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Part 2. Definitions and Proofs by Cases

Defining a Function by Cases
Functions in algebra are usually defined by formulas, for instance:
flx) =24z +1.

Sometimes a function is defined by several formulas corresponding to different values of
the argument, as in these examples:

2, ifx>0,
g(x) = {

0, otherwise;

0, otherwise;

x, if x>0,
|| =

—x, otherwise;

1, ifz>
h(x):{7 if x >0,

-1, ifz <0,
sgn(x) =<0, ifx=0,
1, if x > 0.

Such a definition can be rewritten in logical notation so that each case will be represented
by an implication:

Va((z > 0 — g(z) = 2°) A (z < 0 — g(z) = 0));
Ve((x >0— h(z) =1)A(x <0 — h(z) = —1));
Ve((x >0 — |z| =2) A (x <0 — |z| = —2));

Vz((z >0 —sgn(x) =1) A (x =0 —sgn(z) =0) A (x <0 — sgn(z) = —1)).



Defining a Sequence by Cases

A definition by cases can be used also to describe a sequence of numbers. For instance,
the sequence

2, if n is odd,
A, =
5, otherwise.

In logical notation:
Vn((2 fn— A, =2)A(2|n — A, =5)).

The sequence of powers of —1 can be described by a similar definition:

n —1, if nis odd,
-1) ={

1, otherwise.

Digression: The Method of Undetermined Coefficients

It turns out that the sequence A,, defined above can be characterized by a single formula
that works for all values of n, both odd and even. This formula has the form

A, =a(=1)" +b, (1)

where a and b are numerical coefficients. We can find the values of a and b by the
method of undetermined coefficients, which is widely used in mathematics. Since we
want formula (1) to hold for all positive integers n, it should hold, in particular, for
n =1 and for n = 2. For n = 1 this formula gives

2=—a+b.
For n = 2 we get

5=a+b
We can solve these equations for a and b and find:

3 7
a 2,

If we replace the letters a and b in formula (1) with these numerical values, we’ll get:

Ay = g(—1)”+;. @)



Proofs by Cases

Now we want to check that formula (2) holds for all values of n, and not only for 1
and 2. Consider two cases. Case 1: n is odd. Then

3 7T 3 7 3 7
A, =2, —(-1)"+=-==-(-1 —=—=+4-=2.
2( )+2 2( )+2 2+2
Case 2: n is even. Then
3 7 3 T 3 7
A, =5, —(-1)V"+-==-14+—-=—=-+-=035.
g 2( )+2 2 +2 2+2 g

So formula (2) holds in both cases.
This proof of formula (2) is a proof by cases. Such proofs are often used in mathe-
matics. Its structure can be symbolically represented by this “inference rule”:

F—G - — G
e )

This figure tells us that if we established the two premises F — G, -F — G then we
can derive the conclusion G. The first premise says that G true if F' is true (Case 1);
the second premise says that G true if F' is false (Case 2). In the example above, the
condition F' that distinguishes Case 1 from Case 2 is “n is odd” (symbolically, 2 /n),
and the conclusion G is formula (2).

As another example of proof by cases, we will show that for every real number z,

2|2 = 22

Recall that |z| is defined by the formulas

T, if z >0,
|| =

—x, otherwise.

Case 1: x > 0. Then |z| =, so that |z|> = 22. Case 2: z < 0. Then |x| = —z, so that
of? = (—0)? = .

Distinguishing Between Three Cases

In some proofs we distinguish between several cases, not just two. Let us prove, for
instance, that for every real number z,

sgn(x) - |z| = z.

Recall that sgn(z) is defined by the formulas

-1, ifzx <0,
sgn(x) =<0, ifz=0,
1, if x > 0.



Case 1: x < 0. Then
sgn(@) -z = (1) - () = a.

Case 2: © = 0. Then
sgn(z) -z =0-z=0=u=.

Case 3: x > 0. Then
sgn(z) - |z|=1-z==.

The structure of this proof can be represented by an inference rule with four premises:

Fy VvV FyV Fy Fi —- G Fr,— G F3; — G
G .

The first premise expresses that the conditions Fj, Fb, F3, which describe the three
cases, cover all possibilities. In the example above, this premise is

(x<0)V(z=0)V(z>0).

The other three premises establish the conclusion G for all these cases.



