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Distributed Distance Sensitivity Oracles∗

Vignesh Manoharan and Vijaya Ramachandran

Abstract

We present results for the distance sensitivity oracle (DSO) problem, where one needs
to preprocess a given directed weighted graph G = (V,E) in order to answer queries about
the shortest path distance from s to t in G that avoids edge e, for any s, t ∈ V, e ∈ E. No
non-trivial results are known for DSO in the distributed CONGEST model even though it
is of importance to maintain efficient communication under an edge failure.

Let n = |V |, and let D be the undirected diameter of G. Our first DSO algorithm
optimizes query response rounds and can answer a batch of any k ≥ 1 queries in O(k +D)
rounds after taking Õ(n3/2) rounds to preprocessG. Our second algorithm takes Õ(n) rounds
for preprocessing, and then it can answer any batch of k ≥ 1 queries in Õ(k

√
n+D) rounds.

We complement these algorithms with some unconditional CONGEST lower bounds that
give trade-offs between preprocessing rounds and rounds needed to answer queries.

Additionally, we present almost-optimal upper and lower bounds for the related all pairs
second simple shortest path (2-APSiSP) problem, where for all pairs of vertices x, y ∈ V , we
need to compute the minimum weight of a simple x-y path that differs from the precomputed
x-y shortest path by at least one edge.

1 Introduction

In distributed networks, maintaining communication in the event of a link failure is an important
problem. In a communication network modeled by a graph G = (V,E), consider the failure of
some edge e ∈ E. We investigate the problem of computing a shortest path distance when such
an edge fault occurs. This is a fundamental problem in networks for routing and communication.
Specifically, we need to answer queries of the form d(s, t, e) for s, t ∈ V, e ∈ E, where d(s, t, e) is
the shortest path distance from s to t when edge e is removed from G. In the special case when
s and t are fixed vertices this is known as the replacement paths (RPaths) problem.

Let |V | = n, |E| = m. A naive algorithm could compute all n2m distances d(s, t, e) (this can
be reduced to O(n3) distances since we are only interested in edges on the s-t shortest path),
but such an algorithm would have high complexity (Ω(n2) rounds in CONGEST) simply due
to the output size. So, we instead consider Distance Sensitivity Oracles (DSO), which have
been studied in sequential setting. In DSO we first preprocess the network G and store certain
information about distances. Then, we answer query d(s, t, e) using the stored information.
Without any preprocessing, we can answer a query using a single source shortest path (SSSP)
computation. We present two algorithms for computing DSOs in the CONGEST model, one
that optimizes query response round complexity and one that prioritizes preprocessing round
complexity while answering queries faster than SSSP. We also present lower bounds.

In the sequential setting, the first algorithm for constructing DSO was given in [12], which
was improved in [6] to obtain an algorithm with Õ(mn) preprocessing time and O(1) query
time. Sequential DSOs have been further studied in [34, 18, 10, 19]. In the distributed setting,
near-linear round upper and lower bounds for RPaths in the CONGEST model are given in [25]
for directed weighted graphs.
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Our main results in this paper are for DSO, for which we present two algorithms with differing
trade-offs between preprocessing and query rounds in the CONGEST model. We also present
lower bounds. Another problem we consider is the closely related all pairs second simple shortest
paths problem (2-APSiSP), where instead of answering queries d(s, t, e) when a particular edge
e fails, we are only interested in a simple s-t path that differs from the s-t shortest in G by at
least one edge. The shortest such path is called the second simple shortest path (2-SiSP), and
we denote its distance by d2(s, t). In the 2-APSiSP problem, we need to compute d2(s, t) for all
pairs of vertices s, t ∈ V . In this paper we show that we can compute 2-APSiSP in Õ(n) rounds
and we present a lower bound to show that this is near-optimal. Unlike the DSO problem, there
is no need for separate preprocessing and query response rounds.

A core procedure used in sequential DSO and 2-APSiSP algorithms [12, 6, 1] is that of
computing excluded shortest paths distances, where we need to compute shortest path distances
when certain types of paths are avoided one at a time. We present a distributed CONGEST
procedure for this computation which we use in our 2-APSiSP algorithm and our first DSO
algorithm.

Roadmap. The rest of this paper is organized as follows. After presenting background in-
formation and problem definitions in Section 1.1 we describe our results in Section 1.2. We
describe prior work in Section 1.3. In Section 2 we present our distributed algorithm for ex-
cluded shortest paths, a core computation we use in DSO and 2-APSiSP algorithms. We present
our DSO algorithms and lower bounds in Section 3 and our near-optimal 2-APSiSP upper and
lower bounds in Section 4.

1.1 Preliminaries

1.1.1 The CONGEST Model

In the CONGEST model [29], a communication network is represented by a graph G = (V,E)
where nodes model processors and edges model bounded-bandwidth communication links be-
tween processors. Each node has a unique identifier in {0, 1, . . . n− 1} where n = |V |, and each
node only knows the identifiers of itself and its neighbors in the network. Each node has infinite
computational power. The nodes perform computation in synchronous rounds, where each node
can send a message of up to Θ(log n) bits to each neighbor and can receive the messages sent to
it by its neighbors. The complexity of an algorithm is measured by the number of rounds until
the algorithm terminates.

We mainly consider directed weighted graphs G in this paper, where each edge has an integer
weight known to the vertices incident to the edge. Following the convention for CONGEST
algorithms [11, 26, 17, 3, 4], the communication links are always bi-directional and unweighted.

1.1.2 Notation and Terminology

We will be dealing primarily with directed weighted graphs G = (V,E). Let |V | = n. Each
edge (s, t) ∈ E (for s, t ∈ V ) can have non-negative integer weight w(s, t) according to a weight
assignment function w : E → {0, 1, . . . W}, where W = poly(n). We denote the shortest path
distance from s to t by d(s, t), and a shortest path from s to t by Pst. The undirected diameter of
G, denoted D, is the maximum shortest path distance between any two vertices in the underlying
undirected unweighted graph of G. We use Gr = (V,Er) to denote the reversed graph of G,
where each edge is oriented in the opposite direction.

We use d(s, t, e), for s, t ∈ V, e ∈ E, to denote the shortest path distance from s to t in
the graph G− {e}, i.e., the graph G with edge e removed, also known as the replacement path
distance. We generalize this definition for a path P , and d(s, t, P ) denotes the shortest path
distance from s to t in G−P . We use d2(s, t), for s, t ∈ V , to denote the second simple shortest
path distance from s to t (2-SiSP distance), which is the minimum distance of a simple s-t
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path that differs from a precomputed s-t shortest path Pst by at least one edge. Note that
d2(s, t) = mine∈Pst

d(s, t, e).

Shortest path trees and independent paths: We denote the out-shortest path tree rooted at a
vertex x ∈ V as Tx. For a subpath P of Tx, we define Tx(P ) to be the subtree of Tx rooted at
the vertex in P furthest from source x. We define the notion of a set of independent paths R
with respect to a shortest path tree Tx as follows: Each path P ∈ R is a subpath of Tx, and for
any pair of paths P,P ′ ∈ R, for any two vertices u ∈ P, u′ ∈ P ′, the subtree of Tx rooted at u
and the subtree of Tx rooted at u′ are disjoint.

1.1.3 CONGEST Primitives.

We state some basic CONGEST primitives used in our algorithms.
In an unweighted graph, a breadth-first search (BFS) from k source vertices up to h hops takes

O(k+h) rounds [23, 20]. We can broadcastm units (O(log n) bits each) of information to all other
vertices in O(m+D) rounds [29]. Given a rooted tree T of depth t in the CONGEST network
(each node in the tree knows its incident edges), we can send m units of information down from
root to all nodes in T in O(m+ t) rounds – this operation is called an downcast [29], and we can
even perform an associative operation on the received values at each node before propagating
the information. A similar upcast can be done from leaves to root, and a convergecast is an
upcast along a D-depth tree containing all vertices, and takes O(m+D) rounds [29].

