Introduction to Mathematical Logic, Handout 7 Predicate Formulas: Semantics The semantics of propositional formulas described in Handout 2 defines which truth value F^I is assigned to a propositional formula F by an interpretation I. Our goal is to extend this definition to predicate formulas. First we need to extend the definition of an interpretation to predicate signatures. An interpretation I of a predicate signature σ consists of - a non-empty set |I|, called the universe of I, - for every object constant c of σ , an element c^I of |I|, - for every predicate constant P of σ , a function P^I from $|I|^n$ to $\{f, t\}$, where n is the arity of P. For instance, the sentence preceding Problem 7.1 can be viewed as the definition of an interpretation of the signature $$\{a, Sum, Prod\}.$$ (1) For this interpretation I, $$|I| = \mathbf{N},$$ $$a^{I} = 0,$$ $$Sum^{I}(\xi, \eta, \zeta) = \begin{cases} \mathsf{t}, & \text{if } \xi + \eta = \zeta, \\ \mathsf{f}, & \text{otherwise,} \end{cases}$$ $$Prod^{I}(\xi, \eta, \zeta) = \begin{cases} \mathsf{t}, & \text{if } \xi \eta = \zeta, \\ \mathsf{f}, & \text{otherwise} \end{cases}$$ $$(2)$$ $(\xi, \eta, \zeta \in \mathbf{N}).$ The definition of F^I refers to the substitution operator, defined as follows. Let F be a formula and v a variable. The result of the substitution of a term t for v in F, denoted by F_t^v , is the formula obtained from F by replacing each free occurrence of v by t. Consider an interpretation I of a predicate signature σ . For any element ξ of its universe |I|, select a new symbol ξ^* , called the name of ξ . By σ^I we denote the predicate signature obtained from σ by adding all names ξ^* as additional object constants. The interpretation I can be extended to the new signature σ^I by defining $$(\xi^*)^I = \xi$$ for all $\xi \in |I|$. We will denote this interpretation of σ^I by the same symbol I. We define the truth value F^I that is assigned to F by I for every sentence F of the extended signature σ^I recursively, as follows: - $P(t_1, ..., t_n)^I = P^I(t_1^I, ..., t_n^I),$ - $\bullet \ (\neg F)^I = \neg (F^I),$ - $(F \odot G)^I = \odot (F^I, G^I)$ for every binary connective \odot , - $(\forall vF)^I = \mathsf{t}$ iff, for all $\xi \in |I|, (F^v_{\xi^*})^I = \mathsf{t}$, - $(\exists v F)^I = \mathsf{t}$ iff, for some $\xi \in |I|, (F_{\xi^*}^v)^I = \mathsf{t}$. As in propositional logic, we say that I satisfies F, and write $I \models F$, if $F^I = \mathsf{t}$. **Problem 7.1** Determine which of the sentences - (i) $\exists x Sum(x, x, x)$, - (ii) $\exists x \neg Sum(x, x, x)$, - (iii) $\forall x(Sum(x, x, x) \rightarrow \forall ySum(x, y, y))$ are satisfied by interpretation (2). **Problem 7.2** Consider the signature consisting of just one symbol, the ternary predicate constant Sum. (a) Determine which of the sentences from Problem 7.1 are satisfied by the interpretation I of this signature defined by $$|I| = \{f, t\},\$$ $$Sum^{I}(\xi, \eta, \zeta) = \begin{cases} t, & \text{if } \forall (\xi, \eta) = \zeta, \\ f, & \text{otherwise.} \end{cases}$$ (3) (b) Determine whether interpretation (3) satisfies the sentence $$\forall xy(Sum(x, y, x) \lor Sum(x, y, y)).$$ A sentence is *logically valid* if it is satisfied by all interpretations. ## **Problem 7.3** Determine whether the sentences $$\exists x (P(x) \land Q(x)) \to (\exists x P(x) \land \exists x Q(x)), (\exists x P(x) \land \exists x Q(x)) \to \exists x (P(x) \land Q(x))$$ are logically valid. The universal closure of a formula F is the sentence $\forall v_1 \cdots v_n F$, where v_1, \ldots, v_n are all free variables of F. About a formula with free variables we say that it is *logically valid* if its universal closure is logically valid. #### **Problem 7.4** For each of the formulas $$P(x) \to \exists x P(x),$$ $P(x) \to \forall x P(x)$ determine whether it is logically valid. A formula F is equivalent to a formula G if the formula $F \leftrightarrow G$ is logically valid. ### **Problem 7.5** Determine whether the formula $$\forall x \exists y P(x,y)$$ is equivalent to $$\exists y \forall x P(x,y).$$ We say that a set Γ of sentences entails a sentence F, or that F is a logical consequence of Γ , if every interpretation that satisfies all sentences in Γ satisfies F. # Problem 7.6 Determine whether $$\exists x P(x,x)$$ is a logical consequence of the sentences $$\forall x \exists y P(x,y), \ \forall xyz((P(x,y) \land P(y,z)) \rightarrow P(x,z)).$$