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Abstract. Two sets of rules are said to be strongly equivalent to each
other if replacing one by the other within any logic program preserves
the program’s stable models. The familiar characterization of strong
equivalence of grounded programs in terms of the propositional logic
of here-and-there is extended in this paper to a large class of logic
programs with variables. This class includes, in particular, programs with
conditional literals and cardinality constraints. The first-order version
of the logic of here-and-there required for this purpose involves two
additional non-intuitionistic axiom schemas.

1 Introduction

The concept of a stable model was originally defined in [6] for sets of rules of
a very special syntactic form. Later it was extended to arbitrary propositional
formulas [13,5] and to arbitrary first-order sentences [10,11,4]. The extension
to formulas with quantifiers is important, in particular, in view of its close
relation to conditional literals—an LPARSE construct widely used in answer set
programming [14]. For instance, according to [4], the choice rule

can be viewed as shorthand for the first-order formula

vz (p(z) = (9(2) V ~q(2)))
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Similarly, the LPARSE rule
2{q(x) : p(z)}

can be thought of as shorthand for the formula

Va(p(x) — (q(z) V =g(z)))A
Jzy(p(z) A q(z) Ap(y) Aaly) Az #y).

In this paper we extend the main theorem of [8] to stable models of first-order
sentences. That theorem relates strong equivalence of propositional (grounded)
logic programs to the propositional logic of here-and-there. Recall that two
sets of rules are said to be strongly equivalent to each other if replacing
one by the other within any logic program preserves the program’s stable
models; the propositional logic of here-and-there is the extension of propositional
intuitionistic logic obtained by adding the axiom schema

HOS FV(F— G)V-G.

This is a simplified form of an axiom from [7], proposed in [2]. It is weaker than
the law of the excluded middle, but stronger than the weak law of the excluded
middle

WEM —F V -—F.

(To derive WEM from HOS, take G to be =F'.)

Such characterizations of strong equivalence are interesting because they tell
us which transformations can be used to simplify rules, or groups of rules, in a
logic program. For instance, if we replace the pair of rules

q < not p
g < {not p}0

in a logic program with the fact ¢ then the stable models of the program will
remain the same. Indeed, the formula

(p—= @) A(=p—q)

is equivalent to ¢ in the propositional logic of here-and-there. (Proof: use WEM
with p as F.)

There are several natural extensions of the logic of here-and-there to first-
order formulas; all of them include the axioms and inference rules of intuitionistic
predicate logic, axiom schema HOS, and some other axioms. Our goal here is
to determine which of these extensions corresponds to the strong equivalence of
first-order sentences in the sense of [4].

The next section is a review the definition of a stable model from [4]. In
Section 3 we state our main theorem, which characterizes strong equivalence in
terms of a first-order version of the logic of here-and-there, and give examples
of the use of that logic for establishing the strong equivalence of formulas
and corresponding programs in the language of LPARSE. Section 4 describes
a characterization of our first-order logic of here-and-there in terms of Kripke



models; the soundness and completeness theorem stated in that section is a key
element of the proof of the main theorem. Proofs are outlined in Sections 5
and 6. In Section 7 the theorem on strong equivalence is extended from formulas
to theories—sets of formulas, possibly infinite. Related work is discussed in
Section 8.

2 Stable Models of a First-Order Sentence

If p and g are predicate constants of the same arity then p = ¢ stands for the
formula

Vx(p(x) < ¢(x)),
and p < ¢ stands for
Vx(p(x) = ¢(x)),

where x is a tuple of distinct object variables. If p and q are tuples pi,...,pn
and q1,...,q, of predicate constants then p = q stands for the conjunction

PL=q A ANpp = qn,
and p < q for
L@ A Apn < Q.

Finally, p < q is an abbreviation for p < q A =(p = q). In second-order logic,
we will apply the same notation to tuples of predicate variables.