Scheduling with random delays: We often use scheduling with random delays in order to effi-
ciently perform multiple computations on the network. Following [14, 22], consider k distributed
procedures A1,A2, . . .Ak that are to be run together on the network. Define dilation to be the
maximum round complexity of any Ai. For any edge e in the network, congestion(e) is defined
to be the total number of messages through e over all Ai, over all rounds where messages are
sent through e. Define congestion = maxe∈Econgestion(e). Then, using independent ran-
dom delays for each of the k procedures, we can run them in O(congestion+ dilation · log n)
rounds [14]. In our algorithms, we often schedule k instances of the same procedure with differ-
ent inputs; in this case dilation would same as the round complexity of a single procedure, and
congestion would be k times the congestion of a single procedure.

We use SSSP and APSP to denote the round complexity in the CONGEST model for
weighted single source shortest paths (SSSP) and weighted all pairs shortest paths (APSP)
respectively. The current best algorithm for weighted APSP runs in Õ(n) rounds, randomized [7].
For weighted SSSP, [9] provides an Õ(

√
n + n2/5+o(1)D2/5 + D) round randomized algorithm.

The current best lower bounds are Ω
( √

n
logn +D

)

for weighted SSSP [30, 33] and Ω
(

n
logn

)

for

(weighted and unweighted) APSP [26]. In our algorithms, we also use a low congestion SSSP
procedure presented in [16], which takes Õ(n) rounds but incurs only Õ(1) congestion per edge.
When computing shortest path distances from a source x, we assume that each vertex v knows
the preceding and succeeding vertices on a shortest path from x to v. This can be achieved
using O(1) rounds per source, by each vertex sharing its distance from x with its neighbors, e.g.
y precedes v on the x-v shortest path if d(x, v) = d(x, y) + w(y, v).

1.1.4 Problem Definitions.

We first define the problem of excluded shortest paths. We then define the DSO and 2-APSiSP
problems in the CONGEST model. In the following definitions, G = (V,E) is a directed weighted
graph.

Excluded Shortest Paths: Given a set of sources X ⊆ V and sets of independent paths Rx for
each x ∈ X (as defined in 1.1.2), we need to compute d(x, y, P ) for each x ∈ X, y ∈ V and
P ∈ Rx, i.e., the x-y shortest path distance when path P is removed. The input set of paths
Rx is given as follows: Each edge e ∈ E knows whether or not it is part of some path P ∈ Rx,
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and the identity of P if it is. For the output, each distance d(x, y, P ) must be known at node y.

Distance Sensitivity Oracles (DSO): We need to compute d(x, y, e), the x-y shortest path dis-
tance when e is removed, for any pair of vertices x, y ∈ V and e ∈ E. A DSO algorithm is
allowed to perform some preprocessing on the graph G, and then answer queries of the form
d(x, y, e). We assume that the query d(x, y, e) is known to every vertex in the graph. The round
complexities of our algorithms are unchanged if we instead assume the query is known to only
one node, since we can broadcast the query in D rounds once it is known. After the query is
answered, distance d(x, y, e) must be known at node y.

All Pairs Second Simple Shortest Path (2-APSiSP): We need to compute d2(x, y), the x-y second
simple shortest path distance (2-SiSP distance, see Section 1.1.2), for all pairs of vertices x, y ∈ V .
For the output, each distance d2(x, y) (∀x ∈ V ) must be known at node y. Unlike DSO, there
are no separate rounds for preprocessing and answering queries.

1.2 Results

We summarize our results for DSO and 2-APSiSP in a directed weighted graph G = (V,E) in
the CONGEST model. Recall that n = |V |, and D is the undirected diameter of G.

1.2.1 Excluded Shortest Paths.

Our first DSO algorithm and our 2-APSiSP algorithm rely on a subroutine to efficiently com-
pute shortest path distances from multiple sources when certain parts of shortest path trees
are excluded, one at a time. Specifically, we present an algorithm for the excluded shortest
paths problem defined in Section 1.1.4. We present a CONGEST implementation inspired by
a sequential algorithm for a single source in [12], and extend the result to multiple sources by
using low congestion SSSP procedures combined with efficient random scheduling. We present
our results in Section 2. We will refer to this procedure as an exclude computation for brevity.

Theorem 1. Given a set of sources X ⊆ V and an independent set of paths Rx for each source
x ∈ X, we can compute d(x, y, P ) for each x ∈ X, y ∈ V, P ∈ Rx in Õ(n) rounds. Additionally,
the maximum congestion is Õ(|X|).

1.2.2 Distance Sensitivity Oracles (DSOs).

We construct Distance Sensitivity Oracles for G that preprocess G and then answer queries of
the form d(s, t, e) for s, t ∈ V, e ∈ E. We present two algorithms to construct a DSO, one with
fast preprocessing, and one with fast query responses. We complement these algorithms with
unconditional lower bounds on preprocessing rounds.

DSO with fast query responses. Our first DSO optimizes query time, answering any query
d(s, t, e) in O(D) rounds. More specifically, the DSO uses a constant number of broadcasts to
answer a query, after which all nodes know d(s, t, e). To answer a batch of k different queries,
we pipeline the broadcasts for each query, answering them in O(k + D) rounds. This DSO
uses Õ(n3/2) rounds for preprocessing, and is described in Section 3.1. The algorithm performs
Õ(
√
n) exclude computations from every vertex, such that any query d(s, t, e) can be answered

using O(1) excluded shortest paths distances stored at different vertices. Thus, once the query
is known, we broadcast the relevant distances and compute d(s, t, e) at the target vertex t in
O(D) rounds. We use two types of exclude computations: (i) to directly compute d(s, t, e) when
edge e is within

√
n hops of s or t, and (ii) to exclude independent segments of each out-shortest

path tree Ts, and combine appropriate excluded shortest path distances to compute d(s, t, e) if
e is not within

√
n hops of s or t.
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Theorem 2. We can construct a DSO for directed weighted graphs that takes Õ(n3/2) prepro-
cessing rounds, and then answers a batch of any k queries of the form d(s, t, e) in O(k + D)
rounds.

DSO with fast preprocessing. We present another DSO construction that prioritizes prepro-
cessing time, and takes Õ(n) rounds. Each query d(s, t, e) takes Õ(

√
n+D) rounds to answer.

To answer a batch of queries, we can pipeline part of the query procedure, and answering k
queries takes Õ(k

√
n + D) rounds. We describe this algorithm in Section 3.2. Note that an-

swering k queries d(s, t, e) without any preprocessing can be done with k SSSP computations
(Õ(k · (√n+n2/5D2/5+D)) rounds [9]), and our algorithm improves on this bound for all k ≥ 1.

In order to reduce preprocessing rounds to Õ(n), we cannot perform too many exclude
computations at every node. Instead, we handle short replacement paths of hop-length ≤ √n
at query time using a

√
n-hop Bellman-Ford procedure. For edges that are further away, we

construct randomly sampled graphs where edges in G are included with certain probability. In
these graphs, we perform SSSP computations only from certain sampled vertices, which allows
us to compute long replacement path distances at query time.

Theorem 3. We can construct a DSO for directed weighted graphs that takes Õ(n) preprocessing
rounds, and then answers a batch of any k queries of the form d(s, t, e) in Õ(k

√
n+D) rounds.

Our algorithms focus on computing the distance value of a given query d(s, t, e), but we can
also readily augment our algorithms so that each vertex on the replacement path from x to y
avoiding e knows the next vertex on that path (since each vertex can identify the next vertex
in a shortest path after SSSP or APSP computation in O(1) rounds).

