Lecture Notes: Discrete Mathematics for Computer Science

Vladimir Lifschitz

University of Texas at Austin

Part 7. Sets, Relations and Functions

Sets

A set is a collection of objects. We write $x \in A$ if object x is an element of set A, and $x \notin A$ otherwise.

The set whose elements are x_1, \ldots, x_n is denoted by $\{x_1, \ldots, x_n\}$. The set $\{\}$ is called *empty* and denoted also by \emptyset . The set of nonnegative integers is denoted by \mathbb{N} :

$$\mathbf{N} = \{0, 1, 2, \dots\}.$$

Other examples are the set \mathbf{Z} of all integers and the set \mathbf{R} of real numbers.

When we specify which objects belong to a set, this defines the set completely; there is no such thing as the order of elements in a set or the number of repetitions of an element in a set. For instance,

$${2,3} = {3,2} = {2,2,3}.$$

If C is a condition, then by $\{x : C\}$ we denote the set of all objects x satisfying this condition. For instance,

$$\{x : x = 2 \lor x = 3\}$$

is the same set as $\{2,3\}$.

If A is a set and C is a condition, then by $\{x \in A : C\}$ we denote the set of all elements of A satisfying condition C. For instance, $\{2,3\}$ can be also written as

$$\{x \in \mathbf{N} : 1 < x < 4\}.$$

If a set A is finite then the number of elements of A is also called the *cardinality* of A and denoted by |A|. For instance,

$$|\emptyset| = 0, |\{2,3\}| = 2.$$

We say that a set A is a subset of a set B, and write $A \subseteq B$, if every element of A is an element of B. For instance,

$$\emptyset \subseteq \mathbf{N}, \{2,3\} \subseteq \mathbf{N}.$$

Operations on Sets

For any sets A and B, by $A \cup B$ we denote the set

$$\{x : x \in A \lor x \in B\},\$$

called the union of A and B. By $A \cap B$ we denote the set

$$\{x : x \in A \land x \in B\},\$$

called the *intersection* of A and B. For instance,

$${2,3} \cup {3,5} = {2,3,5},$$

 ${2,3} \cap {3,5} = {3}.$

By $A \setminus B$ we denote the set

$$\{x : x \in A \land x \notin B\},\$$

called the difference of A and B. For instance,

$$\{2,3\} \setminus \{3,5\} = \{2\}.$$

The Cartesian product of sets A and B is the set of ordered pairs $\langle x, y \rangle$ such that $x \in A$ and $y \in B$:

$$A \times B = \{ \langle x, y \rangle : x \in A \land y \in B \}.$$

For instance,

$$\begin{array}{lcl} \{1,2\}\times\{2,3,4,5,6\} & = & \{\langle 1,2\rangle,\ \langle 1,3\rangle,\ \langle 1,4\rangle,\ \langle 1,5\rangle,\ \langle 1,6\rangle, \\ & & \langle 2,2\rangle,\ \langle 2,3\rangle,\ \langle 2,4\rangle,\ \langle 2,5\rangle,\ \langle 2,6\rangle\}. \end{array}$$

By $\mathcal{P}(A)$ we denote the power set of a set A, that is, the set of all subsets of A:

$$\mathcal{P}(A) = \{ B : B \subseteq A \}.$$

For instance,

$$\mathcal{P}(\{2,3\}) = \{\emptyset, \{2\}, \{3\}, \{2,3\}\}.$$

Binary Relations

Any condition on a pair of elements of a set A defines a binary relation, or simply relation, on A. For instance, the condition x < y defines a relation on the set \mathbf{N} of nonnegative integers (or on any other set of numbers). If R is a relation, the formula xRy expresses that R holds for the pair x, y.

A relation R can be characterized by the set of all ordered pairs $\langle x, y \rangle$ such that xRy. It is customary to talk about a relation as it were the same thing as the corresponding set of ordered pairs. For instance, we can say that the relation < on the set $\{1, 2, 3, 4\}$ is the set

$$\{\langle 1,2\rangle,\ \langle 1,3\rangle,\ \langle 1,4\rangle,\ \langle 2,3\rangle,\ \langle 2,4\rangle,\ \langle 3,4\rangle\}.$$

A relation R on a set A is said to be reflexive if, for all elements x of A, xRx. We say that R is irreflexive if there is no element x of A such that xRx. For instance, the relations = and \le on the set \mathbf{N} (or on any set of numbers) are reflexive, and the relations \ne and < are irreflexive.

