Introduction to Mathematical Logic, Handout 7 Predicate Formulas: Semantics

The semantics of propositional formulas described in Handout 2 defines which truth value F^I is assigned to a propositional formula F by an interpretation I. Our goal is to extend this definition to predicate formulas.

First we need to extend the definition of an interpretation to predicate signatures. An interpretation I of a predicate signature σ consists of

- a non-empty set |I|, called the universe of I,
- for every object constant c of σ , an element c^I of |I|,
- for every predicate constant P of σ , a function P^I from $|I|^n$ to $\{f, t\}$, where n is the arity of P.

For instance, the sentence preceding Problem 7.1 can be viewed as the definition of an interpretation of the signature

$$\{a, Sum, Prod\}.$$
 (1)

For this interpretation I,

$$|I| = \mathbf{N},$$

$$a^{I} = 0,$$

$$Sum^{I}(\xi, \eta, \zeta) = \begin{cases} \mathsf{t}, & \text{if } \xi + \eta = \zeta, \\ \mathsf{f}, & \text{otherwise,} \end{cases}$$

$$Prod^{I}(\xi, \eta, \zeta) = \begin{cases} \mathsf{t}, & \text{if } \xi \eta = \zeta, \\ \mathsf{f}, & \text{otherwise} \end{cases}$$

$$(2)$$

 $(\xi, \eta, \zeta \in \mathbf{N}).$

The definition of F^I refers to the substitution operator, defined as follows. Let F be a formula and v a variable. The result of the substitution of a term t for v in F, denoted by F_t^v , is the formula obtained from F by replacing each free occurrence of v by t.

Consider an interpretation I of a predicate signature σ . For any element ξ of its universe |I|, select a new symbol ξ^* , called the name of ξ . By σ^I we denote the predicate signature obtained from σ by adding all names

 ξ^* as additional object constants. The interpretation I can be extended to the new signature σ^I by defining

$$(\xi^*)^I = \xi$$

for all $\xi \in |I|$. We will denote this interpretation of σ^I by the same symbol I. We define the truth value F^I that is assigned to F by I for every sentence F of the extended signature σ^I recursively, as follows:

- $P(t_1, ..., t_n)^I = P^I(t_1^I, ..., t_n^I),$
- $\bullet \ (\neg F)^I = \neg (F^I),$
- $(F \odot G)^I = \odot (F^I, G^I)$ for every binary connective \odot ,
- $(\forall vF)^I = \mathsf{t}$ iff, for all $\xi \in |I|, (F^v_{\xi^*})^I = \mathsf{t}$,
- $(\exists v F)^I = \mathsf{t}$ iff, for some $\xi \in |I|, (F_{\xi^*}^v)^I = \mathsf{t}$.

As in propositional logic, we say that I satisfies F, and write $I \models F$, if $F^I = \mathsf{t}$.

Problem 7.1 Determine which of the sentences

- (i) $\exists x Sum(x, x, x)$,
- (ii) $\exists x \neg Sum(x, x, x)$,
- (iii) $\forall x(Sum(x, x, x) \rightarrow \forall ySum(x, y, y))$

are satisfied by interpretation (2).

Problem 7.2 Consider the signature consisting of just one symbol, the ternary predicate constant Sum. (a) Determine which of the sentences from Problem 7.1 are satisfied by the interpretation I of this signature defined by

$$|I| = \{f, t\},\$$

$$Sum^{I}(\xi, \eta, \zeta) = \begin{cases} t, & \text{if } \forall (\xi, \eta) = \zeta, \\ f, & \text{otherwise.} \end{cases}$$
(3)

(b) Determine whether interpretation (3) satisfies the sentence

$$\forall xy(Sum(x, y, x) \lor Sum(x, y, y)).$$

A sentence is *logically valid* if it is satisfied by all interpretations.

Problem 7.3 Determine whether the sentences

$$\exists x (P(x) \land Q(x)) \to (\exists x P(x) \land \exists x Q(x)), (\exists x P(x) \land \exists x Q(x)) \to \exists x (P(x) \land Q(x))$$

are logically valid.

The universal closure of a formula F is the sentence $\forall v_1 \cdots v_n F$, where v_1, \ldots, v_n are all free variables of F. About a formula with free variables we say that it is *logically valid* if its universal closure is logically valid.

Problem 7.4 For each of the formulas

$$P(x) \to \exists x P(x),$$

 $P(x) \to \forall x P(x)$

determine whether it is logically valid.

A formula F is equivalent to a formula G if the formula $F \leftrightarrow G$ is logically valid.

Problem 7.5 Determine whether the formula

$$\forall x \exists y P(x,y)$$

is equivalent to

$$\exists y \forall x P(x,y).$$

We say that a set Γ of sentences entails a sentence F, or that F is a logical consequence of Γ , if every interpretation that satisfies all sentences in Γ satisfies F.

Problem 7.6 Determine whether

$$\exists x P(x,x)$$

is a logical consequence of the sentences

$$\forall x \exists y P(x,y), \ \forall xyz((P(x,y) \land P(y,z)) \rightarrow P(x,z)).$$