DSO Lower Bounds. We show a lower bound on the preprocessing rounds used by a DSO
that achieves a given query response round complexity. We consider algorithms that answer a
batch of k queries in O(k · Q) rounds where Q = o(

√
n/ log n). This covers the salient range

of query response complexities, since we can use SSSP to answer queries with no preprocessing
and the current best CONGEST lower bound for SSSP is Ω(

√
n+D). Our lower bound applies

even for directed unweighted graphs with diameter log n.

Theorem 4. Consider a DSO algorithm for directed unweighted graph G = (V,E) on n nodes
that performs P rounds of preprocessing and then answers any batch of k ≤ n

Q2 log2 n
queries in

O(k ·Q) rounds, where Q = o
( √

n
logn

)

. Then, P is Ω̃
(

n
Q

)

.

For the setup in Theorem 2, for a DSO algorithm that answers k queries in O(k+D) rounds,
we show a lower bound of Ω̃(n) preprocessing rounds. Complementing Theorem 3, we show
a lower bound of Ω̃(

√
n) preprocessing rounds for a DSO algorithm that answers k queries in

o
(

k
√
n

logn +D
)

rounds. We present these lower bounds for directed unweighted graphs and they

trivially apply to directed weighted graphs as well.
Our main technique to obtain this lower bound is to adapt a CONGEST lower bound for

SSSP given in [33]. We generalize their construction to k sources for any 1 ≤ k ≤ n
2 , obtaining a

lower bound of Ω(
√
nk

logn) for the problem of computing shortest path distances from k sources (k-
source SSSP) in directed unweighted graphs. We note that CONGEST algorithms for k-source
SSSP have been studied in [24], and our results show that the round complexity Õ(

√
nk +D)

in [24] is almost optimal for k ≥ n1/3.

1.2.3 All Pairs Second Simple Shortest Paths (2-APSiSP).

We present an algorithm for 2-APSiSP that takes Õ(n) rounds to compute the second simple
shortest path distance d2(s, t) for all pairs of vertices s, t ∈ V . Our algorithm builds on a
characterization of the second simple shortest path used in a sequential algorithm [1]. We use
one exclude computation from each vertex, followed by non-trivial local computation in order
to compute all 2-APSiSP distances. We present this algorithm in Section 4.
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Theorem 5. We can compute 2-APSiSP for directed weighted graphs in Õ(n) rounds.

2-APSiSP Lower Bound. We present a lower bound of Ω̃(n) for computing 2-APSiSP in
undirected unweighted graphs (which trivially applies to directed or weighted graphs), proving
that our Õ(n) round algorithm is optimal up to polylog factors for any class of graphs: directed
or undirected, weighted or unweighted. Our lower bound also applies to constant diameter
graphs. An Ω̃(n) CONGEST lower bound for computing directed weighted 2-SiSP for one pair
was shown in [25] and trivially applies to 2-APSiSP as well. But our lower bound is stronger
as the bound in [25] applies only to directed weighted graphs and it requires the input pair of
vertices to have a Θ(n)-hop shortest path.

Theorem 6. Given an undirected unweighted graph G = (V,E), computing 2-APSiSP requires
Ω̃(n) rounds. The lower bound holds even when G has constant diameter.

We prove this bound by first proving an Ω̃(n) CONGEST lower bound for APSP. Such a
lower bound was previously shown in [26], but we give an alternate proof using a reduction
from set disjointness. Specifically, we present a graph construction for a reduction from set
disjointness to the problem of computing 2-SiSP distances between n given pairs of vertices,
thus giving a 2-APSiSP lower bound.

1.3 Prior Work

Distance Sensitivity Oracle The DSO problem has been studied extensively in the sequen-
tial setting [12, 6, 34, 18, 10, 19]. No non-trivial algorithms for DSO have been studied in the
distributed CONGEST setting, but some related problems have received attention. For comput-
ing replacement path distances between a single pair of vertices, algorithms and lower bounds
were presented in [25] for directed and undirected, weighted and unweighted graphs with nearly
optimal bounds in most cases: these include a Θ̃(n) bound (tight up to polylog factors) for
directed weighted graphs, and bounds nearly matching SSSP round complexity for undirected
graphs. A distributed O(D log n) algorithm for single source replacement paths in undirected
unweighted graphs was given in [15]. Distributed constructions of fault-tolerant preservers and
spanners have been studied [8, 27, 13, 28] which construct a sparse subgraph that exactly or
approximately preserves replacement path distances. These constructions do not appear to give
an efficient procedure to compute replacement path or DSO distances.

All Pairs Second Simple Shortest Paths For a single pair of vertices, an Õ(mn) sequential
time algorithm for the 2-SiSP problem in directed weighted graphs was given in [35]. For 2-
APSiSP, a sequential Õ(mn) time algorithm matching the 2-SiSP running time was given in [1].
A fine-grained sequential lower bound of Ω(mn) complementing these upper bounds was shown
in [2] for directed weighted 2-SiSP. In the distributed setting, the problem of computing 2-SiSP
for a single pair has been studied in [25] with both upper and lower bounds: these include nearly
tight Θ̃(n) bound for directed weighted graphs, and Θ(SSSP ) bound for undirected graphs.

2 Distributed Excluded Shortest Paths

In this section, we present algorithms for the excluded shortest paths problem defined in Sec-
tion 1.1.4. We are given a graph G = (V,E), set of sources X ⊆ V and an independent set
of paths Rx for each source x, and we need to compute d(x, y, P ) for each x ∈ X, y ∈ V and
P ∈ Rx. We first consider the single source case, and then extend to multiple sources.

For a single source, we build on a sequential method given in [12], which introduced this
problem. From the single source x ∈ V , consider a path P ∈ Rx. Recall that Tx(P ) denotes
the vertices under the subtree of Tx rooted at the vertex in P furthest from x — the removal
of P only affects distances of vertices in Tx(P ). Consider a vertex z in Tx(P ). The method
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Algorithm 1 Single Source Excluded Shortest Paths

Input: Graph G = (V,E), source x ∈ V , independent set of paths Rx.
Output: Compute distance d(x, y, P ) for each y ∈ V, P ∈ Rx.
1: Compute SSSP from x to compute d(x, y) at y for each y ∈ V .
2: Using a downcast from x along Tx, communicate identity of P ∈ Rx to each z ∈ Tx(P ).
3: Each vertex y communicates d(x, y) to its neighbors Nout(y). If y is in a subtree Tx(P ) (as

identified in line 2), it communicates the identity of P as well to its neighbors.
4: Each vertex z ∈ Tx(P ) locally computes d∗(x, z) = min

v∈Nin(z),v 6∈Tx(P )
(d(x, z) + w(z, y)). The

check for v 6∈ Tx(P ) is done locally using the information from line 3.
5: Perform SSSP from x on G with edges in Rx removed, and added x-z edge with weight

d∗(x, z). These added edges are simulated locally at z in the course of the SSSP algorithm.

in [12] adds an edge from x to z (we call this the x-z edge) that captures the minimum distance
of a path from x to z that does not use any vertex in Tx(P ). This edge has weight d∗(x, z) =
minv∈Nin(z),v 6∈Tx(P )d(x, v) + w(v, z). We compute the distance d(x, z, P ) by computing SSSP
from x in the graph with these x-z edges added, and all P ∈ Rx removed.

