
To appear in THEORETICAL COMPUTER SCIENCE, 1997. Copyright Elsevier

The Queue-Read Queue-Write

Asynchronous PRAM Model

Phillip B. Gibbons

Bell Laboratories

600 Mountain Avenue

Murray Hill NJ 07974

gibbons@research.bell-labs.com

Yossi Matias

Bell Laboratories

600 Mountain Avenue

Murray Hill NJ 07974

matias@research.bell-labs.com

Vijaya Ramachandran�

Dept. of Computer Sciences

University of Texas at Austin

Austin TX 78712

vlr@cs.utexas.edu

Abstract

This paper presents results for the queue-read, queue-write asynchronous parallel random

access machine (qrqw asynchronous pram) model, which is the asynchronous variant of the
qrqw pram model. The qrqw pram family of models, which was introduced earlier by the
authors, permit concurrent reading and writing to shared memory locations, but each memory
location is viewed as having a queue which can service at most one request at a time. In the
basic qrqw pram model each processor executes a series of reads to shared memory locations,
a series of local computation steps, and a series of writes to shared memory locations, and then
synchronizes with all other processors; thus this can be viewed as a bulk-synchronous model. In
contrast, in the qrqw asynchronous pram model discussed in this paper, there is no imposed
bulk-synchronization between processors, and each processor proceeds at its own pace. Thus,
the qrqw asynchronous pram serves as a better model for designing and analyzing truly
asynchronous parallel algorithms than the original qrqw pram.

In this paper we elaborate on the qrqw asynchronous pram model, and we demonstrate
the power of asynchrony over bulk-synchrony by presenting a work and time optimal determin-
istic algorithm on the qrqw asynchronous pram for the leader election problem and a simple
randomized work and time optimal algorithm on the qrqw asynchronous pram for sorting.
In contrast, no tight bounds are known on the qrqw pram for either deterministic or random-
ized parallel algorithms for leader election and the only work and time optimal algorithms for
sorting known on the qrqw pram are those inherited from the erew pram, which are consid-
erably more complicated. Our sorting algorithm is an asynchronous version of an earlier sorting
algorithm we developed for the qrqw pram, for which we use an interesting analysis to bound
the running time to be O(lg n). We also present a randomized algorithm to simulate one step
of a crcw pram on a qrqw asynchronous pram in sublogarithmic time if the maximum
contention in the step is relatively small.

�Supported in part by NSF grant CCR/GER-90-23059 and Texas Advanced Research Projects Grant 003658386.

1

1 Introduction

The Parallel Random Access Machine (pram) model of computation (see, e.g., [KR90, J�aJ92, Rei93])
consists of a number of processors operating in lock-step and communicating by reading and writing
locations in a shared memory. Standard pram models can be distinguished by their rules regard-
ing contention for shared memory locations. These rules are generally classi�ed into the exclusive
read/write rule in which each location can be read or written by at most one processor in each
unit-time pram step, and the concurrent read/write rule in which each location can be read or
written by any number of processors in each unit-time pram step. These two rules can be applied
independently to reads and writes; the resulting models are denoted in the literature as the erew,
crew, ercw, and crcw pram models.

In a previous paper [GMR97], we argued that neither the exclusive nor the concurrent rules
accurately reect the contention capabilities of most commercial and research multiprocessors: The
exclusive rule is too strict, and the concurrent rule ignores the large performance penalty of high
contention steps. We proposed instead the queue rule, in which each memory location can be read
or written by any number of processors in each step, but concurrent reads or writes to a location are
serviced one-at-a-time. Thus the worst case time to read or write a location is linear in the number
of concurrent readers or writers to the same location. As discussed in [GMR97], the contention
properties of most existing multiprocessors are well-approximated by the queue-read, queue-write
rule.

In this paper we consider the Queue-Read Queue-Write (qrqw) asynchronous pram model.
The qrqw asynchronous pram [GMR93] was introduced by the authors as the asynchronous
variant of the qrqw pram family of models [GMR97], suitable for designing algorithms for asyn-
chronous (mimd) multiprocessors. The qrqw family of models includes the simd-qrqw pram

model, the qrqw pram model and the qrqw asynchronous pram model. All models in the
qrqw family incorporate the queue rule described above, and permit concurrent reading and writ-
ing of shared memory locations at a cost that is linear in the number of such readers and writers.
Each memory location is viewed as having a queue which can service at most one request at a time.
Unlike related models accounting for contention (e.g. [DHW93, LAB93]), the qrqw pram and the
qrqw asynchronous pram models permit pipelining: individual processors may have multiple
requests in progress concurrently. Some of the results presented here are mentioned without any
details in earlier extended abstracts by the authors on qrqw pram results.

