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Part 5. Fibonacci Numbers and Their Relatives

Definition of Fibonacci Numbers

The sequence of Fibonacci numbers F0, F1, F2, . . . is defined by the equations

F0 = 0,
F1 = 1,
Fn+2 = Fn + Fn+1.

Here the first two members of the sequence are given explicitly, not one. But to calculate
any other Fibonacci number we need to know two previous Fibonacci numbers; one is
not enough.

The definition of Fibonacci numbers in case notation looks like this:

Fn =


0, if n = 0,
1, if n = 1,
Fn−2 + Fn−1, if n ≥ 2.

A Formula for Fibonacci Numbers

We would like to find an explicit formula for Fibonacci numbers. The following termi-
nology will be useful. A generalized Fibonacci sequence is a sequence X0, X1, X2 . . . of
real numbers such that for every n,

Xn+2 = Xn + Xn+1.

We can define a specific generalized Fibonacci sequence by specifying the values of X0

and X1. For instance, the values X0 = 0, X1 = 1 will give us the usual Fibonacci
numbers

0, 1, 1, 2, 3, 5, 8, . . . ;

if we start with X0 = 5, X1 = 7 then we will get the sequence

5, 7, 12, 19, 31, 50, . . . . (1)
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As the first step toward the formula for Fibonacci numbers, we’ll find a real number c
such that the sequence of its powers

1, c, c2, c3, . . .

is a generalized Fibonacci sequence. In other words, we are looking for a number c that
satisfies the equations

c2 = 1 + c,

c3 = c + c2,

c4 = c2 + c3,

. . .

It is sufficient to satisfy the first of these equations, because all other equations follow
from it. That equation has two roots:

c1 =
1 +
√

5
2

≈ 1.618, c2 =
1−
√

5
2

≈ −.618.

Thus we determined that the sequences

Xn =

(
1 +
√

5
2

)n

, Yn =

(
1−
√

5
2

)n

are generalized Fibonacci sequences.
For any coefficients a and b, the numbers

Zn = a

(
1 +
√

5
2

)n

+ b

(
1−
√

5
2

)n

(2)

form a generalized Fibonacci sequence also. Let’s now find the values of a and b for
which Z0 = 0, Z1 = 1, so that the numbers Zn become the usual Fibonacci numbers Fn.
For n = 0 and n = 1, we get two equations:

0 = a + b,

1 = a
1 +
√

5
2

+ b
1−
√

5
2

.

From these equations we find:

a =
1√
5
, b = − 1√

5
.

So we arrived at the following formula for Fibonacci numbers:

Fn =
1√
5

(
1 +
√

5
2

)n

− 1√
5

(
1−
√

5
2

)n

.
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Modifications of the Fibonacci Sequence

We would like to find an explicit formula for the sequence (1), which is defined by the
equations

Z0 = 5,
Z1 = 7,
Zn+2 = Zn + Zn+1.

Since the formula expressing Zn+2 in terms of Zn and Zn+1 is the same as for Fibonacci
numbers, we will look again for a formula of form (2). The equations of a and b are in
this case

5 = a + b,

7 = a
1 +
√

5
2

+ b
1−
√

5
2

.

From these equations we find:

a =
25 + 9

√
5

10
, b =

25− 9
√

5
10

.

Consider now the sequence defined by the equations

V0 = 0,
V1 = 1,
Vn+2 = 3Vn − 2Vn+1.

To find a number c such that the sequence of its powers 1, c, c2, c3, . . . satisfies the
last formula, we need to solve the equation c2 = 3− 2c. Its roots are

c1 = 1, c2 = −3.

So the formula for Vn will have the form

Vn = a + b(−3)n.

From the initial conditions V0 = 0, V1 = 1 we find: a = 1
4 , b = −1

4 .
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