Algorithm 1 implements this approach in the CONGEST setting. In line 1, we compute
SSSP distances from source x. In line 2, we notify each vertex under the subtree Tx(P ) of an
excluded path P ∈ R. By the problem definition, each edge knows the path P to which it
belongs if any, so we only require one downcast along Tx. The downcast takes O(n) rounds and
O(1) congestion. Each vertex y sends distance d(x, y), and identity of P if y is in Tx(P ) to all its
neighbors in line 3. This is an O(1) round operation since R is independent so there is at most
one Tx(P ) that y belongs to. Using this neighbor information, we compute the weight d∗(x, z)
of the added x-z edge locally at z in line 4. Finally, the SSSP computation in line 5 computes
all excluded shortest paths distances, and distance d(x, z, P ) is known at vertex z.

In line 1, we use the low congestion SSSP algorithm of [16] for directed weighted graphs
which takes Õ(n) rounds and has Õ(1) congestion. Since all other steps have O(n) rounds and
O(1) congestion, our total round complexity is Õ(n) rounds and Õ(1) congestion. Although we
focus on algorithms for directed weighted graphs, if the graph is directed and unweighted we can
remove the polylog factors to obtain a bound of O(n) rounds and O(1) congestion. For this we
use O(n)-round BFS to compute shortest path distances in line 1, and simulate the x-z weighted
edges (which have weight d∗(x, z) < n) added in line 5 locally at z by assuming a message from
x arrives at round d∗(x, z) of the BFS.

Multiple-Source Excluded Shortest Paths. Algorithm 1 gives us an Õ(1)-congestion al-
gorithm for computing excluded shortest paths from one source. To compute excluded shortest
paths from multiple sources, we can use random scheduling (Section 1.1.3). This leads to The-
orem 1 below, which we will use in our DSO and 2-APSiSP algorithms.

Theorem 1. (stated in Section 1.2) Given a set of sources X ⊆ V and an independent set of
paths Rx for each source x ∈ X, we can compute d(x, y, P ) for each x ∈ X, y ∈ V, P ∈ Rx in
Õ(n) rounds. Additionally, the maximum congestion is Õ(|X|).

3 Distance Sensitivity Oracles

In the DSO problem, we need to preprocess an input graph G = (V,E) so that we can answer
query d(x, y, e) for any pair of vertices x, y ∈ V , edge e ∈ E to be avoided. We present algorithms
for directed weighted graphs, though they trivially also apply to undirected or unweighted
graphs. Note that with no preprocessing, a query can be answered in O(SSSP ) = Õ(

√
n +

n2/5+o(1)D2/5 +D) rounds [9]. We present two algorithms that beat this bound in Sections 3.1
and 3.2. We complement these algorithms with lower bounds in Section 3.3.

In both our algorithms we assume that e is on a x-y shortest path. As both algorithms
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Algorithm 2 Directed Weighted DSO with fast query: Õ(n3/2) preprocessing and Õ(D) query

Input: Graph G = (V,E).
Output: Answer queries for replacement path distance d(x, y, e) for each x, y ∈ V, e ∈ E.
1: ⊲ Preprocessing Algorithm ⊳
2: Compute APSP on G and the reversed graph Gr, remembering parent nodes.
3: Perform excluded shortest path computations from each vertex x ∈ V , with sets of edges

R
(1)
x , · · · , R(

√
n)

x where R
(i)
x is the set of edges i hops from x in the (out-)shortest path tree

Tx rooted at x. Repeat in Gr.
4: for x ∈ V do
5: ⊲ Tree cutting procedure on Tx ⊳
6: Perform an upcast along Tx, computing size and depth of each vertex, and identify level

vertices of both types. Perform an additional upcast and downcast, to identify all type
1 level vertices. (details described in Section 3.1.1)

7: Perform a downcast along Tx so that each edge e ∈ Tx knows the closest level vertex (if
there is one) on the path from x to e. Repeat in Gr. Each edge identifies the subpath
between interval vertices it belongs to.

8: Perform exclude computations from x with the O(
√
n) sets of independent paths identi-

fied in line 7.
9: ⊲ Query Algorithm: Given query d(x, y, e) ⊳

10: ⊲ e is within h hops from x or y in Tx: use excluded edge distances from line 3 ⊳
11: If d(x, y, e) has been computed in line 3 at x or y, broadcast d(x, y, e) as the answer.
12: ⊲ e is not within h hops from x or y in Tx: use excluded interval distances from line 8 ⊳
13: From line 7, e locally determines a as the closest level vertex on the path from x to e, and

b as the closest level vertex on the path from e to y. e broadcasts the identities of a and b.
14: Then, a broadcasts d(a, y, e) and x broadcasts d(x, a), d(x, b, e). Distances d(a, y, e) and

d(x, b, e) were computed in line 3.
15: Finally, y broadcasts d(x, y, e) = min(d(x, a) + d(a, y, e), d(x, b, e) + d(b, y), d(x, y, [a, b])) as

the answer. Distance d(x, y, [a, b]) was computed in line 8.

first compute APSP distances, we can readily check if e = (z, z′) is on a x-y shortest path by
checking if d(x, y) = d(x, z) + w(e) + d(z′, y), and return d(x, y, e) = d(x, y) if not.

3.1 DSO with fast query responses

Our first method for directed weighted DSO with fast query responses is described in Algo-
rithm 2, which takes Õ(n3/2) rounds for preprocessing and then answers a batch of any k
queries d(x, y, e) in O(k +D) rounds.

Our algorithm builds on a sequential DSO algorithm in [12] that runs in time O(mn1.5 +
n2.5 log n) and answers queries in O(1) time. The main idea is to consider replacement distances
d(x, y, e) of two forms in the preprocessing phase. If e is within

√
n hops of x in its shortest

path tree Tx, we perform exclude computations from each node, excluding edges within
√
n

depth in its outgoing shortest path tree. We do the same on the reversed graph. For the
remaining distances, when e is at least

√
n hops away from both x and y, we make use of

interval computations. We use a tree cutting procedure described below on each shortest path
tree Tx, which designates certain vertices as level vertices such that the subpaths of Tx in the
intervals between level vertices can be arranged into O(

√
n) sets of independent paths. We

ensure that any edge e that is
√
n hops away from both x and y is flanked by some pair of level

vertices w.h.p. in n, and use the distances when these intervals are excluded to answer query
d(x, y, e) as shown below.
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3.1.1 Tree cutting procedure

In order to identify appropriate level vertices, we use the following method from [12]: In shortest
path tree Tx, let the size of vertex y be the number of nodes in the subtree of Tx rooted at y.
If a vertex y has more than one child with size ≥ √n, all vertices at the same depth as y in
Tx are designated type 1 level vertices. As noted in [12] there are at most

√
n such y. We are

only concerned with
√
n-length paths, so we do not need to consider nodes of size <

√
n when

computing type 1 level vertices. Additionally, all vertices at depth i
√
n in Tx, for i = 1, 2, · · · ,√n

are designated type 2 level vertices so that any path of length ≥ √n contains a level vertex.
Specifically, if edge e on a x-y shortest path is

√
n hops away from both x and y, e is flanked

by some pair of level vertices on the x-y path. Combining both types, level vertices occur at
≤ 2
√
n depth values, and vertices at these depths partition the tree into O(

√
n) intervals. The

set of paths in a given interval with level vertex endpoints on either side are independent (as
shown in [12]). So, we have arranged the subpaths of the tree between level vertices into O(

√
n)

sets of independent paths.
In lines 6-8 of Algorithm 2, we use a distributed implementation of this method as follows:

In line 6, we perform an upcast along Tx in O(n) rounds, so that each vertex knows its size
and depth in Tx, and use this to identify level vertices of both types described in the paragraph
above. With an additional upcast and downcast, all vertices at the same depth as some type 1
level vertex also identifies itself as a level vertex. After the downcast in line 7, each edge knows
its closest level vertex in either direction. So, in the exclude computation in line 8, each edge
knows which interval subpath it is a part of. We use O(n) rounds and O(1) congestion per tree
Tx for the computation in lines 6,7.

