CS311: Discrete Math for Computer Science, Spring 2015

Additional Exercises, with Solutions

1. The sequence X_1, X_2, \ldots is defined by the formulas

$$X_n = \begin{cases} 3n, & \text{if } n \text{ is even,} \\ 4n, & \text{otherwise.} \end{cases}$$

(a) Find the first 3 members of this sequence.

Answer: $X_1 = 4$, $X_2 = 6$, $X_3 = 12$.

(b) Prove that all members of this sequence are even.

Solution: Consider two cases.

Case 1: n is odd. Then $X_n = 4n = 2(2n)$.

Case 2: n is even. Then n = 2k for some k. So $X_n = 3n = 3(2k) = 2(3k)$.

(c) Prove that all members of this sequence are greater than 3.

Solution: Consider two cases.

Case 1: n is odd. Then n is at least 1. Now $X_n = 4n \ge 4 \cdot 1 > 3$.

Case 2: n is even. Then n is at least 2. Now $X_n = 3n \ge 3 \cdot 2 > 3$.

(d) We conjecture that there exist coefficients a and b such that the sequence X_n satisfies the condition

$$X_n = an + bn(-1)^n$$

for all positive integers n. Find a pair of numbers a, b that may satisfy this condition.

Solution: For convenience, define $f(n) = an + bn(-1)^n$. Then f(1) = a - b and f(2) = 2a + 2b. So if $f(n) = X_n$, then we at least know that

$$a - b = 4$$

$$2a + 2b = 6.$$

Solving gives us $a = \frac{7}{2}$ and $b = -\frac{1}{2}$.

(e) Check that for the numbers that you found this condition is indeed satisfied for all n.

Solution: Consider two cases.

Case 1: n is odd. Then $X_n = 4n$. Also $(-1)^n = -1$, so $f(n) = \frac{7}{2}n + \frac{1}{2}n = 4n$. Case 2: n is even. Then $X_n = 3n$. Also $(-1)^n = 1$, so $f(n) = \frac{7}{2}n - \frac{1}{2}n = 3n$.

2. Prove that for every nonnegative integer n,

$$1^{2} + 3^{2} + 5^{2} + \dots + (2n+1)^{2} = \frac{(n+1)(2n+1)(2n+3)}{3};$$

$$1 \cdot 2 + 2 \cdot 3 + \dots + n(n+1) = \frac{n(n+1)(n+2)}{3}.$$

Solution:

Proof of the first formula by induction:

Basis: n = 0. The given formula turns into the correct equality $1^2 = \frac{1 \cdot 1 \cdot 3}{3}$. Induction step: Assuming that the given formula is true for n, we can prove that

$$1^{2} + 3^{2} + 5^{2} + \dots + (2n+1)^{2} + (2n+3)^{2} = \frac{(n+2)(2n+3)(2n+5)}{3}$$

as follows:

$$1^{2} + 3^{2} + 5^{2} + \dots + (2n+1)^{2} + (2n+3)^{2} = \frac{(n+1)(2n+1)(2n+3)}{3} + (2n+3)^{2}$$

$$= (2n+3) \left(\frac{(n+1)(2n+1)}{3} + (2n+3) \right)$$

$$= (2n+3) \frac{2n^{2} + 3n + 1 + 6n + 9}{3}$$

$$= (2n+3) \frac{2n^{2} + 9n + 10}{3}$$

$$= (2n+3) \frac{(n+2)(2n+5)}{3}$$

$$= \frac{(n+2)(2n+3)(2n+5)}{3}.$$

Proof of the second formula by induction:

Basis: n = 0. The given formula turns into the correct equality $0 = \frac{0 \cdot 1 \cdot 2}{3}$. Induction step: Assuming that the given formula is true for n, we can prove that

$$1 \cdot 2 + 2 \cdot 3 + \dots + n(n+1) + (n+1)(n+2) = \frac{(n+1)(n+2)(n+3)}{3}$$

as follows:

$$1 \cdot 2 + 2 \cdot 3 + \dots + n(n+1) + (n+1)(n+2) = \frac{n(n+1)(n+2)}{3} + (n+1)(n+2)$$
$$= (n+1)(n+2) \left(\frac{n}{3} + 1\right)$$
$$= (n+1)(n+2) \cdot \frac{n+3}{3}$$
$$= \frac{(n+1)(n+2)(n+3)}{3}.$$

3. Prove that for every positive integer n,

$$1^{2} - 2^{2} + 3^{2} - \dots + (-1)^{n-1}n^{2} = (-1)^{n-1}\frac{n(n+1)}{2}.$$

Solution: We will prove the formula by induction. Basis: n = 1. The given formula turns into the correct equality $1^2 = (-1)^0 \cdot \frac{1 \cdot 2}{2}$. Induction step: Assuming that the given formula is true for n, we can prove that

$$1^{2} - 2^{2} + 3^{2} - \dots + (-1)^{n-1}n^{2} + (-1)^{n}(n+1)^{2} = (-1)^{n} \frac{(n+1)(n+2)}{2}$$

as follows:

$$1^{2} - 2^{2} + 3^{2} - \dots + (-1)^{n-1}n^{2} + (-1)^{n}(n+1)^{2} = (-1)^{n-1}\frac{n(n+1)}{2} + (-1)^{n}(n+1)^{2}$$
$$= (-1)^{n-1}(n+1)\left(\frac{n}{2} - (n+1)\right)$$
$$= (-1)^{n-1}(n+1)\frac{-n-2}{2}$$
$$= (-1)^{n}\frac{(n+1)(n+2)}{2}.$$

4. Determine which positive integers n satisfy the inequality $3^n > 2^{n+2}$. Prove that your answer is correct.

Solution. This inequality holds once $n \geq 4$ but not before that. Proof:

The claim that the inequality $3^n > 2^{n+2}$ is false for $1 \le n \le 3$ is proved by the following table:

1 3 8 2 9 16 3 27 32	n	3^n	2^{n+2}
	1	3	8
3 27 32	2	9	16
0 21 02	3	27	32

To see that this inequality holds for $n \ge 4$, we will use induction. Basis: n = 4. Then $3^n = 3^4 = 81 > 64 = 2^{4+2} = 2^{n+2}$. Inductive step: Suppose $3^n > 2^{n+2}$ for some $n \ge 4$. Then multiplying by 3 gives us $3^n \cdot 3 > 2^{n+2} \cdot 3$. So

$$3^{n+1} = 3^n \cdot 3 > 2^{n+2} \cdot 3 > 2^{n+2} \cdot 2 = 2^{n+3}$$
.

5. This question is about the sequence Y_n , defined in Part 4 of our lecture notes. Is it true that for every even n, Y_n is even? Prove that your answer is correct.

Solution: Yes, this is true. Proof: Suppose that n is even. Then n=2k for some k. So $Y_n=2Y_{n-1}+n=2(Y_{n-1}+k)$.