The qrqw pram model is the basic model in the qrqw family of models and is well suited
for the design and analysis of bulk-synchronous algorithms on machines such as the Cray C90,
the Cray J90, and the forthcoming Tera MTA multiprocessor. These machines provide a qrqw

contention rule at the memory cells, support the pipelining of memory requests, and provide su�cient
processor-to-memory bandwidth to support communication at each step (as is needed for prams).
E�cient bulk-synchronization is an option on these machines, but is not imposed. An extensive
study of algorithms and results for the qrqw pram can be found in [GMR97, GMR96]. In addition,
experimental results for the qrqw pram on the Cray C90 and J90 can be found in [BGMZ95].

The model we study in this paper, the qrqw asynchronous pram model, permits more asyn-
chronous behavior than the bulk-synchrony imposed by the qrqw pram. Thus it can be used to
design and analyze algorithms for machines such as the MTA in contexts in which bulk-synchrony is
not employed. Indeed, Burton Smith, Chairman and Chief Scientist of Tera Computer, refers to the
MTA as \roughly a qrqw asynchronous pram" [Smi95] (and to our knowledge makes no such
claims about other models).

In more detail, the di�erences between the qrqw pram and the qrqw asynchronous pram

are as follows. In the (bulk-synchronous) qrqw pram, each processor executes a series of reads to
shared memory locations, a series of local computation steps, a series of writes to shared memory
locations, and then synchronizes with all the other processors. The time for such a bulk-synchronous

2

step is the maximum of the number of reads, compute steps, and writes by any one processor and
the maximum contention at any one location. Thus each processor waits until all queues have
emptied. In contrast, in the qrqw asynchronous pram, each processor executes reads, compute
steps, and writes, but processors proceed at their own pace with no intervening synchronization.
Algorithms must be correct under worst case assumptions on the �nite delays incurred by processors
and in processing memory requests. However, the running times of algorithms are analyzed using an
optimistic (synchronous) time metric in which, at each unit-time step, (1) each processor performs
a local computation step or issues a shared memory request, with all requests to the same location
appended to the queue for that location, in an arbitrary order, and then (2) each nonempty queue
services the request at the head of its queue. Thus each processor may proceed as soon as its own
requests clear their respective queues.

We present a number of algorithmic results for the qrqw asynchronous pram. First, we show
how qrqw pram algorithms for problems such as generating a random permutation and multiple
compaction can be readily adapted to qrqw asynchronous pram algorithms with the same time
bounds. Then, in the bulk of the paper, we present qrqw asynchronous pram algorithms that
achieve better time bounds than the best known qrqw pram algorithms, by exploiting the power
of asynchrony over bulk-synchrony.

First, we present a simple deterministic algorithm for computing the or of n bits on the qrqw

asynchronous pram that exploits the lack of bulk-synchrony and runs in O(lgn= lg lgn) time,
linear work. A similar algorithm was found independently by Armen and Johnson [AJ96]. We also
present a matching lower bound. In contrast, no o(lgn) time qrqw pram algorithm is known, and
even on a Concurrent-Read Queue-Write (crqw) pram, no deterministic o(lgn) time algorithm is
known for this problem.

Next, we present a simple randomized O(lgn) time, O(n lgn) work qrqw asynchronous

pram algorithm to sort an array of n elements. The algorithm is almost exactly the same as
the �(lg2 n= lg lgn) time, O(n lgn) work randomized sorting algorithm we developed earlier for the
qrqw pram [GMR96], but we exploit asynchrony by allowing elements to ow through the `binary
search fat-tree' data structures employed by the sorting algorithm at their own pace. We describe
here a new analysis that is interesting in its simplicity; it is based on a repeated use of a seemingly
quite useful lemma, regarding the sum of Poisson-like random variables.

Finally, we show that a single step of an n-processor fetch&add pram, and hence also a crcw

pram, can be emulated on an n-processor qrqw asynchronous pram in O(lgn= lg lgn + lgk)
time with high probability, where k is the maximum memory contention of the crcw pram step; in
this emulation, the value of k is not known to the emulating algorithm. The emulation algorithm is
rather involved, and demonstrates some of the di�culties that may arise when designing algorithms
that avoid global synchronization.

The rest of the paper is organized as follows: In Section 2 we state some basic results in probability
that we will use in later sections. In Section 3 we de�ne the qrqw asynchronous pram model
and discuss its features. In Section 4 we show how certain qrqw pram algorithms can be readily
adapted to the qrqw asynchronous pram. In Section 5 we present our results on leader election.
In Section 6 we present our randomized work- and time-optimal sorting algorithm on the qrqw

asynchronous pram, including the detailed analysis of the contention encountered in the binary
search fat-tree. In Section 7 we present our simulation of a fetch&add pram step on a qrqw

asynchronous pram. Some further discussion on the qrqw asynchronous pram cost measure
appears in Section 8.