3.1.2 Analysis of Algorithm 2

We utilize the multiple excluded shortest paths algorithm from Section 2 for efficiently excluding
paths in shortest path trees. We perform a total of

√
n exclude computations per source x in

lines 3,8, which takes Õ(n3/2) rounds using Theorem 1. In the query algorithm, given query
d(x, y, e), we identify the level vertices flanking e if they exist in line 13. We broadcast the
excluded shortest paths distances necessary to compute d(x, y, e) in lines 11,14 in O(D) rounds,
and compute the result at y.

Theorem 2. (stated in Section 1.2) Algorithm 2 takes Õ(n3/2) preprocessing rounds, and then
answers a batch of any k queries of the form d(s, t, e) in O(k +D) rounds.

Proof. Correctness: Let Pxy be a replacement path from x to y when e is removed. If e is
within h =

√
n hops from x or y in the shortest path tree, then d(x, y, e) is computed at y in

line 3 and the query is answered in line 11.
Now, consider the other case where e is not within h hops of x or y on the x-y shortest path.

After the cutting procedure on Tx, there are level vertices a, b such that a is on the shortest path
from x to e and b is on the shortest path from e to y. Additionally, the interval subpath from
a to b has at most

√
n hops, so e is within

√
n hops of both a and b in their respective shortest

path trees. Thus, d(a, y, e) is computed at y in line 3 and similarly d(x, b, e) is computed at x
in the reversed graph. After the identities of a, b are broadcast, the replacement path distance
is correctly computed in line 15 — the first term is correct when Pxy passes through a and the
second is correct when it passes through b. If Pxy passes through neither a or b, it skips the
whole interval [a, b], and the distance is correctly computed as d(x, y, [a, b]).

Round Complexity: Computing APSP takes Õ(n) rounds. We perform Õ(n3/2) different
exclude computations in lines 3 and 8. Using Theorem 1 this takes Õ(n3/2) rounds. The
downcast in line 7 takes O(n) rounds and O(1) congestion per vertex, and can be scheduled
for all x in Õ(n) rounds. The query algorithm broadcasts O(1) values and then broadcasts the
correct answer, so it takes O(D) rounds with O(1) congestion per edge. Thus, we can answer a
batch of k queries by pipelining all broadcasts in O(k +D) rounds.
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Algorithm 3 Directed Weighted DSO with fast preprocessing: Õ(n) preprocessing and Õ(
√
n+

D) query

Input: Graph G = (V,E).
Output: Answer query for replacement path distance d(x, y, e) for each x, y ∈ V, e ∈ E.
1: ⊲ Preprocessing Algorithm ⊳
2: for j = log(

√
n), · · · , log n do

3: ⊲ Preprocessing for replacement paths of hop-length [2j , 2j+1], where 2j ≥ √n ⊳
4: Each vertex s ∈ V is sampled and added to Sj with probability c logn

2j
.

5: Let h = 2j+1. Sample Õ(h) graphs Gj
i as in Lemma 7 by randomly sampling each edge

with probability 1− 1
h . ⊲ Each edge locally samples itself

6: For each e ∈ G, Ije ← {(j, i) | e 6∈ Gj
i} ⊲ Computed locally at endpoints of e

7: Compute SSSP from each vertex in Sj, on each Gj
i (and reversed graph). The distance

in graph Gj
i is denoted dji . Distances dji (s, x), d

j
i (x, s) are computed at x for each s ∈

Sj , x ∈ V .
8: ⊲ Query Algorithm: Given query d(x, y, e) ⊳
9: ⊲ Find best replacement path of hop-length ≤ √n ⊳

10: Perform a distributed Bellman-Ford computation in G−{e} starting from x, up to
√
n hops.

This computes d√n(x, y, e) at y.
11: ⊲ Find best replacement path of hop-length >

√
n ⊳

12: for j = log(
√
n), · · · , log n do

13: ⊲ Handle paths of hop-length [2j , 2j+1] ⊳
14: Endpoint of e broadcasts Ije .
15: x broadcasts {dji (x, s) | (j, i) ∈ Ije , s ∈ Sj}, i.e. its distance to sampled vertices in Sj in

graphs where e is not present.
16: for s ∈ Sj do ⊲ Local computation at y
17: ⊲ ds is the best x-y replacement path distance through s ⊳
18: Compute ds = min

(j,i)∈Ije
dji (x, s) + dji (s, y)

19: Compute d(x, y, e) = min(d√n(x, y, e),min
s∈V

ds) ⊲ Local computation at y

3.2 DSO with fast preprocessing

In this section, we present Algorithm 3, which constructs a DSO on directed weighted graphs
with Õ(n) rounds for preprocessing. After preprocessing, the DSO answers a batch of k queries
in Õ(k · √n + D) rounds. The algorithm uses a graph sampling approach to compute hop-
limited replacement paths, similar to ideas used in sequential DSO constructions [34, 32]. We
first describe this method (Section 3.2.1), and then describe our distributed algorithm which
uses this graph sampling method along with vertex sampling to achieve efficient preprocessing.

3.2.1 Hop-limited replacement paths

Given a hop parameter h, and a graph G = (V,E) along with a set of sources S ⊆ V , we wish to
compute h-hop replacement path distances dh(s, x, e) for s ∈ S, x ∈ V, e ∈ E. Here, dh(s, x, e)
denotes the minimum weight of a path containing up to h edges from s to x that does not
contain edge e. The following lemma can be established by adapting proofs in [34].

Lemma 7. Sample h̃ = 12h log n graphs G1, · · · , Gh̃ as subgraphs of G by including each of G
with probability 1− 1

h . Then,
A. W.h.p. in n, there are O(log2 n) graphs Gi such that e 6∈ Gi.
B. Let P e

sx be a h-hop replacement path from s to x avoiding e. W.h.p. in n, there is at least
one graph Gi such that Gi contains all edges in P e

sx but does not contain e.
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3.2.2 CONGEST DSO with fast preprocessing

We now present Algorithm 3 for DSO that takes Õ(n) preprocessing time and Õ(
√
n+D) query

time. To obtain fast preprocessing time, we only deal with replacement paths of hop-length
≥ √n during preprocessing. Shorter replacement paths are computed at query time using

√
n

steps of Bellman-Ford from the start vertex with the appropriate edge deleted.
To compute replacement paths of hop-length [2j , 2j+1], for j ≥ 1

2 log n, we use the hop-limited

replacement path result in Lemma 7 with h = 2j+1. In line 5, we sample Õ(2j+1) graphs Gj
i by

including edges with probability 1 − 1
2j+1 . To compute replacement path distance d(x, y, e) for

a particular edge e, we look at the sampled graphs Gj
i where e is not present. By Lemma 7.A,

computing the minimum over x-y shortest path distances up to hop-length 2j+1 in these graphs
will give the correct distance d2j+1(x, y, e) w.h.p. in n. We collect the identities of these graphs
where e is not present in a set Ije in line 6, and store it locally at an endpoint of e. Instead
of simply computing APSP distances in each sampled graph Gj

i (which would take Θ̃(n · 2j)
rounds) we instead sample vertices in Gj

i and compute hop-limited replacement paths through
sampled vertices. Using a sampling probability of Θ̃( 1

2j
) as in line 4, any path of hop-length

at least 2j will contain a sampled vertex w.h.p. in n, and we compute d(x, y, e) through this
sampled vertex. Specifically, we compute 2j+1-hop distances to and from sampled vertices s in
graphs Gj

i in line 7. In the appropriate Gj
i which contains the entire replacement path and does

not contain e, the distances d2j+1(x, s, e) and d2j+1(s, y, e) are correctly computed.
To answer a query d(x, y, e), we use Bellman-Ford if the replacement path has ≤ √n hops

in line 10. To compute replacement path if it has >
√
n hops, e broadcasts Ije in line 14, and

the minimum x-y replacement path distance through each sampled vertex in Gj
i with e deleted

is computed in line 18. The minimum will be d(x, y, e) = d(x, s, e) + d(s, y, e) for the sampled
vertex s on the x-y replacement path in the graph Gj

i containing this whole path — both of
which exist w.h.p. in n. Note that this step involves x broadcasting one distance value for each
s. Even for replacement paths of hop-length ≤ √n, (i.e., j ≤ 1

2 log n) we could compute the

shortest paths through sampled vertices efficiently within the Õ(n) bound. However the number
of sampled vertices would exceed

√
n, and broadcasting the distances to each sampled vertex in

order to answer a query would take ω(
√
n) rounds.

