CS311: Discrete Math for Computer Science, Spring 2015 Additional Exercises

1. Prove that the assertion

$$m = F_i \wedge n = F_{i+1} \wedge i \leq 10$$

where F_i is the *i*-th Fibonacci number, is a loop invariant for the loop

$$\begin{aligned} & \textbf{while} \ i < 10 \ \textbf{do} \\ & i \leftarrow i+1; \\ & k \leftarrow m+n; \\ & m \leftarrow n; \\ & n \leftarrow k \end{aligned}$$

$$\textbf{enddo}$$

2. Determine which of the assertions

$$n \ge 10, \quad n \mid 10, \quad 10 \mid n$$

are loop invariants for the loop

while
$$n < 10$$
 do $n \leftarrow n \times 2$ enddo

3. The sequence A_0, A_1, \ldots is defined by the formulas

$$A_n = \begin{cases} \frac{n}{2}, & \text{if } n \text{ is even,} \\ \frac{n+1}{2}, & \text{otherwise.} \end{cases}$$

(i) Prove that all members of this sequence are integers. (ii) Prove that for every n, $A_{n+2} = A_n + 1$.

4. The sequence B_0, B_1, \ldots is defined by the formulas

$$B_0 = 0,$$

 $B_1 = 1,$
 $B_{n+2} = 4B_{n+1} - B_n.$

(i) Find an explicit formula for B_n . (ii) Determine how the formula will change if we replace the first two equations by

$$B_0 = 1,$$

 $B_1 = 2.$

5. Draw a graph with the adjacency matrix

$$\left[\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right]$$