3

2 Probability facts and notations

A Las Vegas algorithm is a randomized algorithm that always outputs a correct answer, and obtains
the stated bounds with some stated probability. All of the randomized algorithms in this paper
are Las Vegas algorithms, obtaining the stated qrqw pram bounds with high probability. A
probabilistic event occurs with high probability (w.h.p.), if, for any prespeci�ed constant � > 0, it
occurs with probability 1 � 1=n�, where n is the size of the input. Thus, we say a randomized
algorithm runs in O(f(n)) time w.h.p. if for every prespeci�ed constant � > 0, there is a constant c
such that for all n � 1, the algorithm runs in c � f(n) steps or less with probability at least 1� 1=n�.
Often, we can test whether the algorithm has succeeded, and if not repeat it. In this case, it su�ces
to design an algorithm that succeeds with probability 1 � 1=n� for some positive constant �, since
we can repeat the algorithm �=� times if necessary, to boost the algorithm success probability to the
desired 1� 1=n�. With this in mind, we will freely use \with high probability" in this paper to refer
to events or bounds that occur with probability 1� 1=n� for some positive constant �.

A Bernoulli trial is an experiment which succeeds with probability p and fails with probability
1 � p. A random variable X that gives the number of successes in a sequence of n independent
Bernoulli trials is a binomial random variable with expectation E[X] = np. In Section 7 we apply
the following \Cherno�-type" bound on the tail of a binomial random variable X (see, e.g. [GMR97]):

Lemma 2.1 Let X be a binomial random variable. For all f = O(lgn), if E[X] � 1=2f , then
X = O(lgn=f) w.h.p.

3 The QRQW Asynchronous PRAM

In this section, we present the de�nition of the qrqw asynchronous pram model. An important
feature of the qrqw asynchronous pram model is that the model separates correctness issues
from analysis issues: Algorithms must be correct under worst case assumptions on the �nite delays
incurred by the processors and in processing memory requests, but the running times of algorithms
are analyzed using an optimistic (synchronous) time metric. We elaborate on the correctness issues
and analysis issues below, and then proceed to de�ne the model.

Functionality and correctness. A shared memory multiprocessor supports a consistency con-
dition on its memory system. The most widely-used memory consistency condition is sequential
consistency [Lam79, ABM93], in which the memory system appears to be a serial memory, pro-
cessing one read or write at a time, in an order consistent with the individual program orders at
each processor. The SGI Challenge and the (now defunct) KSR machines are examples of multi-
processors supporting sequential consistency. Relaxed consistency conditions such as release consis-
tency [GLL+90, GMG91] support sequential consistency for PL programs; these are programs with
two types of accesses, synchronization and data, such that there are no race conditions between
data accesses. The Stanford DASH machine and the Tera MTA are examples of multiprocessors
supporting release consistency. In the qrqw asynchronous pram, the memory system is assumed
to be sequentially consistent. As any program can be made PL by labeling su�ciently many accesses
as \synchronization", our algorithms will work as well on machines providing release consistency.

Typically, the only other guarantee on inter-processor communication provided by a multiproces-
sor is that no request is delayed inde�nitely. (We are assuming that the multiprocessor is executing
without failures.) Thus algorithms must be correct under worst case assumptions on the delays
incurred by processors and in processing memory requests, and the qrqw asynchronous pram

reects this reality.

Most asynchronous shared memory models of computation assume that a processor can have

4

at most one pending memory request at a time: there is no pipelining of memory requests by a
processor (e.g. [CZ89, Nis90, And92, MPS92, DHW93]).1 On the other hand, high-performance
shared memory machines such as the Tera MTA permit the pipelining of memory accesses by a
processor, in order to amortize the round-trip time to memory over a collection of accesses. In the
qrqw asynchronous pram, pipelining of memory accesses is permitted; a processor may have
multiple shared memory operations in progress at a time.

Each processor has a private local memory, and the following types of instructions: local opera-
tions, shared memory reads, shared memory writes, and shared memory test&set operations. A
test&set operation reads and returns the old value and writes a 1; the location is assumed to be
initialized to 0. Other synchronization constructs such as barriers can be constructed using shared
memory reads, writes, and test&sets.

Analysis. In de�ning how algorithms are analyzed in the model, the qrqw asynchronous pram

aims for a simple cost model that captures important realities of multiprocessors. As in Gibbons'
asynchronous pram model [Gib89], our cost model assumes that processors issue instructions at
the same speed, as this is presumed to be the typical scenario in a multiprocessor. A local operation
takes unit time.

There is a FIFO queue associated with each memory location; only the request at the head of
the queue is processed in a step. Thus requests to a location can pile up, causing a delay in their
processing. If k processors issue a request to the same location at step t of an algorithm, and the
queue for this location is empty at the beginning of step t, then one such request completes step t,
another step t+ 1, another step t+ 2, and so forth, until the last one completes at step t+ k� 1. If
additional requests to the location arrive before step t+ k� 1, these are appended to the tail of the
queue: if there are two such requests, they will complete at steps t + k and t + k + 1, respectively,
regardless of the exact step at which they are requested.

Note that the cost model makes optimistic assumptions on the delays encountered by shared
memory requests, e.g. that requests issued earlier are queued before requests issued later; these
assumptions are not a part of the correctness model. The reasoning behind models in which analysis
makes optimistic assumptions while correctness does not is that (1) it makes sense to measure the
complexity of an algorithm so as to approximate a typical performance of a machine, since this
reects directly in real life e�ciency, while (2) we must be strict and assume worst case situations
for correctness, since otherwise a single unexpected event may cause the entire computation to fail.
Some rami�cations of this reasoning are discussed in Section 8.