Theorem 3. (stated in Section 1.2) Algorithm 3 takes Õ(n) preprocessing rounds, and then
answers a batch of any k queries of the form d(s, t, e) in Õ(k

√
n+D) rounds.

Proof. Correctness: If the x-y replacement path has hop-length ≤ √n, the distance is correctly
computed in line 10 using the Bellman-Ford computation from x up to

√
n hops. The algorithm

deals with replacement paths of hop-length [2j , 2j+1] separately, for 2j ≥ √n. Fix one such
replacement path P from x to y avoiding edge e, with hop length 2j ≤ h(P) < 2j+1 and weight
w(P ). In the preprocessing algorithm, consider the j’th iteration of the loop (lines 2-7). Since
we sample vertices into Sj with probability Õ( 1

2j
), w.h.p in n there is at least one vertex s from

Sj that is on P. According to Lemma 7.A, w.h.p. in n, at least one of the sampled subgraphs

Gj
i contains all edges of P and does not contain e. After line 7, where shortest path distances

to and from s ∈ Sj are computed in the sampled graphs, the distances dji (s, y) and dji (x, s) are

correctly computed. In this particular Gj
i , we have w(P) = dji (x, s) + dji (s, y).

In order to answer query d(x, y, e), we first identify if edge e is present in graph Gj
i , using

the set Ije computed in line 7 and broadcast in line 14. In line 18, we only consider shortest
path distances in graphs not containing e, so all distances ds correspond to valid x-y paths not
containing e. For the particular Gj

i that contains the path P, we correctly compute the distance

d(x, y, e) = dji (x, s) + dji (s, y). Any Gj
i not containing all edges of P would only have higher s-t

distance, so the minimum computation in 18 gives the correct result (w.h.p. in n).
Round Complexity: We first analyze the preprocessing algorithm. Consider an iteration

j: lines 4-6 only involve local computation, and line 7 performs SSSP from |Sj | vertices on Õ(h)
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Figure 1: Lower Bound for DSO Preprocessing Time

graphs. Using the low congestion SSSP algorithm from [16], the total congestion over all SSSP
computation is at most Õ(|Sk|h) = Õ(n) and using random scheduling, line 7 takes Õ(n) rounds.
Repeating this for log n iterations for each j = 1 to log n takes Õ(n) rounds.

Now, to answer a query d(x, y, e), computing Bellman-Ford up to
√
n hops in line 10 takes

O(
√
n) rounds. The set Ije is broadcast in line 14. This set Ije has size O(log2 n) (Lemma 7.B),

so the broadcast takes Õ(D) rounds. Vertex x then broadcasts a set of size |Ije | · |Sj| = Õ( n
2j
) =

Õ(
√
n) (since 2j ≥ √n) in line 15, which takes Õ(

√
n + D) rounds. Lines 18,19 only involve

local computation at y, so the total rounds to answer the query is Õ(
√
n+D).

To answer a batch of k queries, we can broadcast the Õ(k
√
n) required values in lines 14,15

in Õ(k
√
n+D) rounds, and perform k Bellman-Ford computations sequentially in k

√
n rounds.

So, we take a total of Õ(k
√
n+D) rounds.

3.3 DSO Lower bounds

In this section, we show lower bounds on the preprocessing rounds used by any DSO algorithm
with a given query response round complexity. Our proof uses a graph construction to obtain
a reduction from set disjointness to the problem of computing k DSO queries in a directed
unweighted graph, building on a Ω̃(

√
n) CONGEST lower bound for SSSP in [33]. This con-

struction also leads to Lemma 10, a lower bound of Ω̃(
√
nk+D) for computing k-source shortest

paths in a directed unweighted graph, which is is tight for k ≥ n1/3 (by an upper bound in [24]).
These unweighted lower bounds also trivially apply to directed weighted graphs. We start with
the following preliminary lemma.

Lemma 8. Consider an algorithm A for a directed unweighted graph G = (V,E) on n nodes
that computes the answer to any batch of k ≤ n/2 queries d(ai, bi, ei) for 1 ≤ i ≤ k. The answer
for query i must be known to bi after the algorithm terminates. Then, A must have round

complexity Ω
(√

nk
logn

)

, even on graphs of undirected diameter Θ(log n).

Proof. Graph Construction: We construct directed unweighted graph G = (V,E), pictured
in Figure 1, as a balanced binary tree with ℓ leaves, numbered u1, . . . uℓ, along with a set of q
paths vi0-v

i
ℓ of length ℓ, and a path v∗0-v

∗
ℓ−1 of length ℓ−1. The paths are connected to the leaves

of the tree as in the figure, with all edges oriented from path to leaf. Additionally, we have 2k
vertices ai, bi for 1 ≤ i ≤ k. We perform a reduction from (kq)-bit Set Disjointness, and the
edge weights in our construction depends on the inputs Sa, Sb of the set disjointness instance.
We index the input such that Sa[i, j] represents the ((i−1) ·q+ j)’th bit for 1 ≤ i ≤ k, 1 ≤ j ≤ q
(similarly for Sb). The edge (ai, v

j
0) is present only if Sa[i, j] = 1, similarly edge (vjℓ , bi) is present

only if Sb[i, j] = 1. All other solid edges in Figure 1 are always present.
Note that d(ai, bi) = ℓ + 1 due to the v∗0-v

∗
ℓ−1 path. When an edge e∗ on the v∗0-v

∗
ℓ−1

path is removed, a replacement path from ai to bi with weight ℓ + 2 exists through vj0-v
j
ℓ if
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Sa[i, j] = Sb[i, j] = 1 for some j. Otherwise, either the (ai, v
j
0) or (vjℓ , bi) edge is missing for

every j, and no ai-bi replacement path exists. Thus, we get the following claim.
Claim 1: Let e∗ be an edge on the v∗0-v

∗
ℓ−1 path. d(ai, bi, e

∗) = ℓ+2 if Sa[i][j] = Sb[i][j] = 1
and d(ai, bi, e

∗) =∞ otherwise.
Claim 2: If there is an algorithm A that computes answer to k queries d(ai, bi, ei) in R ≤ ℓ

rounds, then we can solve (kq)-bit set disjointness using Rp ·Θ(log n) bits, where p is the height
of tree.

The Θ(log n) term is due to the CONGEST bandwidth. The proof of Claim 2 follows from
analysis similar to ([33], Theorem 3.1), and is as follows: Consider an i-left set Li which consists
of the first (ℓ− i) leaf vertices, path vertices vrj for 1 ≤ r ≤ q and j ≤ ℓ− i, and all tree vertices
that are the ancestor of at least one included leaf vertex. Similarly, an i-right set consists of the
last (ℓ− i) leaf vertices, their ancestors in the tree, and path vertices vrj for 1 ≤ r ≤ q, j ≥ i. The

idea is that for i < ℓ
2 , at round i, only limited amount of information from a1, a2, . . . ak vertices

reaches the vertices in Ri, and similarly only limited information from b1, . . . , bk vertices reaches
vertices in Li. More specifically, given the states (i.e. received messages and local computation)
of vertices in Ri−1 at round (i− 1), we can compute the states of vertices in Ri at round i with
an additional ≤ p messages sent from vertices outside Ri−1 to vertices in Ri. A similar claim
holds for Li, but we will prove this only for Ri.

