CS311: Discrete Math for Computer Science, Spring 2015

Test 1, with Solutions

Open notes. No books, no calculators.

1. Simplify the given formula. Justify your answers.

(a)
$$n > 4 \land n^2 < 30$$
. Answer: $n = 5$.

(b)
$$n > 4 \lor (n^2)! = 0$$
. Answer: $n > 4$.

2. Determine whether the given formula is true. If it is, prove it. If not, find a counterexample.

(a)
$$\forall n (1 \le n \le 4 \to 4 \cdot 2^{2-n} > 1)$$
.

Answer: false; counterexample: n=4. Indeed, $4\cdot 2^{2-4}=1$.

(b)
$$\forall n (1 \le n \le 4 \to n! \le 2^{n+1}).$$

Answer: true. Proof by exhaustion:

n	n!	2^{n+1}	$n! \le 2^{n+1}$
1	1	4	${ m T}$
2	2	8	${ m T}$
3	6	16	${ m T}$
4	24	32	${ m T}$

- **3.** Translate into logical notation:
 - (a) There exists a positive integer that is less than 5.

Answer: $\exists n (0 < n < 5)$.

(b) The square of every negative real number is positive.

Answer: $\forall x (x < 0 \rightarrow x^2 > 0)$.

4. Determine whether the given formula is true when the value of each of its free variables is 1. If it is then give a witness.

(a)
$$\exists x z (x < y \land z < y)$$
.

Answer: True; witness: x = z = 0.

(b)
$$\exists x (x < y \land y < z)$$
.

Answer: False. Indeed, when the value of each of the variables y, z is 1, the conjunctive term y < z is false.

5. Rewrite the given expression in Sigma-notation.

(a)
$$\sqrt{3} + \sqrt[3]{4} + \dots + \sqrt[30]{31}$$
. Answer: $\sum_{i=2}^{30} \sqrt[i]{i+1}$.

(b)
$$\frac{1}{2^n} + \frac{1}{2^{n+1}} + \dots + \frac{1}{2^{2n}}$$
. Answer: $\sum_{i=n}^{2n} \frac{1}{2^i}$.