Model de�nition. The qrqw asynchronous pram model consists of a collection of processors
operating asynchronously and communicating via a global shared memory. Each processor has a
private local memory, and the following types of instructions: RAM operations involving only its
private state and private memory, requests to read the contents of a shared memory location into
a private memory location, requests to write the contents of a private memory location to a shared
memory location, and requests to perform a test&set operation on a shared memory location. A
processor can execute any of the shared memory requests and continue without waiting for them to
complete (pipelining). However, the �rst subsequent RAM operation that uses the result of such a
shared memory request will wait for the value to be returned.

The global memory is a sequentially consistent nonblocking shared memory [GM92], as follows.
Each processor issues shared memory requests (read, write, test&set) one at a time. There is a
partial order on the requests by a processor, called the local order for that processor. The memory
system appears (for the purpose of correctness) to be a serial memory that processes one read or
write at a time, in an order consistent with the individual local orders at each processor. The local
order for a processor must be a subrelation of the total order in which the processor issues the

1Note that when all memory accesses take unit time, as in these models, there is no need for pipelining.

5

requests, and two requests by a processor to the same location must be ordered whenever one or
both are write requests. Algorithms must be correct under worst case assumptions on the �nite
delays incurred by the processors and by the shared memory.

Time is de�ned as follows. There is a FIFO queue associated with each memory location. A
single time step consists of two substeps:

1. Each processor issues an instruction. Local operations complete this step. Shared memory
requests are appended to the tails of the queues for the requested locations, with requests to
the same location enqueued in an arbitrary order.

2. Shared memory requests at the head of nonempty queues are dequeued and performed (at most
one per queue), and either a return value or an acknowledgement is received by the processor
responsible for the request.

Work is de�ned as the time-processor product.

Some comments on the de�nition follow. Because an algorithm must be correct regardless of
the delays, a processor can not safely \time-out" after a certain period of time or a certain amount
of polling and assume that no further reads/writes to a location are forthcoming. Any inference a
processor makes regarding the length of a queue encountered by one of its requests based on the
delay incurred may be completely inaccurate, since even a request encountering an empty queue
may incur arbitrary delays. Once issued, a memory request can not be withdrawn; a processor has
not completed its participation in an algorithm until all of its memory requests have been processed.

In the algorithms we present, the local order at each processor is de�ned implicitly as follows: if
x and y are shared memory requests by the same processor, such that x is requested before y, then
x precedes y in the local order if and only if (1) x and y are to the same location and at least one is
a write request, or (2) x or y is used in a synchronization step of the algorithm. Thus, for example,
if a processor issues a sequence of read requests and then synchronizes, the local order is implicitly
de�ned to order each read before the synchronization request but not order the reads with respect
to one another.

In addition to the qrqw asynchronous pram model, one can also de�ne hybrid models such
as the crqw asynchronous pram, which permits unit time concurrent reading but applies the
above queue rule for concurrent writing. The stronger crqw asynchronous pram model is used
primarily to prove stronger lower bounds.

Related work. A variety of asynchronous pram models have been studied in the literature
(c.f. [CZ89, Gib89, Nis90, And92, MPS92]). These models account for contention in a manner
most like a crcw pram, with no penalty assessed for large contention to a location.2 An erew

contention rule was not considered,3 since most asynchronous algorithms cannot avoid scenarios in
which concurrent reading or writing occur. Since most existing parallel machines permit contention,
but at a cost, the qrqw rule is a better choice for an asynchronous model than either the crcw or
the erew rule.

The qrqw rule can be incorporated into these previous models in a natural way. Concurrent reads
and writes to a location x are queued in an arbitrary order, with each write to x updating the value
of x when it reaches the head of the queue and each read of x returning the value present in location

2For example, models based on \time slots" permit an arbitrary number of reads/writes to a location in one time
slot. Models based on \interleaving" or \rounds" charge the same for an interleaving of reads/writes to the same
location as for an interleaving of reads/writes to di�erent locations.

3An exception is the erew variant of Gibbons' asynchronous pram model [Gib89], which permits contention in
synchronizationprimitives, at a cost, but enforces the erew rule on reads and writes occurring between synchronization
points.

6

x when it reaches the head of the queue. Instead, we have de�ned a new model that incorporates
the qrqw rule, which we believe to be a better model for asynchronous parallel machines.

