �

h

. Sine :G ` G ! H , G ! H 2 �

h

. Case 3: G;:G 62 �

h

.

Sine �

h

ontains the instane :G _ ::G of WEM and is prime, it follows that

::G 2 �

h

� �

t

. Then G 2 �

t

and, by (12), H 2 �

t

. Sine �

t

is onsistent

and ontains �

h

, :H 62 �

h

. On the other hand, �

h

ontains the instane

G _ (G ! H) _ :H of HOS and is prime; sine neither G nor :H belongs

to �

h

, G! H 2 �

h

.

3. Assume that for every objet onstant 

I; w j= G() i� G() 2 �

w

;

we need to show that

I; w j= 8xG(x) i� 8xG(x) 2 �

w

:

The if part follows from the indution hypothesis and the lause for 8 in the

de�nition of satisfation. To prove the only if part for w = t, take an objet

onstant  suh that the formula

9x:G(x) ! :G() (13)

belongs to �

t

(Lemma 2). It follows from the indution hypothesis and the lause

for 8 in the de�nition of satisfation that G() belongs to �

t

too; 8xG(x) is a

lassial onsequene of (13) and G(). To prove the only if part for w = h,

onsider the instane

9x(G(x) ! 8xG(x))

of SQHT. Sine �

h

is prime, there exists an objet onstant  suh that �

h

ontains the formula

G()! 8xG(x): (14)

By the indution hypothesis and the lause for 8 in the de�nition of satisfation,

G() 2 �

h

; 8xG(x) is an intuitionisti onsequene of G() and (14).

6 Proof of the Strong Equivalene Theorem

In view of the soundness and ompleteness theorem, the theorem on strong

equivalene an be rewritten as: a sentene F is strongly equivalent to a

sentene G i� F and G are satis�ed by the same HT-interpretations.

If F and G are satis�ed by the same HT-interpretations then F^H and G^H

are satis�ed by the same HT-interpretations; then F ^ H and G ^ H have the

same equilibrium models, and onsequently the same stable models.

For the onverse, let us assume that F ^ H and G ^ H have the same

stable models for every �rst order sentene H . Then these formulas have the

same equilibrium models. For any prediate onstant P , let C(P ) stand for the

sentene

8x(::P (x) ! P (x)):



Note �rst that F and G have the same total models. Indeed, let H

0

be the

onjuntion of sentenes C(P ) for all prediate onstants P ourring in F or G;

the total models of F an be haraterized as the equilibrium models of F ^H

0

,

and the total models of G an be haraterized as the equilibrium models of

G ^H

0

.

Assume that hI

f

; I

h

; I

t

i satis�es F but not G, and onsider the total HT-

interpretation hI

f

; I

t

; I

t

i. It is lear that the total interpretation hI

f

; I

t

; I

t

i

satis�es F , and onsequently G. Let H

0

be the onjuntion of sentenes C(P )

for all prediate onstants P ourring in G, and let H

1

be the impliation

G ! H

0

. The HT-interpretation hI

f

; I

h

; I

t

i satis�es H

1

. Indeed, it does not

satisfy its anteedent G, and I

t

satis�es its onsequent H

0

. Therefore hI

f

; I

t

; I

t

i

is not an equilibrium model of F ^ H

1

. Then hI

f

; I

t

; I

t

i is not an equilibrium

model of G ^H

1

either. But this is impossible, beause G ^ H

1

implies H

0

, so

that all models of that set are total.

7 Strong Equivalene for Theories

The de�nition of a stable model from [4℄, reprodued here in Setion 2, an

be extended to �nite sets of �rst-order sentenes: a model of suh a set �

is alled stable if it satis�es SM

�

V

F2�

F

�

. The relationship between stable

models and equilibrium models, disussed at the end of Setion 4, suggests a

way to further extend this de�nition to \theories"|arbitrary sets of �rst-order

sentenes, possibly in�nite. We say that a total HT-interpretation hI; J; Ji is an

equilibrium model of a set � of �rst order sentenes if

(i) hI; J; Ji j= � , and

(ii) for any proper subset J

0

of J , hI; J

0

; Ji 6j= � .

