CS311: Discrete Math for Computer Science, Spring 2015 Homework Assignment 7, with Solutions

1. Without a calculator, determine which of the numbers

$$10^{30}$$
, 10^{50} , 10^{70}

gives the best approximation to the value of the fraction $\frac{100!}{(50!)^2}$. Justify your answer.

Solution. Using the approximation

$$n! \approx \left(\frac{n}{e}\right)^n$$

we calculate:

$$\frac{100!}{(50!)^2} \approx \frac{\left(\frac{100}{e}\right)^{100}}{\left(\left(\frac{50}{e}\right)^{50}\right)^2} = \frac{\left(\frac{100}{e}\right)^{100}}{\left(\frac{50}{e}\right)^{100}} = 2^{100} = \left(2^{10}\right)^{10} \approx 1000^{10} = \left(10^3\right)^{10} = 10^{30}.$$

2. Prove that

(i)
$$n^2 + n + 1 = O(n^2)$$
,

(ii)
$$3 \cdot 2^n + 100 = O(2^n)$$
,

(iii)
$$e^n + e^{n+1} = O(e^n)$$
.

Solution.

(i) Take C=3 and N=1. We now claim that for all $n \geq N$,

$$n^2 + n + 1 \le 3n^2.$$

Proof:

$$n^2 + n + 1 \le n^2 + n^2 + 1$$
 Since $n \le n^2$ when $n \ge 1$
 $\le n^2 + n^2 + n^2$ Since $1 \le n^2$ when $n \ge 1$
 $= 3n^2$.

(ii) Take C = 103 and N = 1. We now claim that for all $n \ge N$,

$$3 \cdot 2^n < 103 \cdot 2^n.$$

Proof:

$$3 \cdot 2^n + 100 \le 3 \cdot 2^n + 100 \cdot 2^n$$
 Since $2^n > 1$ when $n \ge 1$
$$= 103 \cdot 2^n$$

(iii) Take C=4 and N=1. We now claim that for all $n\geq N,$

$$e^n + e^{n+1} < 4 \cdot e^n.$$

Proof:

$$e^n + e^{n+1} = (e+1) \cdot e^n$$

 $\leq 4 \cdot e^n$ Since $e+1 \leq 4$

- **3.** Let A be the set $\{\{1\}, \{2\}, \{3\}\}$.
 - (i) How many elements does A have?
 - (ii) Does A have a pair of different elements x, y such that $x \subseteq y$?
- (iii) How many subsets does A have?
- (iv) Does A have a pair of different subsets x, y such that $x \subseteq y$? Justify your answers.

Solution.

- (i) Set A has 3 elements: $\{1\}$, $\{2\}$, and $\{3\}$.
- (ii) No. Neither element of A is contained in another element of A.
- (iii) A set containing n elements has 2^n subsets. Since A has 3 elements, it has 8 subsets.
- (iv) Yes. For example, $\{\{1\}\}\subseteq\{\{1\},\{2\}\}.$