Two other asynchronous models of parallel computation that focus on contention are the atomic
message passing model of Liu, Aiello and Bhatt and the \stall" model of Dwork, Herlihy and
Waarts. These models were developed independently of the qrqw asynchronous pram and
di�er in several important ways. The atomic message passing model [LAB93] is a message-passing
model in which messages destined for the same processor are serviced one-at-a-time in an arbitrary
order. The model permits general asynchronous algorithms, but each processor can have at most
one message outstanding at a time. Dwork, Herlihy and Waarts [DHW93] de�ned an asynchronous
shared memory model with a stall metric: If several processes have reads or writes pending to a
location, v, and one of them receives a response, then all the others incur a stall. Hence the charge
for contention is linear in the contention, with requests to a location being serviced one-at-a-time.
Their model permits general asynchronous algorithms, but each processor can have at most one read
or write outstanding at a time. Unlike their model, the qrqw asynchronous pram model captures
directly how the contention delays the overall running time of the algorithm, and is proposed as an
alternative to other pram models for high-level algorithm design.

4 Adapting QRQW PRAM algorithms to the QRQW Asyn-

chronous PRAM

The computational power of the qrqw pram and the qrqw asynchronous pram are incom-
parable: the qrqw pram has the advantage of free global synchronization, but is restricted to
bulk-synchronous operation. The naive emulation of the qrqw pram on the qrqw asynchro-

nous pram performs a barrier synchronization at each step, at a cost of O(lgp) for p processors per
barrier. The goal in adapting algorithms designed for the qrqw pram to the qrqw asynchronous

pram is to make do with less synchronization so as to maintain the same complexity bounds. In this
section, we sketch simple adaptations of several qrqw pram algorithms from [GMR97, GMR96],
showing that the same complexities can be obtained for the qrqw asynchronous pram.

Theorem 4.1 Consider the problem of electing a leader bit from among the k out of n input bits
that are 1.

� Let k̂ be known to be within a factor of 2
p

lgn of k, i.e. k̂=2
p

lgn � k � k̂2
p

lgn. There is a
randomized Monte Carlo qrqw asynchronous pram algorithm that, w.h.p., elects a leader

in O(
p

lgn) time with O(n) work. On the crqw asynchronous pram, or if k̂ = O(2
p

lgn),
the same bounds can be obtained for a Las Vegas algorithm.

� Consider the problem of computing the logical or (or electing a leader) of n bits, where it
is known that at most kmax input bits can be 1. There is a randomized Las Vegas qrqw

asynchronous pram algorithm that runs in O(lg kmax +
p

lgn) time with O(n) work w.h.p.

Proof. We describe �rst the qrqw pram algorithm from [GMR97] for the �rst problem above

for n=
p

lgn processors. Let � = min(1; 2c
p
lgn=k̂), for a constant c � 1, to be determined by the

analysis. Let A be an array of size m = 2(c+2)
p

lgn, initialized to all zeros.

Step 1. Each processor reads from its
p

lgn input bits and selects a leader from among the bits
that are 1, if any.

7

Step 2. Each processor with a leader writes, with probability �, the index of the leader bit to a cell
of A selected uniformly at random.

Step 3. m of the processors participate to select a nonzero index from among those written to A,
using a binary fanin approach.

If k̂ � 2
p

lgn then � = 1 and this is a Las Vegas algorithm. Alternatively, on the crqw, a Las Vegas
algorithm is obtained by repeating steps 2 and 3 until there is a nonzero index in A; termination is
detected by using the concurrent-read capability.

In [GMR97], we show that the time on the qrqw and crqw pram is O(
p

lgn) w.h.p. We
adapt the algorithm to the qrqw and crqw asynchronous pram as follows. In step 2, processors
perform a test&set to their selected cell instead of writing an index. For step 3, consider a binary
tree whose leaves are the cells of A. Each processor that succeeded in claiming a cell of A (i.e., its
test&set returned a 0) marches from its leaf towards the root of the tree, attempting to claim
each node in turn using test&set, and dropping out if its attempt fails. The leader is the leader
bit of the processor that succeeds in claiming the root.

We now describe the qrqw pram algorithm from [GMR97] for the second problem above, for
n=(lgkmax +

p
lgn) processors. The input bits are partitioned among the processors such that each

processor is assigned lg kmax +
p

lgn bits. If kmax =
(n�) for some constant 0 < � � 1, then elect
the leader using a binary fanin tree, to obtain the stated bounds. Otherwise, let A be an array

of size m = kmax � 2
p

lgn, initialized to all zeros (note that m = O(n)). Each processor selects a
leader from among its input bits that are 1, if any. Then each processor with a leader writes to a
cell of A selected uniformly at random. Finally, m of the processors participate to select a nonzero
index from among those written to A. In [GMR97], we show that the time on the qrqw pram is
O(lgkmax +

p
lgn) w.h.p. We adapt the algorithm to the qrqw asynchronous pram using the

same modi�cations as in the �rst problem above, to obtain the stated bounds.

The general leader election problem (k unknown) is discussed in Section 5.

We next consider the problem of generating a random permutation.

Theorem 4.2 There is a randomized Las Vegas qrqw asynchronous pram algorithm for gen-
erating a random permutation that runs in O(lgn) time with O(n) work w.h.p.