According to [4], for any first-order sentence (closed formula) F', SM[F]
stands for the second-order sentence

FA-3u((u<p)AF(u),

where p is the list of all predicate constants p1, ..., p, occurring in F', u is a list
of n distinct predicate variables w1, ..., uy, and F*(u) is defined recursively, as
follows:

— pi(tla ey m)* = ’U,i(tl, e ,tm),

= (ti=t2)" = (i =t2);

- 1*=1;

- (FOG)* = F* ®G*, where ® € {A,V};
- (F=>G@)"=(F*—>G)N(F = G);
— (QzF)* = QzF*, where Q € {V,3}.

(There is no clause for negation here, because we treat —F as shorthand for
F — 1.) A model of F is stable if it satisfies SM[F]].

This definition looks very different from the original definition of a stable
model from [6], but it is actually a generalization of that definition, in the
following sense. Let F' be (the sentence corresponding to) a finite set of rules
of the form

AO — Al,...,Am,not Am+1,...,not An,



where Ag,..., A, are atomic formulas not containing equality. According to
Proposition 1 from [4], the Herbrand stable models of F' in the sense of the
definition above are identical to the stable models of F' in the sense of the
original definition. For instance, the sentence

pla) A q(b) AVe((p(z) A —q(z)) = r(x)), (1)
representing the logic program

p(a),
q(b), (2)

r(z) < p(z), not g(z),

has a unique Herbrand stable model

{p(a),q(b),r(a)},

which is the stable model of (2) in the sense of the 1988 definition.

Here is an example illustrating the relationship between the definition above
and the semantics of programs with conditional literals and choice rules proposed
in [14]. The sentence

pla) A p(b) AV (p(z) = (q(z) V ~q(x))),

representing the program

{p(a), p(b)},

{p(a), p(b), q(a)},
{p(a), p(b), q(b)},
{p(a), p(b), q(a), q(b)},

which are identical to the stable models of (3) in the sense of [14].

3 Theorem on Strong Equivalence

About first-order sentences F' and G we say that F' is strongly equivalent to G
if, for every first-order sentence H (possibly of a larger signature), ' A H has
the same stable models as G A H [4].

By INT= we denote first-order intuitionistic logic with the usual axioms for
equality:

and



for every formula F'(z) such that y is substitutable for z in F(z).
Our characterization of strong equivalence refers to the axiom schema

SQHT  Jz(F(z) — Vo F(z)).

The notation SQHT stands for “static quantified here-and-there”; see Section 4
below for an explanation. We also need the “decidable equality” axiom

DE z=yVvz#y.

Theorem on Strong Equivalence A sentence F' is strongly equivalent to a
sentence G iff the equivalence F < G is provable in

INT™ + HOS + SQHT + DE. (4)

We will denote system (4) by SQHT=.

Example 1 In any program containing the rules

z) : p(z)}
p(a)
q(a)
replacing the fact g(a) with the constraint

+ not q(a)

would not change the program’s stable models. Indeed, the formula

Va(p(z) — (q(z) V ~q(x))) Apla) A g(a) (5)

is intuitionistically equivalent to

vz(p(z) = (9(2) V ~q(2))) Ap(a) A ~—q(a).

Proof: The first two conjunctive terms of (5) imply ¢(a)V—g(a), and consequently
—q(a) < q(a).

Replacing a fact by a constraint can be viewed as a simplification, because
the effect of adding a constraint to a program on its stable models is easy to
describe. For instance, adding the constraint <— not g(a) to a program eliminates
its stable models that do not satisfy g(a). Adding the fact ¢(a) to a program
may affect its stable models, generally, in a very complicated way.

Example 2  Dropping z # y from the body of the rule

p(y) < p(x),q(z,y),z #y

would not change a program’s stable models, because the formula

Voy(p(z) Ag(z,y) ANz £y — ply)) (6)



is equivalent to
Vzy(p(z) A q(z,y) = p(y)) (7)

in INT= + DE. Proof: By DE, (7) is equivalent to the conjunction of (6) and

Vay(p(z) A q(z,y) ANz =y — p(y)).
The last formula is provable in INT=.

