Introduction to Mathematical Logic, Handout 4 Natural Deduction

A sequent is an expression of the form

$$\Gamma \Rightarrow F \tag{1}$$

("F under assumptions Γ ") or

$$\Gamma \Rightarrow$$
 (2)

("assumptions Γ are contradictory"), where Γ is a finite set of formulas. If Γ is written as $\{G_1, \ldots, G_n\}$, we will drop the braces and write (1) as

$$G_1, \dots, G_n \Rightarrow F$$
 (3)

and (2) as

$$G_1, \dots, G_n \Rightarrow .$$
 (4)

Intuitively, a sequent (3) has the same meaning as the formula

$$(G_1 \wedge \dots \wedge G_n) \to F \tag{5}$$

(and as the formula F if n = 0); (4) has the same meaning as the formula

$$\neg (G_1 \wedge \cdots \wedge G_n). \tag{6}$$

We define below which sequents are considered axioms and provide a list of inference rules. A proof is a list of sequents S_1, \ldots, S_n such that each S_i is either an axiom or can be derived from some of the sequents S_1, \ldots, S_{i-1} by one of the inference rules.

Axioms are sequents of the forms

$$F \Rightarrow F$$

and

$$\Rightarrow F \vee \neg F$$
.

Inference Rules. In the list below, Γ , Δ , Δ_1 , Δ_2 are finite sets of formulas, and Σ is a formula or the empty string. Most inference rules are classified into introduction rules (the left column) and elimination rules (the right column); two exceptions are the contradiction rule (C) and the weakening rule (W).

$$(\land I) \ \frac{\Gamma \Rightarrow F \quad \Delta \Rightarrow G}{\Gamma, \Delta \Rightarrow F \land G} \qquad (\land E) \ \frac{\Gamma \Rightarrow F \land G}{\Gamma \Rightarrow F} \quad \frac{\Gamma \Rightarrow F \land G}{\Gamma \Rightarrow G}$$

$$(\vee I) \ \frac{\Gamma \Rightarrow F}{\Gamma \Rightarrow F \vee G} \quad \frac{\Gamma \Rightarrow G}{\Gamma \Rightarrow F \vee G} \qquad (\vee E) \ \frac{\Gamma \Rightarrow F \vee G}{\Gamma, \Delta_1, \Delta_2 \Rightarrow \Sigma} \frac{\Delta_2, G \Rightarrow \Sigma}{\Gamma, \Delta_1, \Delta_2 \Rightarrow \Sigma}$$

$$(\rightarrow I) \; \frac{\Gamma, F \Rightarrow G}{\Gamma \Rightarrow F \rightarrow G} \qquad \qquad (\rightarrow E) \; \frac{\Gamma \Rightarrow F \quad \Delta \Rightarrow F \rightarrow G}{\Gamma, \Delta \Rightarrow G}$$

$$(\neg I) \ \frac{\Gamma, F \Rightarrow}{\Gamma \Rightarrow \neg F} \qquad \qquad (\neg E) \ \frac{\Gamma \Rightarrow F \ \Delta \Rightarrow \neg F}{\Gamma, \Delta \Rightarrow}$$

$$(C) \xrightarrow{\Gamma \Rightarrow} F$$

$$(W) \xrightarrow{\Gamma \Rightarrow \Sigma} \Gamma, \Delta \Rightarrow \Sigma$$

To prove a sequent S means to find a proof with the last sequent S. To prove a formula F means to prove the sequent $\Rightarrow F$. For instance, here is a proof of the formula $(p \land q) \rightarrow (p \lor q)$:

$$p \land q \Rightarrow p \land q$$

$$p \land q \Rightarrow p$$

$$p \land q \Rightarrow p \lor q$$

$$\Rightarrow (p \land q) \rightarrow (p \lor q)$$

In each of the following problems, find a proof of the given formula.

Problem 4.1 $(p \land q \land r) \rightarrow (p \land r)$.

Problem 4.2 $((p \land q) \rightarrow r) \rightarrow (p \rightarrow (q \rightarrow r)).$

Problem 4.3 $(p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r)).$

Problem 4.4 $(p \rightarrow q) \rightarrow (\neg q \rightarrow \neg p)$.

Problem 4.5 $(p \land \neg p) \rightarrow q$.

Problem 4.6 $((p \land q) \lor r) \rightarrow (p \lor r)$.

Problem 4.7 $\neg (p \lor q) \leftrightarrow (\neg p \land \neg q)$.

Problem 4.8 $p \rightarrow (q \rightarrow p)$.

Problem 4.9 $\neg \neg p \leftrightarrow p$.

Problem 4.10 $(p \rightarrow q) \lor (q \rightarrow p)$.

Problem 4.11 $\neg (p \land q) \leftrightarrow (\neg p \lor \neg q)$.

Problem 4.12 $(p \lor q) \leftrightarrow (\neg p \rightarrow q)$.