Consider a neighbor v of vertex u in Ri. If v is in Ri−1, then we know the state of v at round
(i− 1), and hence the message that it would have sent to u. Thus, we are only concerned with
messages from neighbors v that are not in Ri−1. As shown in [33], this only happens with tree
ancestor vertices where a vertex is in Ri but one of its children is not in Ri−1. There can be at
most one just neighbor at each level of the tree (at the leftmost boundary of Ri), so there are
at most p of them. So, given the ≤ p messages sent along these edges, the state of all vertices
in Ri at round i can be determined.

Now, we consider a simulation of the CONGEST algorithm by Alice and Bob. Initially, Alice
has the bits Sa, and thus knows the edges incident to aj (for 1 ≤ j ≤ k) and vr0 (for 1 ≤ r ≤ q).
Similarly, Bob has Sb and knows the edges incident to bj and vrℓ . Initially, Alice knows the
state of L1 (which includes vr0’s but not vrℓ ’s) and Bob knows the state of R1. Observe that if
i < ℓ

2 , V \Rt−1 ⊆ Lt−1. For each round of the CONGEST algorithm, Alice generates the log n
messages from V \Rt−1 that Bob requires to compute Rt from the state of Rt−1. Similarly, Bob
generates the p messages from V \ Lt−1 ⊆ Rt−1 that Alice requires to compute Lt from Lt−1.
Thus, to simulate one round, Alice and Bob exchange p ·Θ(log n) bits. To simulate R rounds of
the CONGEST algorithm, Alice and Bob communicate Θ(Rp log n) bits.

To choose our parameters, we use p = O(log n), q = n−k
ℓ ≥ n

2ℓ (since k < n/2), ℓ will be
chosen later. The number of vertices in the graph is Θ(ℓ·q+k) = Θ(n). The undirected diameter
of the graph is ≤ 2p + 4 = Θ(log n) (using paths through the tree). The number of bits in the
set disjointness instance is kq ≥ kn

2ℓ . Using the randomized communication lower bound for set
disjointness [31, 5, 21] along with Claim 2, we obtain: If R(n) ≤ ℓ, then R(n) · log2 n = Ω(kq)⇒
R(n) = Ω

(

kn
ℓ log2 n

)

. Combining the two bounds, R(n) = Ω
(

min(ℓ, kn
ℓ log2 n

)
)

. We balance these

terms by choosing ℓ =
√
nk

logn , which gives R(n) = Ω
(√

nk
logn

)

.

We now apply this lemma to obtain a lower bound for DSO, proving Theorem 4.

Theorem 4. (stated in Section 1.2) Consider a DSO algorithm for directed unweighted graph
G = (V,E) on n nodes that performs P rounds of preprocessing and then answers any batch of

k ≤ n
Q2 log2 n

queries in O(k · Q) rounds, where Q = o
( √

n
logn

)

. Then, P is Ω̃
(

n
Q

)

. This lower

bound applies even for graphs of diameter Θ(log n).

Proof. Applying Lemma 8, P + k ·Q = Ω
(√

nk
logn

)

. Choosing k such that k ·Q = o
(√

nk
logn

)

, would

give a lower bound on P . Thus,
√
k = o

( √
n

Q logn

)

⇒ k = o
(

n
Q2 log2 n

)

. Then, k ·Q = n
Q log2 n

=
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o
(√

nk
logn

)

. Choosing k = Θ
(

n
Q2 log3 n

)

for instance, we get P = Ω
(√

nk
logn

)

= Ω̃
(

n
Q

)

.

We now apply Theorem 4 to obtain lower bounds mirroring the upper bounds in Section 3,
with query setups similar to Algorithm 2 (Corollary 9.A) and Algorithm 3 (Corollary 9.B).
Algorithm 3 has query response rounds Õ(k

√
n + D), and the query setup in Corollary 9.B

differs from it only by a polylog factor.

Corollary 9. Consider a DSO algorithm A for directed unweighted graph G = (V,E) on n
nodes that uses P rounds for preprocessing.
A. If A can answer k queries in O(k +D) rounds, i.e., Q = O(1), then P is Ω̃(n).

B. If A can answer k queries in o
(

k ·
√
n

logn

)

rounds, i.e., Q = o
( √

n
logn

)

, then P is Ω̃(
√
n).

3.3.1 Lower Bound for k-source shortest path

We derive a lower bound for k-source shortest path by modifying the lower bound construction
in the previous section. For this, we remove path v∗0-v

∗
ℓ−1. Then, we can readily modify the

proof of Lemma 8 for computing the k distances d(ai, bi) in the modified graph, to obtain the
following result.

Lemma 10. Any CONGEST algorithm for directed unweighted graphs that computes shortest
path distances from k sources must take Ω̃(

√
nk +D) rounds.

This lower bound is almost tight for k ≥ n1/3, as the k-source SSSP algorithm of [24] takes
Õ(
√
nk + D) rounds for k-SSSP in directed unweighted graphs. For k < n1/3 the bound is

not tight, which is not unexpected as we have a gap between the current best upper and lower
bounds even for one source (k = 1), i.e., Õ(

√
n+ n2/5+o(1)D2/5 +D) [9] and Ω̃(

√
n+D) [33].

4 All Pairs Second Simple Shortest Path

In the 2-APSiSP problem, we are given a graph G = (V,E) and need to compute the second
simple shortest path (2-SiSP) distance d2(x, y) for any pair of vertices x, y ∈ V . We present a
Õ(n) round algorithm for 2-APSiSP in directed weighted graphs and show it is almost optimal
with a Ω̃(n) round lower bound even for undirected unweighted graphs with constant diameter.

4.1 2-APSiSP Algorithm

We present Algorithm 4 for computing 2-APSiSP in directed weighted graphs in Õ(n) rounds,
such that distance d2(x, y) is known at y. Our algorithm uses the following characterization of
2-SiSP proved in [1].

Lemma 11. Given x, y ∈ V , let a be the vertex after x on the x-y shortest path. Let d(x, y, (x, a))
denote the replacement path distance from x to y when edge (x, a) is removed. Then, if a 6= y,
2-SiSP distance d2(x, y) = min (d(x, y, (x, a)), w(x, a) + d2(a, y))

Our algorithm performs an exclude computation in line 3 from each x ∈ V with all outgoing
edges of x in Tx as the set of excluded edges. This computes d(x, y, (x, a)) for all y ∈ V at y,
where (x, a) is the first edge on the x-y shortest path. These n exclude computations can be
performed in Õ(n) time (Theorem 1). Then, we order the computations so that d2(z, y) is first
computed at y for z ∈ V such that z-y shortest path has hop-length 1, then for z such that z-y
shortest path has hop-length 2, and so on until all d2(z, y) are computed. All this is done locally
at y in lines 4-7, so the total round complexity remains Õ(n).

Lemma 12. Algorithm 4 correctly computes 2-APSiSP distances d2(x, y) in Õ(n) rounds.
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Algorithm 4 Directed Weighted 2-APSiSP

Input: Graph G = (V,E).
Output: Compute 2-SiSP distance d2(x, y) at y for each x, y ∈ V .
1: Compute APSP in G and Gr, remembering parent nodes.
2: For each vertex x, find all neighbors a such that edge (x, a) is a shortest path. Perform a

downcast on Tx, the out-shortest path tree rooted at x, so that the identity of (x, a) and
w(x, a) is known to vertices in subtree of Tx rooted at a.

