Introduction to Mathematical Logic, Handout 8 Introduction and Elimination Rules for Quantifiers

We say that a term t is substitutable for a variable v in a formula F if

- \bullet t is a constant, or
- t is a variable w, and no part of F of the form KwG contains an occurrence of v which is free in F.

Here are the additional inference rules of predicate logic:

$$(\forall I) \xrightarrow{\Gamma \Rightarrow F} F$$

$$(\forall E) \ \frac{\Gamma \Rightarrow \forall vF}{\Gamma \Rightarrow F_t^v}$$

where v is not a free variable of any formula in Γ

where t is substitutable for v in F

$$(\exists I) \ \frac{\Gamma \Rightarrow F_t^v}{\Gamma \Rightarrow \exists v F}$$

$$(\exists E) \ \frac{\Gamma \Rightarrow \exists v F \quad \Delta, F \Rightarrow \Sigma}{\Gamma, \Delta \Rightarrow \Sigma}$$

for v in F

where t is substitutable—where v is not a free variable of any formula in Δ , Σ

Prove the given formulas in the natural deduction system.

$$\textbf{Problem 8.1} \ \ (P(a) \land \forall x (P(x) \rightarrow Q(x))) \rightarrow Q(a).$$

Problem 8.2 $P(a) \rightarrow \neg \forall x \neg P(x)$.

Problem 8.3 $\forall xyP(x,y) \rightarrow \forall xP(x,x)$.

Problem 8.4 $\forall x P(x) \leftrightarrow \forall y P(y)$.

Problem 8.5 $\forall x P(x) \land \forall x Q(x) \leftrightarrow \forall x (P(x) \land Q(x)).$

Problem 8.6 $(P(a) \lor P(b)) \to \exists x P(x)$.

Problem 8.7 $\exists x (P(x) \lor Q(x)) \leftrightarrow \exists x P(x) \lor \exists x Q(x)$.

Problem 8.8 $(\exists x P(x) \land \forall x (P(x) \to Q(x))) \to \exists x Q(x).$

Problem 8.9 $\exists x P(x) \leftrightarrow \exists y P(y)$.

Problem 8.10 $\neg \exists x P(x) \leftrightarrow \forall x \neg P(x)$.

Problem 8.11 $\exists x (P(x) \land Q(a)) \leftrightarrow \exists x P(x) \land Q(a)$.

Problem 8.12 $\forall x P(x) \lor Q(a) \leftrightarrow \forall x (P(x) \lor Q(a)).$