Example 3 A different characterization of strong equivalence is used in [4,
Section 4] to show that —VzF(z) is strongly equivalent to 3z—F(z). To prove
this fact using the theorem above, observe that the equivalence

-V F(z) ¢ Jz—-F(z) (8)

is provable in INT + SQHT. (Proof: the implication right-to-left is provable
intuitionistically; the implication left-to-right is an intutionistic consequence of
SQHT.) Furthemore, =—3Jz F(z) is strongly equivalent to z——F(z). (Proof: the
formula

—=3dzF(z) < Jz——F(z). 9)

is intuitionistically equivalent to the instance of (8) in which —F(z) is taken
as F(z).)

4 Kripke Models

Our proof of the theorem on strong equivalence refers to the class of Kripke
models introduced in [4]. In this section we discuss two reasons why this class
of models is relevant. On the one hand, system SQHT=, introduced above in
connection with the problem of strong equivalence, turns out to be a sound and
complete axiomatization of this class of models. On the other hand, according
to Proposition 4 from [4], the first-order equilibrium logic based on this class of
models provides a characterization of the concept of a stable model that we are
interested in.

The definition of this class of models uses the following notation. If I is
an interpretation of a signature o (in the sense of classical logic) then by of
we denote the extension of o obtained by adding pairwise distinct symbols £*,
called names, for all elements £ of the universe of I as object constants. We will
identify I with its extension to o defined by I(¢*) = £. The value that I assigns
to a ground term ¢ of signature o/ will be denoted by t!. By o we denote the
part of o consisting of its function constants (including object constants, which
are viewed as function constants of arity 0).

An HT-interpretation of o is a triple (If, I*, I*), where

— I' is an interpretation of o, and

— I™ I are sets of atomic formulas formed using predicate constants from o
and object constants ¢* for arbitrary elements ¢ of the universe of If, such
that I C It.



The symbols h, t are called worlds; they are ordered by the relation h<t.

Note that according to this definition the two worlds share a common
universe. In this sense, our Kripke models are static; this explains the use of
the word “static” in the name of the axiom SQHT (Section 3). The worlds share
also a common equality relation: in both of them, equality is understood as
identity.

The satisfaction relation between an HT-interpretation I = (If,I" I*), a
world w and a sentence F' of the signature oV, where U is the universe of I, is
defined recursively:

- Liw E p(ty,...) if p((th)*,...) e Iv,
—LwEt =t iftl =tl
- Lwll,
- LLwEFAGi,wl=F and [,w =G,
- LLw=EFVG@ifl,wl=ForlwEQG,
- I,w|= F — G if, for every world w' such that w < v/,
Lw £ For v =G,
— I,w |= Yz F () if, for each ¢ from the universe of If, I, w = F(¢*),
— I,w |= 3zF () if, for some ¢ from the universe of I, I,w = F(£*).

We write [ | F if [,h | F.!
For any set I' of sentences and any sentence F, we write I' = F' if every

HT-interpretation satisfying all formulas in I" satisfies F' also. We write I" - F'
if F' is derivable from I" in SQHT=.

Soundness and Completeness Theorem I'|=F iff '+ F.

In the next section we outline a proof of the more difficult part of this claim,
the implication left-to-right.

The corresponding concept of an equilibrium model is defined as follows.
An HT-interpretation (I, I", I*) is total if I™ = I*. A total HT-interpretation
(I,J,J) is an equilibrium model of F' if

() (I,7,7) = F, and
(ii) for any proper subset J' of J, (I, J',J) £ F.

We can represent an interpretation I of ¢ in the sense of classical logic
as the pair (I|,¢,I’), where I' is the set of all atomic formulas, formed using
predicate constants from ¢ and names £*, which are satisfied by I. According to
Proposition 4 from [4], an interpretation (I, J) is a stable model of a sentence F'
iff (I,J,J) is an equilibrium model of F'. Thus stable models of a sentence are
essentially identical to its equilibrium models.