3: Compute excluded shortest paths from x with the set of edges (x, a) excluded. Thus, we
compute d(x, y, (x, a)) at all y, where (x, a) is the first edge of x-y shortest path.

4: for y ∈ V do ⊲ Local computation at y
5: y computes d2(z, y) = d(z, y, (z, y)) for in-edges (z, y) such that (z, y) is a shortest path.
6: for up to n iterations do
7: For z′ ∈ V such that y received distance d(z′, y, (z′, z)) (in line 3) and d2(z, y) has

already been computed, compute d2(z
′, y) = min(d2(z, y) + w(z′, z), d(z′, y, (z′, z))).

Note that w(z′, z) was sent to y in line 2 as edge (z′, z) is a shortest path.

Proof. Correctness: Given the characterization in Lemma 11, we argue that the computation
in lines 4-7 correctly computes all distances d2(y, z) at y. In the sequential algorithm in [1],
a global priority queue was used, but here we locally compute all relevant values at each y.
In line 5, we correctly compute d2(z, y) where edge (z, y) is a one-hop shortest path. In the
next step in the for loop in line 6, we compute d2(z

′, y) where z′-y shortest path has two hops.
This is because of Lemma 11, and (z′, z) is a shortest path for some z so y gets the distance
d(z′, y, (z′, z)) during the computation in line 2. Similarly, we can argue that after d2(z, y) has
been computed for k-hop shortest paths z-y, we compute d2(z

′, y) for (k+1)-hop shortest paths
z′-y in the next iteration of line 6. After up to n steps, all z (with finite d2(z, y)) have their
distance d2(z, y) computed.

Round Complexity: APSP takes Õ(n) rounds, and we perform exclude computations
from n sources which takes Õ(n) rounds, using Theorem 1. The downcast takes n rounds and
O(1) congestion per edge, so the computation for all vertices can be scheduled in Õ(n) rounds.
The computation in lines 4-7 is performed locally at each y.

4.2 2-APSiSP Lower Bound

We now prove a lower bound of Ω̃(n) for 2-APSiSP, proving that Algorithm 4 is nearly optimal.
A lower bound of Ω̃(n) rounds for computing 2-SiSP for a single pair of vertices in a directed
weighted graph was proven in [25]. While this 2-SiSP lower bound trivially applies to computing
2-APSiSP, the lower bound requires the shortest path to have Θ(n) hop length, and applies only
to directed weighted graphs. In this section, we prove a simpler Ω(n/ log n) lower bound for
2-APSiSP even for undirected unweighted graphs, and for graphs where all shortest paths can
have constant hop length. The result in Lemma 8 of Section 3.3 with k = Θ(n) can also be
modified to give a Ω̃(n) lower bound for 2-APSiSP, but only for directed graphs with diameter
Ω(log n).

We first present a lower bound for undirected unweighted APSP using a reduction from set
disjointness that we can readily extend to a lower bound for 2-APSiSP. Our construction is
inspired by the APSP lower bound in [26], where they use a different communication complexity
reduction. Our lower bound of Ω̃(n) also applies to the simpler problem of computing distances
between n given pairs of vertices – note that such a claim cannot hold for k = o(n) pairs, since
we can compute k-source SSSP in sublinear rounds [24] when k is sublinear.

Observation 13. (Alternate proof of Observation 1.4 in [26]) Given an undirected unweighted
graph G = (V,E), computing APSP requires Ω̃(n) rounds. This lower bound also applies to the
problem of computing the shortest path distance between n given pairs of vertices.
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Proof. Given an n-bit set disjointness instance Sa, Sb, we construct a graph with vertices ai, bi
for 1 ≤ i ≤ n and two additional vertices a∗ and b∗. We include edge (a∗, b∗) and we add other
edges based on the set disjointness input: edge (ai, a

∗) is present if Sa[i] = 1 and edge (bi, b
∗) is

present if Sb[i] = 1.
There is a finite shortest path between ai and bi only if edges (ai, a

∗) and (bi, b
∗) exist. Thus,

d(ai, bi) = 3 if Sa[i] = Sb[i] = 1 and d(ai, bi) =∞ otherwise. In an APSP algorithm, we require
node bi to know that distances d(v, bi),∀v ∈ V . Thus, we have the following protocol for set
disjointness using an APSP algorithm A that takes R(n) rounds: Alice controls nodes ai, a

∗ and
Bob controls nodes bi, b

∗, and they simulate A. Bob can check each d(ai, bi) to test if Sa[i], Sb[i]
are disjoint. The two parties communicate only R(n) · log n bits that pass through the cut edge
(a∗, b∗), so the lower bound for n-bit set disjointness [31, 5, 21] proves that R(n) = Ω(n/ log n).

Note that our reduction to set disjointness uses only the distances d(ai, bi) for 1 ≤ i ≤ n,
so our reduction also holds for an algorithm that computes shortest path distances between n
given pairs of vertices. Additionally, our lower bound holds for connected graphs with constant
undirected diameter since we can connect all vertices to a common path of length ≥ 4 without
affecting the reduction.

Theorem 5. (stated in Section 1.2) Given an undirected unweighted graph G = (V,E), comput-
ing 2-APSiSP requires Ω̃(n) rounds. The lower bound holds even when G has constant undirected
diameter.

Proof. We extend the lower bound for APSP in Observation 13 to 2-APSiSP. We change the
edge (a∗, b∗) to a path a∗-x-b∗ of length 2. We add two vertices c, d, and add edges (ai, c) and
(d, bi) for all 1 ≤ i ≤ n, that are always present irrespective of bits in the set disjointness input.
We also add edge (c, d). With these modifications, d(ai, bi) = 3 using the path through edge
(c, d). But, the second simple shortest path from ai to bi must pass through path a∗-x-b∗, and
the argument from Observation 13 applies: We have d2(ai, bi) = 4 if Sa[i] = Sb[i] = 1, and
d2(ai, bi) =∞ otherwise.

If Alice controls ai, a
∗, c and Bob controls bi, b

∗, d, x, there are O(1) edges connecting Alice’s
and Bob’s vertices. So the lower bound for set disjointness gives an Ω(n/ log n) lower bound for
2-APSiSP. Note that the undirected diameter of the graph is O(1), so the lower bound holds in
undirected unweighted graphs with constant diameter.

5 Conclusion and Open Problems

In this paper, we present CONGEST upper and lower bounds for DSO and 2-APSiSP. Our
bounds for 2-APSiSP are nearly optimal, up to polylog factors, for even undirected unweighted
graphs. There still remains a gap between upper and lower bounds for directed weighted DSO,
leading to the following open problems:

• For a DSO algorithm that can answer a batch a k queries in O(k+D) rounds, we present a
lower bound of Ω̃(n) preprocessing rounds, and an upper bound that takes Õ(n3/2) rounds.
Can we bridge the gap between these bounds?

• For a DSO algorithm that takes o(k
√
n

logn +D) rounds, we show a lower bound of Ω̃(
√
n)

preprocessing rounds. We show an upper bound that takes Õ(n) preprocessing rounds
and answers k queries in Õ(k

√
n + D). It is unlikely the lower bound can be improved

for algorithms taking O(k
√
n+D) rounds, as this would require an improved CONGEST

SSSP lower bound, but it is an open problem whether the preprocessing can be reduced
to sublinear rounds.

• Can we achieve a tradeoff between preprocessing rounds and query response rounds, such
as Õ(n3/2−c) preprocessing rounds to answer k queries in Õ(knc+D) rounds, for constant
0 < c < 1/2? We achieve this for c = 0 and c = 1/2, but our techniques do not immediately
extend to arbitrary c.
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