An interpretation hI; Ji is a stable model of � i� hI; J; Ji is an equilibriummodel

of � .

About sets � , � of �rst-order sentenes we say that � is strongly equivalent

to � if, for any set � of �rst-order sentenes (possibly of a larger signature),

�[� has the same stable models as�[�. This relation between sets of formulas

an be haraterized in the same way as the strong equivalene relation between

formulas:

Theorem on Strong Equivalene for Theories A set � of sentenes is

strongly equivalent to a set � of sentenes i� � is equivalent to � in SQHT

=

.

This theorem, in ombination with the theorem on strong equivalene for

formulas, shows that the new de�nition of strong equivalene is a generalization

of the de�nition from Setion 3: F and G are strongly equivalent to eah other

as sentenes i� fFg and fGg are strongly equivalent to eah other as theories.

The proof is similar to that in the previous setion, but onsidering the

(possibly in�nite) set �

0

of formulas C(P ) instead of the onjuntion H

0

of

these formulas, and the set of impliations G! C(P ) instead of H

1

.



8 Related Work

An alternative proof that the logi SQHT

=

aptures strong equivalene for

theories in the sense of the previous setion an be found in [12℄. The two proofs

highlight di�erent properties. In eah ase it is shown that when two theories �

and � are not equivalent in SQHT

=

, an extension � an be onstruted suh

that the equilibrium models of � [ � and � [ � di�er. From the proof given

in Setion 7 above it is lear that � an be onstruted in the same signature,

without additional onstants. From the proof given in [12℄ the extension may use

objet onstants not appearing in � or �. However, � is shown there to have

a very simple form: its elements are \unary" formulas, that is, ground atomi

formulas and impliations F ! G where F and G are ground atomi formulas.

From this observation it follows that if � and � onsist of logi program rules

and are not strongly equivalent then there exists a set of program rules � (of

a simple form) suh that � [ � and � [� have di�erent equilibrium or stable

models.

Strong equivalene for non-ground logi programs under the answer set

semantis has also been de�ned and studied in [9, 3℄. In the ase of [3℄ the

onept is similar to the one presented in the previous setion, exept that the

equivalene is de�ned with respet to a somewhat di�erent notion of stable

model than the one used here, and equality is not expliitly treated. In general

the two onepts are di�erent sine stable or equilibrium models as de�ned here

are not required to satisfy the unique name assumption. As a onsequene not

every equilibrium model need be a stable model or answer set in the sense of [3℄.

However for the safe programs without equality studied in [3℄ we an establish a

simple haraterisation of strong equivalene. Let us denote by SQHT the logi

SQHT

=

without an equality prediate and axioms for equality:

SQHT = INT+HOS+ SQHT +DE:

Disjuntive logi programs are de�ned in the usual way, and rules where eah

variable appears in at least one positive body atom are alled safe; a program is

safe if all its rules are safe. Aording to a theorem from [12℄, two safe disjuntive

programs are strongly equivalent in the sense of [3℄ if and only if they are

equivalent in the logi SQHT. The proof makes use of the fat that if � and �

are non-strongly equivalent safe programs then there exists a set of � of unary

program rules suh that � [ � and � [ �, whih are both safe, have di�erent

stable models. For safe programs, this theorem also enompasses the notion of

strong equivalene found in [9℄.

9 Conlusion

In this paper we understand logi programs with variables in a very general way,

as arbitrary �rst-order formulas with equality. The logi SQHT

=

is the �rst-

order version of the logi of here-and-there that haraterizes strong equivalene

for suh programs. This logi is an extension of the intuitionisti �rst-order logi



with equality. One of its three additional postulates is the axiom shema HOS,

familiar from the propositional logi of here-and-there. Another is the well-known

deidable equality axiom DE. The third, SQHT, is apparently new; it an be

thought of as the result the �rst step towards onverting the trivial impliation

8xF (x)! 8xF (x) to prenex form. Studying properties of this intermediate logi

is a topi for future work.
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