Proof. In [GMR96], we presented the following qrqw pram algorithm. For each of c lg lgn
rounds, for a constant c � 1, each unplaced item selects a random cell from a subarray of an array
A (a new subarray is used for each round); if no other item selects the same cell, the item has been
successfully placed. The size of the subarray used in the �rst round is d �n, for some constant d > 1,
and the size decreases by a constant factor at each round. If, after c lg lgn rounds, not all items have
been placed, restart from the beginning. After all items have been placed, the array A is compacted
to size n.

The algorithm is adapted to the qrqw asynchronous pram by using the test&set primitive
to decide which writer claims a particular cell, and judiciously inserting explicit synchronizations
among subsets of processors as needed. The time and work bounds follow from the bounds for the
qrqw pram shown in [GMR96].

We next consider the multiple compaction problem. The input consists of n items given in an
array; each item has a label, a count, and a pointer, all from [1::O(n)]. The labels partition the items
into n sets �1; : : : ;�n where �i is the set of items labeled with i. The count of an item belonging to
�i is an upper bound, count(�i), on the number of items in �i, j�ij, such that

Pn
i=1 count(�i) � �n

for some constant � > 0. Also given is an array B[1::�0n], where �0 � 4� is a constant. Array B is

8

partitioned into sub-arrays such that each set �i has a private subarray of size at least 4 � count(�i);
the sub-arrays are assigned in some arbitrary order. The pointer of an item belonging to a set �i is
the starting point in B of the sub-array assigned to �i. The goal is to move each item into a private
cell in the sub-array of its set.

Theorem 4.3 There is a randomized Las Vegas qrqw asynchronous pram algorithm for mul-
tiple compaction that runs in O(lgn) time with O(n) work w.h.p.

Proof. In [GMR96], we presented a qrqw pram algorithm with these time and work bounds.
The reader is referred to that paper for a description of the algorithm. As above, the algorithm
is adapted to the qrqw asynchronous pram by using the test&set primitive to decide which
writer claims a particular cell, and judiciously inserting explicit synchronizations among subsets of
processors as needed.

Even more interesting than adapting qrqw pram algorithms to the qrqw asynchronous

pram are examples of algorithms for the qrqw asynchronous pram that achieve better time
bounds than the best known qrqw pram algorithms. Such algorithms exploit the computational
advantage the qrqw asynchronous pram has by not being restricted to bulk-synchronous oper-
ation. We discuss three such examples in the next three sections.

5 Leader election and computing the OR

Given a Boolean array of n bits, the or function is the problem of determining if there is a bit with
value 1 among the n input bits. The leader election problem is the problem of electing a leader bit
from among the k out of n bits that are 1 (k unknown). The output is the index in [1::n] of the bit,
if k > 0, or 0, if k = 0. This generalizes the or function, as long as k = 0 is possible.

By having each processor whose input bit is 1 write the index of the bit in the output memory
cell, we obtain a simple deterministic qrqw asynchronous pram algorithm for leader election
(and similarly for the or function) that runs in maxf1; kg time using n processors, where k is the
number of input bits that are 1 (k unknown). This is a fast algorithm if we know in advance that
the value of k is small. However, for the general leader election problem, a better algorithm is to
mimic the erew pram parallel pre�x algorithm to compute the location of the �rst 1 in the input;
since only pairwise synchronizations are used, this takes �(lgn) time and �(n) work on a qrqw

asynchronous pram.

In this section, we present a faster, O(lgn= lg lgn) time deterministic qrqw asynchronous

pram algorithm for leader election and computing the or function, and a matching lower bound for
the stronger crqw asynchronous pram. A similar algorithm was found independently by Armen
and Johnson [AJ96].

Theorem 5.1 There is a deterministic qrqw asynchronous pram algorithm for the leader elec-
tion problem (and the or function) that runs in O(lgn= lg lgn) time and O(n) work.

Proof. Let s = lgn= lg lgn. We describe the algorithm for n=s processors. Each processor is
assigned s inputs, and elects as leader the �rst 1-input among its inputs (if any). Consider an s-ary
tree, T , with one leaf per processor, with each location corresponding to a node in T initialized to
zero. Each processor with a 1-input among its inputs begins to greedily traverse the path in T from
its leaf to the root. At each node on the path, it attempts to claim the node using a test&set

operation. If it returns a zero, the processor has succeeded in claiming the node, and it continues

9

on to the next node in its path. Else it drops out. The leader elected is according to the processor
claiming the root node. No processor spends more than s steps being the �rst in the queue for a
node (and hence claiming the node) and no more than s steps stuck in the queue for a node (when
it drops out). Thus the time is O(s) as claimed.

We can derive a matching
(lgn= lg lgn) lower bound for the or function on the (more pow-
erful) crqw asynchronous pram using a lower bound result of Dietzfelbinger, Kutylowski and
Reischuk [DKR94] for the few-write pram models. Recall that the few-write pram models are
parameterized by the number of concurrent writes to a location permitted in a unit-time step. (Ex-
ceeding this number is not permitted.) Let the �-write pram denote the few-write pram model
that permits concurrent writing of up to � writes to a location, as well as unlimited concurrent
reading. We begin by proving a more general result for emulating the crqw asynchronous pram

on the few-write pram, and then provide the or lower bound. The same two-part approach is used
in [GMR97] to prove an
(lgn= lg lgn) time lower bound for the deterministic crqw pram; here
we extend the lower bound to the asynchronous model.