A relation R on a set A is said to be symmetric if, for all $x, y \in A$, xRy implies yRx. For instance, the relations = and \neq on \mathbb{N} are symmetric, and the relations < and \leq are not.

A relation R on a set A is said to be transitive if, for all $x, y, z \in A$, xRy and yRz imply xRz. For instance, the relations =, < and \le on the set \mathbf{N} are transitive, and the relation \ne is not.

Equivalence Relations and Partitions

An equivalence relation is a relation that is reflexive, symmetric, and transitive.

A partition of a set A is a collection P of non-empty subsets of A such that every element of A belongs to exactly one of these subsets. For instance, here are some partitions of N:

$$\begin{array}{rcl} P_1 &=& \{\{0,2,4,\dots\},\{1,3,5,\dots\}\},\\ P_2 &=& \{\{0,1\},\{2,3\},\{4,5\},\dots\},\\ P_3 &=& \{\{0\},\{1\},\{2\},\{3\},\dots\}. \end{array}$$

If P is a partition of a set A then the relation "x and y belong to the same element of P" is an equivalence relation.

Order Relations

A relation R on a set A is said to be antisymmetric if, for all $x, y \in A$, xRy and yRx imply x = y. For instance, the relation \leq on \mathbf{R} is antisymmetric.

A partial order is a relation that is reflexive, anti-symmetric, and transitive. For instance, the relation \leq on \mathbf{R} , the relation \mid on \mathbf{N} , and the relation \subseteq on $\mathcal{P}(A)$ for any set A are partial orders.

A total order on a set A is a partial order such that for all $x, y \in A$, xRy or yRx. For instance, \leq is total and \mid is not.

General Definition of a Function

For any sets A and B, a function from A to B is a rule f that can be applied to any element x of A and produces an element f(x) of B. The set A is called the domain of f. The subset of B consisiting of the values f(x) of the function for all $x \in A$ is called the range of f. If the range of f is the whole set B then we say that f is a function onto B.

This definition of a function is general because it does not assume that the domain and the range consist of numbers. In the following examples, the domain of each function is the set S of all bit strings:

$$S = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, \dots\}.$$

- 1. Function l from **S** to **N**: l(x) is the length of x. For instance, l(00110) = 5.
- 2. Function z from S to N: z(x) is the number zeroes in x. For instance, z(00110) = 3.
- 3. Function n from **S** to **N**: n(x) is the number represented by x in binary notation. For instance, n(00110) = 6.
- 4. Function e from **S** to **S**: e(x) is the string 1x. For instance, e(00110) = 100110.
- 5. Function r from **S** to **S**: r(x) is the string x reversed. For instance, r(00110) = 01100.
- 6. Function p from \mathbf{S} to $\mathcal{P}(\mathbf{S})$: p(x) is the set of prefixes of x. For instance, $p(00110) = \{\epsilon, 0, 00, 001, 0011, 00110\}$.

A function f can be characterized by the set of all ordered pairs of the form $\langle x, f(x) \rangle$. It is customary to talk about a function as if it were the same thing as the corresponding set of ordered pairs. For instance, we can say that the function f from \mathbf{N} to \mathbf{N} defined by the formula f(n) = 2n + 1 is the set

$$\{\langle 0,1\rangle,\ \langle 1,3\rangle,\ \langle 2,5\rangle,\dots\}.$$

Instead of defining functions as rules, we can say that a function from a set A to a set B is a set $f \subseteq A \times B$ such that for every element x of A there exists a unique element y of B for which $\langle x, y \rangle \in f$.

A function f from A to B is called *one-to-one* if, for any pair of different elements x, y of A, f(x) is different from f(y). If a function f is both onto and one-to-one then we say that f is a bijection. A permutation of a set A is a bijection from A to A.

If f is a function from A to B, and g is a function from B to C, then the composition of these functions is the function h from A to C defined by the formula h(x) = g(f(x)). This function is denoted by $g \circ f$.

If f is a bijection from A to B then the inverse of f is the function g from B to A such that, for every $x \in A$, g(f(x)) = x. This function is denoted by f^{-1} .