CS311: Discrete Math for Computer Science, Spring 2015

Homework Assignment 5, with Solutions

1. Prove that for every nonnegative integer n

$$\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}.$$

Solution: We prove that the statement above is true using induction on n. Basis: If n=0, we observe that $\sum_{i=1}^n i^3=0$ and $\frac{n^2(n+1)^2}{4}=\frac{0\cdot 1}{4}=0$. So, the statement is true when n=0. Induction step: Assume that the given statement is true for some n. We can prove that

$$\sum_{i=1}^{n+1} i^3 = \frac{(n+1)^2(n+2)^2}{4}$$

as follows:

$$\sum_{i=1}^{n+1} i^3 = \sum_{i=1}^n i^3 + (n+1)^3$$

$$= \frac{n^2(n+1)^2}{4} + (n+1)^3$$
Using the induction hypothesis
$$= (n+1)^2 \left(\frac{n^2}{4} + (n+1)\right)$$

$$= (n+1)^2 \cdot \frac{n^2 + 4n + 4}{4}$$

$$= \frac{(n+1)^2(n+2)^2}{4}.$$

2. Prove that $n! > 3^n$ if n is an integer greater than 6.

Solution: We will prove this statement using induction. Basis: If n = 7, we observe that n! = 7! = 5040 and $3^n = 3^7 = 2187$. Since 5040 > 2187, we conclude that $n! > 3^n$ when n = 7. Induction step: Assume that $n! > 3^n$ for some $n \ge 7$. We can prove that $(n+1)! > 3^{n+1}$ as follows:

$$(n+1)! = (n+1) \cdot n!$$
 Using the recursive definition of !
 $> (n+1) \cdot 3^n$ Using the induction hypothesis
 $> 3 \cdot 3^n$ Since $n+1>3$ when $n>6$
 $= 3^{n+1}$.

3. Find all nonnegative integers n such that $3^n > 4n!$. Prove that your answer is correct.

Solution: We begin by tabulating the values of 3^n and 4n! for small non-negative values of n.

n	3^n	4n!
0	1	4
1	3	4
2	9	8
3	27	24
4	81	96
5	243	480
6	729	4320

It appears that the inequality $3^n > 4n!$ holds for only two values of n: n = 2 and n = 3. To prove that this answer is correct, we need to establish the following claim:

For all values of n that are greater than 3, $3^n \leq 4n!$.

We will prove it by induction, *Basis:* n=4. Then $3^n=81$ and 4n!=96, so the given inequality holds. *Induction step:* Assume that for some value of n such that $n \geq 4$, $3^n \leq 4n!$. We can prove that $3^{n+1} \leq 4(n+1)!$ as follows:

$$3^{n+1} = 3 \cdot 3^n$$

 $\leq 3 \cdot 4n!$ Using the induction hypothesis
 $\leq (n+1) \cdot 4n!$ Since $3 \leq n+1$
 $= 4(n+1)!$ Since $(n+1) \cdot n! = (n+1)!$

4. Using the recursive definition of n! in Part 4 of Lecture Notes, calculate 4! in two ways: by eager evaluation and by lazy evaluation.

Solution.

Eager evaluation:

$$1! = 1 \cdot 0! = 1 \cdot 1 = 1.$$

 $2! = 2 \cdot 1! = 2 \cdot 1 = 2.$
 $3! = 3 \cdot 2! = 3 \cdot 2 = 6.$
 $4! = 4 \cdot 3! = 4 \cdot 6 = 24.$

Lazy evaluation:

$$4! = 4 \cdot 3!$$

$$= 4 \cdot 3 \cdot 2! = 12 \cdot 2!$$

$$= 12 \cdot 2 \cdot 1! = 24 \cdot 1!$$

$$= 24 \cdot 1 \cdot 0! = 24 \cdot 0!$$

$$= 24 \cdot 1 = 24.$$

5. The numbers U_0, U_1, U_2, \ldots are defined by the formula

$$U_n = \sum_{i=1}^{n} (2i - 1)^2.$$

Define this sequence using recursion, instead of sigma-notation.

Answer:

$$U_0 = 0,$$

 $U_{n+1} = U_n + (2n+1)^2.$

6. The numbers V_0, V_1, V_2, \ldots are defined by the formulas

$$V_0 = 10,$$

 $V_{n+1} = V_n(n^2 + n - 90) + 1.$

Find V_1 and V_{11} without a calculator.

Solution:

$$V_{1} = V_{0} \cdot (0^{2} + 0 - 90) + 1 = 10 \cdot (-90) + 1 = -899;$$

$$V_{11} = V_{10} \cdot (10^{2} + 10 - 90) + 1$$

$$= 20 \cdot V_{10} + 1$$

$$= 20 \cdot (V_{9} \cdot (9^{2} + 9 - 90) + 1) + 1$$

$$= 20 \cdot (V_{9} \cdot 0 + 1) + 1$$

$$= 20 \cdot 1 + 1$$

$$= 21.$$