
Lecture Notes:

Discrete Mathematics for Computer Science

Vladimir Lifschitz
University of Texas at Austin

Part 4. Induction and Recursion

Proofs by Induction

Induction is a useful proof method in mathematics and computer science. When we
want to prove by induction that some statement containing a variable n is true for all
nonnegative values of n, we do two things. First we prove the statement when n = 0; this
part of the proof is called the basis. Then we prove the statement for n+1 assuming that
it is true for n; this part of the proof is called the induction step. (The assumption that
the statement is true for n, which is used in the induction step, is called the induction
hypothesis.)

Once we have completed both the basis and the induction step, we can conclude that
the statement holds for all nonnegative values of n. Indeed, according to the basis, it
holds for n = 0. From this fact, according to the induction step, we can conclude that it
holds for n = 1. From this fact, according to the induction step, we can conclude that
it holds for n = 2. And so on.

As an example, we will give yet another proof of the formula for triangular numbers.

Problem. Prove that for all nonnegative integers n

1 + 2 + · · ·+ n =
n(n + 1)

2
.

Solution. Basis. When n = 0, the formula turns into

0 =
0(0 + 1)

2
,

which is correct. Induction step. Assume that

1 + 2 + · · ·+ n =
n(n + 1)

2
.

We need to derive from this assumption that

1 + 2 + · · ·+ n + (n + 1) =
(n + 1)(n + 2)

2
.

1



Using the induction hypothesis, we calculate:

1 + 2 + · · ·+ n + (n + 1) =
n(n + 1)

2
+ (n + 1)

=
n(n + 1) + 2(n + 1)

2

=
(n + 1)(n + 2)

2
.

Proofs by induction can be symbolically represented by this inference rule:

P (0) ∀n(P (n)→ P (n + 1))
∀nP (n)

.

Here n is a variable for nonnegative integers, and the expression P (n) means that n has
the property that we want to prove holds for n. The first premise represents the basis,
and the second premise represents the induction step.

Two More Examples of Induction

Problem. Prove that for all nonnegative integers n, 2n > n.

Solution. Basis. When n = 0, the formula turns into 1 > 0, which is correct. Induction
step. Assume that 2n > n. We need to derive from this assumption that 2n+1 > n + 1.
This can be done as follows, using the induction hypothesis and then the fact that
2n ≥ 1:

2n+1 = 2n + 2n > n + 2n ≥ n + 1.

Problem. Prove that for all nonnegative integers n, n3 − n is a multiple of 3.

Solution. Basis. When n = 0, we need to check that 03 − 0 is a multiple of 3, which
is correct. Induction step. Assume that n3 − n is a multiple of 3. We need to derive
from this assumption that (n + 1)3 − (n + 1) is a multiple of 3. This expression can be
rewritten as follows:

(n + 1)3 − (n + 1) = n3 + 3n2 + 3n + 1− (n + 1) = n3 + 3n2 + 2n
= (n3 − n) + 3n2 + 3n.

Consider the three summands n3 − n, 3n2, 3n. By the induction hypothesis, the first
of them is a multiple of 3. It is clear that the other two are multiples of 3 also. Conse-
quently, the sum is a multiple of 3.

2



Starting with a Number Other than 0

We have used induction to prove statements about nonnegative integers. Statements
about positive integers can be proved by induction in a similar way, except that the
basis corresponds to n = 1; also, in the induction step we may assume that n ≥ 1.
Similarly, if we want to prove a statement about all integers beginning with 2 then the
basis corresponds to n = 2, and so on.

Problem. Prove that for all integers n such that n ≥ 10, 2n > n + 1000.

Solution. Basis. When n = 10, the formula turns into 1024 > 1010, which is correct.
Induction step. Assume that 2n > n + 1000 for an integer n such that n ≥ 10. We need
to derive that 2n+1 > n + 1001. This can be done as follows:

2n+1 = 2n + 2n > n + 1000 + 2n > n + 1000 + 1 = n + 1001.

Recursive Definitions

A recursive definition of a sequence of numbers expresses some members of that sequence
in terms of its other members. For instance, here is a recursive definition of triangular
numbers:

T0 = 0,
Tn+1 = Tn + n + 1.

The first formula gives the first triangular number explicitly; the second formula shows
how to calculate any other triangular number if we already know the previous triangular
number.

There are two ways to find T4 using this definition. One is to find first T1, then T2,
then T3, and then T4:

T1 = T0 + 1 = 0 + 1 = 1,
T2 = T1 + 2 = 1 + 2 = 3,
T3 = T2 + 3 = 3 + 3 = 6,
T4 = T3 + 4 = 6 + 4 = 10.

The other possibility is to form a chain of equalities that begins with T4 and ends with
a number:

T4 = T3 + 4
= T2 + 3 + 4 = T2 + 7
= T1 + 2 + 7 = T1 + 9
= T0 + 1 + 9 = T0 + 10
= 0 + 10 = 10.

This is an example of “lazy evaluation”: we don’t calculate the members of the sequence
other than our goal T4 until they are needed. The strategy used in the first calculation
is “eager,” or “strict.”

If a sequence of numbers is defined using Sigma-notation then we can always rewrite
its definition using recursion. For instance, the formula

Xn =
n∑

i=1

1
i2 + 1

3



can be rewritten as
X0 = 0,

Xn+1 = Xn +
1

(n + 1)2 + 1
.

The sequence of factorials can be described by a recursive definition also:

0! = 1,
(n + 1)! = n! · (n + 1).

Proving Properties of Recursively Defined Sequences

To prove properties of recursively defined sequences, we often use induction. Consider,
for instance, the numbers Y0, Y1, Y2, . . . defined by the formulas

Y0 = 0,
Yn+1 = 2Yn + n + 1.

We will prove by induction that Yn ≥ 2n whenever n ≥ 2. Basis: n = 2. Since Y2 = 4
and 22 = 4, the inequality Y2 ≥ 22 holds. Induction step. Assume that Yn ≥ 2n for an
integer n such that n ≥ 2. We need to derive that Yn+1 ≥ 2n+1. This can be done as
follows:

Yn+1 = 2Yn + n + 1 ≥ 2 · 2n + n + 1 = 2n+1 + n + 1 > 2n+1.

Recursive Definitions in Case Notation

Recursive definitions can be written in “case notation” by showing which formula should
be used for calculating the n-th member of the sequence depending on the value of n.
For instance, the definition of triangular numbers, rewritten in case notation, will look
like this:

Tn =

{
0, if n = 0,
Tn−1 + n, otherwise.

In all examples of recursive definitions so far, the larger n is, the more work is needed
to calculate the n-th member of the sequence. The recursive definition of the numbers
M(0), M(1), M(2), . . . shown below is different: it’s easy to calculate M(n) when n is
large, and difficult when n is small.

M(n) =

{
n− 10, if n > 100,
M(M(n + 11)), otherwise.

4