Lemma 5.2 A p-processor crqw asynchronous pram deterministic algorithm running in time
t can be emulated on a p-processor t-write pram in time O(t).

Proof. Since the crqw asynchronous pram algorithm runs in time at most t on all inputs,
then at each step, the maximum number of writes to any one location initiated that step is no more
than t, regardless of the input. Thus we will use a �xed constant number of t-write pram steps
to emulate each crqw asynchronous pram instruction. For each crqw asynchronous pram

processor pj , j 2 [1::p], we denote by p0j the few-write pram processor emulating pj . Consider each
instruction in the asynchronous pram program in turn. We show how to handle each type of
instruction.

� For each processor pj with an instruction to issue a local operation or a shared memory read,
p0j has an instruction to perform the local operation or the shared memory read, and then
instructions to idle for the rest of this step.

� For each processor pj with an instruction to issue a test&set for a shared memory location
X, returning the old value into a local location r1, p0j has the following sequence of instructions:
(1) read X into r1, (2) if the value is 0, then write j to X, read X into local location r2, and
if the value is not j, set r1 to 1, and (3) write 1 to X.

� For each processor pj with an instruction to issue a shared memory write, p0j has instructions
to idle and then an instruction to perform the shared memory write at the same time as (3)
of the previous case.

The sequence of instructions for a test&set operation ensure that if the old value is 0, then exactly
one processor returns a zero, the rest return a 1, and the location is set to 1. If the old value is not
0, then all processors return the old value, and the location is set to 1. The idle steps ensure that
the processors remain in sync, and do not interfere with a test&set emulation in progress.

The t-write pram will take constant time for each crqw asynchronous pram instruction.
Thus the time on the t-write pram is O(t). Since the asynchronous pram program is required
to be correct (and terminate) regardless of the relative progress made by the processors, then in
particular it is correct (and terminates) under the speci�c timing of events used by the t-write pram
emulation.

The above lemma leads to the following theorem that gives the desired lower bound.

10

Table 1: PRAM Sorting Results

Model time work space constant factors Reference

erew pram O(lg2 n) O(n lg2 n) O(n) small [Bat68]
erew pram O(lgn) O(n lgn) O(n) very large [AKS83]
erew pram O(lgn) O(n lgn) O(n) large [Col88]
crew pram O(lgn) w.h.p. O(n lgn) w.h.p. O(n1+�) moderate [Rei85]

qrqw pram O(lg2 n= lg lgn) w.h.p. O(n lgn) w.h.p. O(n) moderate [GMR96]
qrqw a.p. O(lgn) w.h.p. O(n lgn) w.h.p. O(n lgn) moderate this paper

Theorem 5.3 Any deterministic algorithm for computing the or function on a crqw asynchro-

nous pram with arbitrarily many processors requires
(lgn= lg lgn) time.

Proof. Dietzfelbinger, Kutylowski and Reischuk [DKR94] proved an
(lgn= lg�) lower bound for
the or function on the �-write pram. Let T be the time for the or function on the crqw asyn-

chronous pram. Then by Lemma 5.2, the or function can be computed on the T -write pram in
O(T) time. Thus T =
(lgn= lgT), and hence T lgT =
(lgn). Now if T = o(lgn= lg lgn), then
lgT = o(lg lgn), contradicting T lgT =
(lgn). Thus T =
(lgn= lg lgn).

6 Sorting

We consider the problem of general sorting, i.e. sorting an array of n keys from a totally-ordered
set. On the erew pram, there are two known O(lgn) time, O(n lgn) work algorithms for general
sorting [AKS83, Col88]; these deterministic algorithms match the asymptotic lower bounds for gen-
eral sorting on the erew and crew pram models. Unfortunately, these two algorithms are not as
simple and practical as one would like.

Another relatively simple parallel sorting algorithm is a randomized
p
n-sample sort algorithm

for the crew pram that runs in O(lgn) time, O(n lgn) work, and O(n1+�) space [Rei85]. This
algorithm consists of the following high-level steps: (1) randomly sample

p
n keys, (2) sort the

sample by comparing all pairs of keys, (3) each item determines by binary search its position among
the sorted sample and labels itself accordingly, (4) sort the items based on their labels using integer
sorting, and (5) recursively sort within groups with the same label. When the size of a group is at
most lgn, �nish sorting the group by comparing all pairs of items.

In an earlier paper [GMR96] we build on this
p
n-sample sort algorithm and obtained an

O(lg2 n= lg lgn) time, O(n lgn) work, O(n) space randomized sorting algorithm, on the qrqw pram.

