Introduction to Mathematical Logic, Handout 1 Propositional Formulas: Syntax

A propositional signature is a non-empty set of symbols called atoms. (In examples, we will assume that p, q, r are atoms.) The symbols

$$\neg \land \lor \rightarrow$$

are called propositional connectives. Among them, \neg (negation) is a unary connective, and the symbols \land (conjunction), \lor (disjunction), and \rightarrow (implication) are binary.

Take a propositional signature σ that contains neither propositional connectives nor parentheses (,). The alphabet of propositional logic consists of the atoms from σ , the propositional connectives, and the parentheses. By a string we understand a finite string of symbols in this alphabet. We define when a string is a (propositional) formula recursively, as follows:

- every atom is a formula,
- if F is a formula then $\neg F$ is a formula,
- for any binary connective \odot , if F and G are formulas then $(F \odot G)$ is a formula.

Properties of formulas can be often proved by structural induction. In such a proof, we check that all atoms have the property P that we would like to establish, and that this property is preserved when a new formula is formed using a unary or binary connective. More precisely, we show that

- every atom has property P,
- if a formula F has property P then so does $\neg F$,
- for any binary connective \odot , if formulas F and G have property P then so does $(F \odot G)$.

Then we can conclude that property P holds for all formulas.

Problem 1.1 In any prefix of a formula, the number of left parentheses is greater than or equal to the number of right parentheses. (A prefix of a string $a_1 \cdots a_n$ is any string of the form $a_1 \cdots a_m$ where $0 \le m \le n$.)

Problem 1.2 Every prefix of a formula F

- is a string of negations (possibly empty), or
- has more left than right parentheses, or
- \bullet equals F.

Problem 1.3 No formula can be represented in the form $(F \odot G)$, where F and G are formulas and \odot is a binary connective, in more than one way.

We will abbreviate formulas of the form $(F \odot G)$ by dropping the outermost parentheses in them. For any formulas $F_1, F_2, \ldots, F_n \ (n > 2)$,

$$F_1 \wedge F_2 \wedge \cdots \wedge F_n$$

will stand for

$$(\cdots (F_1 \wedge F_2) \wedge \cdots \wedge F_n).$$

The abbreviation $F_1 \vee F_2 \vee \cdots \vee F_n$ will be understood in a similar way. The expression $F \leftrightarrow G$ will be used as shorthand for

$$(F \to G) \land (G \to F).$$