We will now define the concept of a stable model for sets of formulas that consist of atoms and implications of the form

\[A_0 \leftarrow A_1 \land \cdots \land A_m \land \neg A_{m+1} \land \cdots \land \neg A_n \]

(\(n \geq m \geq 1 \)), where each \(A_i \) is an atom.

Let \(\Gamma \) be such a set of formulas, and let \(S \) be a set of atoms. The reduct of \(\Gamma \) relative to \(S \) is the set obtained from \(\Gamma \) by replacing each conjunctive term \(\neg A_i \) in each of the formulas (1) by \(\top \) if \(S \) satisfies \(\neg A_i \), and by \(\bot \) otherwise. The reduct of \(\Gamma \) relative to \(S \) is denoted by \(\Gamma^S \). Since \(\Gamma^S \) is equivalent to a set of definite formulas, it has a unique minimal model. If this model coincides with \(S \) then we say that \(S \) is a stable model of \(\Gamma \).

For instance, let \(\Gamma \) be the pair of formulas

(2) \[q, \]

(3) \[p \leftarrow q \land \neg r \]

used as an example in Part 6 of these lecture notes. To check that \(\{p, q\} \) is a stable model of this set, consider the reduct \(\Gamma^{\{p,q\}} \):

\[q, \]

\[p \leftarrow q \land \top. \]

The minimal model of the reduct is \(\{p, q\} \), which is exactly the set that we started with.

On the other hand, \(\{q, r\} \) is not a stable model of \(\Gamma \). Indeed, the reduct \(\Gamma^{\{q,r\}} \) is

\[q, \]

\[p \leftarrow q \land \bot, \]

and its minimal model is \(\{q\} \)—a set different from \(\{q, r\} \).

7.1. (a) Check that the set of formulas (2), (3) has no stable models other than \(\{p, q\} \). (b) In Part 6 we argued that after adding the formula \(r \leftarrow q \) to this set its stable model becomes \(\{q, r\} \). Prove that that claim was correct.

7.2. Check whether your guesses about the stable models in Problem 6.3 were correct.
The set of formulas

\[p \leftarrow \neg q, \quad (4) \]
\[q \leftarrow \neg p \quad (5) \]

has two stable models: \(\{p\} \) and \(\{q\} \). Indeed, the reduct of this set relative to \(\{p\} \) is

\[p \leftarrow \top, \]
\[q \leftarrow \bot; \]

its minimal model is \(\{p\} \). Similarly, the reduct of this set relative to \(\{q\} \) is

\[p \leftarrow \bot, \]
\[q \leftarrow \top; \]

its minimal model is \(\{q\} \).

7.3. Show that \(\emptyset \) and \(\{p, q\} \) are not stable models of (4), (5).

7.4. Find the stable models of

(a)

\[p \leftarrow \neg p; \]

(b)

\[p \leftarrow \neg q, \]
\[q \leftarrow \neg p, \]
\[r \leftarrow p, \]
\[r \leftarrow q. \]