! This definition looks different from the definition of satisfaction proposed in [4], but
it easy to check that they are equivalent to each other.



5 Proof of Completeness

Assume that I' I/ F. We will define an HT-interpretation I that satisfies all
formulas in I" but does not satisfy F'

There exists a signature ¢’, obtained from o by adding new object constants,
and a set I}, of sentences of this signature, satisfying the following conditions:

)
) I} is closed under -,

) for any sentence of the form GV H in I,, G € I, or H € I},
)

in ¢’ such that F(c) € I},.

(Conditions (iii)—(v) can be expressed by saying that I}, is prime.) The proof is
the same as in Henkin’s proof of completeness of intuitionistic logic [1, Section 3].
For any ground terms ¢; and t2 of the signature o', we write t; ~ t2 if the formula
t; = t2 belongs to I},. Let I be a maximal superset of I}, that is consistent and
closed under classical logic; such a superset exists by the Lindenbaum lemma.
Now I = (If, I*, I*) is defined as follows:

(i) the universe of I' is the set of equivalence classes of the relation ~;
(i) for each object constant ¢ from o, If[c] is the equivalence class of ~ that

contains c,

(iii) for each function constant g from o of arity n > 0, If[g](&1,...,¢&,) is the
equivalence class of ~ that contains g(t1,...,t,) for all terms ¢; € &,...,
tn € &n-

(iv) for each world w, I is the set of formulas of the form p(¢7,...,€:) such

that I, contains p(ti,...,t,) for all terms ¢; € &1,...,t, € &,

Note that I can be viewed as an HT-interpretation of the extended
signature o' if we extend clause (ii) to all objects constants from o'. In the
rest of this section, terms and formulas are understand as terms and formulas of
the extended signature.

Lemma 1 For any ground terms t1, t2, (t1 = t2) € I} iff (t1 =t2) € I},.

Proof The if part follows from the fact that I}, C I}. Only if: Assume that
(t1 = t2) € Iy,. Since I}, contains the instance t; = t3 V &1 # t3 of DE and is
prime, it follows that (¢; # t3) € I},. Since [} is a consistent superset of I7,, we
can conclude that (t; = t2) & It.

Lemma 2 For any sentence of the form zG(z) there exists an object constant ¢
such that the formula
JzG(z) — G(c) (10)

belongs to I5.

Proof Case 1: J2G(z) € I}. Since I}, contains the instance

=3zG(z) V -—JzG(x)



of WEM and is prime, I}, contains one of its disjunctive terms. But the first
disjunctive term cannot belong to I}, because the consistent superset I} of I3
contains 3zG(z). Consequently ——3zG(z) € I},. Since equivalence (9) belongs
to I}, it follows that Jz——G(z) € I3,. Since I}, is prime, it follows that there
exists an object constant c¢ such that -—G(c) € I4,. Since I, C I} and (10) is
a classical consequence of =—G(c), it follows that (10) belongs to I}. Case 2:
JzG(x) & Iy. Since Iy is maximally consistent, it follows that —=3zG(z) € I3.
Since (10) is a classical consequence of =3zG(z), it follows that (10) belongs
to Ft.

Recall that our goal is to prove two properties of the interpretation I: it
satisfies all formulas in I" but does not satisfy F. By the choice of I}, this is
immediate from the following lemma:

Lemma 3 For any sentence G of signature o' and any world w,

LwEG iff GE L.

Proof: by induction on G. We will consider the three cases where reasoning is
different than in the similar proof for intuitionistic logic [1, Section 3]: t; = to,
G — H, and VzG(z).

1. To check that
I,’LU 'Ztl =t2 lﬂtl =t2 EFw

we show that each side is equivalent to ¢; = t2. For the left-hand side, this follows
from the fact that for every ground term ¢, t is the equivalence class of ~ that
contains ¢ (by induction on t). For the right-hand side, if w = h then this is
immediate from the definition of ~; if w =t then use Lemma 1.

