Introduction to Mathematical Logic, Handout 9 First-Order Logic: Function Symbols and Equality

The concept of a predicate signature (Handout 6) can be generalized as follows. A signature is a set of symbols of three kinds—object constants, function constants, and predicate constants—with a positive integer, called the arity, assigned to every function constant and to every predicate constant. Terms of such a signature are defined recursively:

- every object constant is a term,
- every object variable is a term,
- if t_1, \ldots, t_n are terms and f is a function constant of arity n then $f(t_1, \ldots, t_n)$ is a term.

The class of atomic formulas includes, in addition to expressions of the form

$$P(t_1,\ldots,t_n)$$

as in Handout 6, expressions of a second kind: equalities

$$(t_1 = t_2)$$

where t_1 , t_2 are terms. Otherwise, the definition of a formula remains the same. The expression $t_1 \neq t_2$ is shorthand for $\neg(t_1 = t_2)$.

As an example, consider the signature of first-order arithmetic

$$\{a, s, f, g\},\tag{1}$$

where a is an object constant (intended to represent 0), s is a unary function constant (for the successor function), and f, g are binary function constants (for addition and multiplication). Since this signature includes no predicate constants, its only atomic formulas are equalities.

Problem 9.1 Represent the following English sentences by first-order formulas:

- There exists at most one x such that P(x).
- There exists exactly one x such that P(x).
- There exist at least two x such that P(x).

- There exist at most two x such that P(x).
- There exist exactly two x such that P(x).

For a signature containing function constants, an $interpretation\ I$ consists of

- a non-empty set |I|, called the *universe* of I,
- for every object constant c of σ , an element c^I of |I|,
- for every function constant f of σ , a function f^I from $|I|^n$ to |I|, where n is the arity of f,
- for every predicate constant P of σ , a function P^I from $|I|^n$ to $\{\mathsf{f},\mathsf{t}\}$, where n is the arity of P.

For example, the intended interpretation I of (1) is defined as follows:

$$|I| = \mathbf{N},$$

 $a^{I} = 0,$
 $s^{I}(n) = n + 1,$
 $f^{I}(m, n) = m + n,$
 $g^{I}(m, n) = m \cdot n.$ (2)

In this more general setting, a term t without variables is not necessarily an object constant; such a term may contain function constants. The notation t^I is extended to these more complex terms by the recursive equation

$$f(t_1, \dots, t_n)^I = f^I(t_1^I, \dots, t_n^I).$$

The recursive definition of F^{I} is extended by a clause for equalities:

$$(t_1 = t_2)^I = t \text{ iff } t_1^I = t_2^I.$$

Problem 9.2 For each of the following sentences determine whether it is satisfiable:

- \bullet a=b,
- $\forall xy(x=y)$,
- $\forall xy(x \neq y)$.

In the presence of function symbols, the definition of a substitutable term is stated as follows: A term t is substitutable for a variable v in a formula F if, for each variable w occurring in t, no part of F of the form KwG contains an occurrence of v which is free in F.

In the presence of equality, the natural deduction system is extended by the axioms

$$\Rightarrow t = t$$

for any term t, and by two inference rules:

$$(R) \frac{\Gamma \Rightarrow t_1 = t_2 \quad \Delta \Rightarrow F_{t_1}^v}{\Gamma, \Delta \Rightarrow F_{t_2}^v} \quad \frac{\Gamma \Rightarrow t_1 = t_2 \quad \Delta \Rightarrow F_{t_2}^v}{\Gamma, \Delta \Rightarrow F_{t_1}^v}$$

where t_1 and t_2 are substitutable for v in F.

Prove the given formulas in the natural deduction system.

Problem 9.3 $x = y \to f(x, y) = f(y, x)$.

Problem 9.4 $\forall x \exists y (y = f(x)).$

Problem 9.5 $\exists y(x=y \land y=z) \rightarrow x=z$.

Problem 9.6 $(\exists x P(x) \land \exists x \neg P(x)) \rightarrow \exists x y (x \neq y).$

Problem 9.7 $\forall x(x = a \rightarrow P(x)) \leftrightarrow P(a)$.

Problem 9.8 $\exists x(x = a \land P(x)) \leftrightarrow P(a)$.