2. Assume that

LwkEG iff GeI,
and

IL,wlEH iff He I,

we want to show that
LwEG—H it G- HEeI,.

The if part follows from the induction hypothesis and the clause for — in the
definition of satisfaction. To prove the only if part for w = t, use the induction
hypothesis and the fact that, by the maximal consistency of I, this set contains
either G or =G. For w = h, we conclude from the induction hypothesis and the
assumption I, h | G — H that

G%FhOI‘HEFh (].].)

and
GgFtOI‘HEFt. (12)



Case 1: G € I. Then, by (11), H € I} and consequently G — H € I3,.
Case 2: -G € Iy. Since -G+ G — H,G — H € Iy. Case 3: G,~G & Iy,.
Since I}, contains the instance =G V =G of WEM and is prime, it follows that
—-=G € I}, C Ii. Then G € I} and, by (12), H € I}. Since [} is consistent
and contains Iy, -H ¢ I}. On the other hand, I}, contains the instance
GV (G — H)V —H of HOS and is prime; since neither G nor —=H belongs
to I, G — H € Iy,.

3. Assume that for every object constant ¢
LwlE=Ge) iff G(c) € Iy;
we need to show that
IL,wEVzG(z) iff YaG(z) € [.

The if part follows from the induction hypothesis and the clause for V in the
definition of satisfaction. To prove the only if part for w = t, take an object
constant c such that the formula

dz-G(z) — —G(c) (13)

belongs to I} (Lemma 2). It follows from the induction hypothesis and the clause
for V in the definition of satisfaction that G(c) belongs to I} too; VzG(z) is a
classical consequence of (13) and G(c). To prove the only if part for w = h,
consider the instance

dz(G(z) — VzG(2))

of SQHT. Since I}, is prime, there exists an object constant ¢ such that [}
contains the formula

G(c) — VoG (x). (14)

By the induction hypothesis and the clause for V in the definition of satisfaction,
G(c) € Iy; VG (z) is an intuitionistic consequence of G(c) and (14).

6 Proof of the Strong Equivalence Theorem

In view of the soundness and completeness theorem, the theorem on strong
equivalence can be rewritten as: a sentence F' is strongly equivalent to a
sentence G iff F' and G are satisfied by the same HT-interpretations.

If F and G are satisfied by the same HT-interpretations then FAH and GAH
are satisfied by the same HT-interpretations; then ' A H and G A H have the
same equilibrium models, and consequently the same stable models.

For the converse, let us assume that FF A H and G A H have the same
stable models for every first order sentence H. Then these formulas have the
same equilibrium models. For any predicate constant P, let C'(P) stand for the
sentence

Vx(-=P(x) = P(x)).



Note first that F' and G have the same total models. Indeed, let Hy be the
conjunction of sentences C'(P) for all predicate constants P occurring in F or G;
the total models of F' can be characterized as the equilibrium models of F'A Hy,
and the total models of G can be characterized as the equilibrium models of
G A Hy.

Assume that (I, 1", I') satisfies F' but not G, and consider the total HT-
interpretation (If,I%,I*). It is clear that the total interpretation (If,I*,I")
satisfies F', and consequently G. Let Hy be the conjunction of sentences C'(P)
for all predicate constants P occurring in G, and let H; be the implication
G — Hy. The HT-interpretation (If,I", I*) satisfies H;. Indeed, it does not
satisfy its antecedent G, and I satisfies its consequent Hy. Therefore (If, I*, I*)
is not an equilibrium model of ' A Hy. Then (If, I, I*) is not an equilibrium
model of G A H; either. But this is impossible, because G A H; implies Hy, so
that all models of that set are total.

7 Strong Equivalence for Theories

The definition of a stable model from [4], reproduced here in Section 2, can
be extended to finite sets of first-order sentences: a model of such a set I’
is called stable if it satisfies SM[ A pcp F]. The relationship between stable
models and equilibrium models, discussed at the end of Section 4, suggests a
way to further extend this definition to “theories”—arbitrary sets of first-order
sentences, possibly infinite. We say that a total HT-interpretation (I, J, J) is an
equilibrium model of a set I of first order sentences if

(i) (I,J,J) E I, and
(ii) for any proper subset J' of J, (I,J',J) [ I'.

An interpretation (I, J) is a stable model of I" iff (I, J, J) is an equilibrium model
of I'.

About sets I', A of first-order sentences we say that I" is strongly equivalent
to A if, for any set X' of first-order sentences (possibly of a larger signature),
I'UX has the same stable models as AUXY'. This relation between sets of formulas
can be characterized in the same way as the strong equivalence relation between
formulas:

Theorem on Strong Equivalence for Theories A set I' of sentences is
strongly equivalent to a set A of sentences iff I' is equivalent to A in SQHT=.

This theorem, in combination with the theorem on strong equivalence for
formulas, shows that the new definition of strong equivalence is a generalization
of the definition from Section 3: F' and G are strongly equivalent to each other
as sentences iff {F'} and {G} are strongly equivalent to each other as theories.

The proof is similar to that in the previous section, but considering the
(possibly infinite) set Xy of formulas C(P) instead of the conjunction Hy of
these formulas, and the set of implications G — C(P) instead of Hj.



8 Related Work

An alternative proof that the logic SQHT™ captures strong equivalence for
theories in the sense of the previous section can be found in [12]. The two proofs
highlight different properties. In each case it is shown that when two theories I"
and A are not equivalent in SQHT™, an extension X can be constructed such
that the equilibrium models of I"' U X and A U X' differ. From the proof given
in Section 7 above it is clear that X' can be constructed in the same signature,
without additional constants. From the proof given in [12] the extension may use
object constants not appearing in I" or A. However, X is shown there to have
a very simple form: its elements are “unary” formulas, that is, ground atomic
formulas and implications F' — G where F' and G are ground atomic formulas.
From this observation it follows that if " and A consist of logic program rules
and are not strongly equivalent then there exists a set of program rules X (of
a simple form) such that I"U ¥ and A U X have different equilibrium or stable
models.

Strong equivalence for non-ground logic programs under the answer set
semantics has also been defined and studied in [9,3]. In the case of [3] the
concept is similar to the one presented in the previous section, except that the
equivalence is defined with respect to a somewhat different notion of stable
model than the one used here, and equality is not explicitly treated. In general
the two concepts are different since stable or equilibrium models as defined here
are not required to satisfy the unique name assumption. As a consequence not
every equilibrium model need be a stable model or answer set in the sense of [3].
However for the safe programs without equality studied in [3] we can establish a
simple characterisation of strong equivalence. Let us denote by SQHT the logic
SQHT™ without an equality predicate and axioms for equality:

SQHT = INT + HOS + SQHT + DE.

Disjunctive logic programs are defined in the usual way, and rules where each
variable appears in at least one positive body atom are called safe; a program is
safe if all its rules are safe. According to a theorem from [12], two safe disjunctive
programs are strongly equivalent in the sense of [3] if and only if they are
equivalent in the logic SQHT. The proof makes use of the fact that if I" and A
are non-strongly equivalent safe programs then there exists a set of X' of unary
program rules such that I"U X and A U Y, which are both safe, have different
stable models. For safe programs, this theorem also encompasses the notion of
strong equivalence found in [9].

9 Conclusion

In this paper we understand logic programs with variables in a very general way,
as arbitrary first-order formulas with equality. The logic SQHT™ is the first-
order version of the logic of here-and-there that characterizes strong equivalence
for such programs. This logic is an extension of the intuitionistic first-order logic



with equality. One of its three additional postulates is the axiom schema HOS,
familiar from the propositional logic of here-and-there. Another is the well-known
decidable equality axiom DE. The third, SQHT, is apparently new; it can be
thought of as the result the first step towards converting the trivial implication
VzF(xz) = VzF(z) to prenex form. Studying properties of this intermediate logic
is a topic for future work.
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