In this section, we present a simple sorting algorithm on the qrqw asynchronous pram that
runs in O(lgn) time with O(n lgn) work w.h.p. The algorithm is almost the same as the O(n lgn)-
work algorithm for the qrqw pram given in [GMR96], but we are able to bring down the running
time from �(lg2 n= lg lgn) to O(lgn) by making e�ective use of asynchrony. In particular we analyze
the progress of elements through the binary search fat-trees and establish that the time taken by all
elements to proceed through the binary search fat-trees at all recursive levels is O(lgn) w.h.p. Our
algorithm uses O(n lgn) space.

Table 1 summarizes the comparison between various pram sorting algorithms.

We start by reviewing the high-level algorithm, which is the same for the qrqw pram and the

11

qrqw asynchronous pram.

6.1 The high-level sorting algorithm

The following sorting algorithm is presented in [GMR96].

Algorithm A.
Let � be any constant such that 0 < � < 1=2. Let n = n0 be the number of input items, and for
i � 1, let

ni = (1 + 1= lgn) � n
1

2
+�

i�1 :

W.h.p., ni is an upper bound on the number of items in each subproblem at the ith recursive call
to A [GMR96].

For subproblems at the ith level of recursion:

1. Let S be the set of at most ni items in this subproblem. Select in parallel
p
ni items drawn

uniformly at random from S.

2. Sort these sample items by comparing all pairs of items, using summation computations to
compute the ranks of each item, and then storing the items in an array B in sorted order.
Move every (n�i)th item in B to an array B0.

3. For each item v 2 S, determine the largest item, w, in B0 that is smaller than v, using a binary
search on B0. Label v with the index of w in B0.

4. Place all items with the same label into a subarray of size �(n1=2+�i) designated for the label,
using multiple compaction. In particular, we use a variant of multiple compaction in which (1)
the size of each set is
(lg2 n) and (2) the set sizes may exceed their upper bounds, in which
case the algorithm reports failure [GMR96]. W.h.p., the number of items with the same label
is at most ni+1 and thus the multiple compaction succeeds in placing all items in each such
group into its designated subarray. If failure is reported for any subproblem, we restart the
algorithm from the beginning.

5. Recursively sort the items within each group, for all groups in parallel. When ni+1 is at most

2(lgn)
1=2

, �nish sorting the group using the erew pram bitonic sort algorithm [Bat68]. This

cut-o� point su�ces for n su�ciently large; for general n, the cut-o� point is maxf2(lgn)1=2 ;
lgc ng, for c > 6=� a suitable constant.

To implement Algorithm A on a qrqw pram or qrqw asynchronous pram, we must incor-
porate techniques that use only low-contention steps. The main obstacle is step 3, in which each
item needs to learn its position relative to the sorted sample. A straightforward binary search on
B0 would encounter �(n) contention. Instead, we employed the following data structure:

Binary search fat-tree. In a binary search fat-tree, there are n copies of the root node, n=2
copies of the two children of the root node, and in general, n=2j copies of each of the 2j distinct
nodes at level j down from the root of the tree. The added fatness over a traditional binary search
tree ensures that, if n searches are performed in parallel such that not too many searches result in
the same leaf of the (non-fat) tree, then each step of the search will encounter low contention.

The process of fattening a search tree can be done in O(lgn) time and O(n lgn) work using
binary broadcasting.

12

In the case of our qrqw asynchronous pram sorting algorithm, at the ith level of recursion
we make 2�ni copies of the median splitter, 2�ni=2 copies of the 1/4 and 3/4 splitters, and so forth,

down to 2�n
1=2+�
i copies of the n

1=2��
i splitters in the leaves of the tree, for � > 2 a suitable constant.

We will continue to call this a `binary search fat-tree' although the number of copies in each level
di�ers by a constant factor from the number in the original de�nition.

The key to our O(lgn) time implementation of algorithmA on the qrqw asynchronous pram

is that, in the qrqw asynchronous pram, processors can proceed through the binary search fat-
tree at their own pace.

Theorem 6.1 Algorithm A can be implemented on the qrqw asynchronous pram in O(lgn)
time and O(n lgn) work w.h.p., using O(n lgn) space.

Proof. Consider all O(n=ni) subproblems at the ith level of recursion. As shown in [GMR96] using
Cherno� bounds, the maximum contention in step 1 is O(

p
lgn) w.h.p. The work is O(n=

p
ni). Step

2 can be done in O(lgni) time and O(n) work by �rst making
p
ni copies of each item in the sample.

For step 3, we build a binary search fat-tree of depth lg(n
1=2��
i), in O(lgni) time and O(n lgni)

work. We then label each item using a random search into the fat-tree, as described above. This
step is analyzed below. By the analysis in [GMR96], step 4 takes O(lg� ni lgn= lg lgn) time and
O(n) work w.h.p.

Let � be the number of levels of recursion. The total time spent on all recursive calls excluding
the fat-tree searches is, w.h.p.,

P
1�i�� O(lgni + lg� ni lgn= lg lgn). Since lgni = O((1=2 + �)i lgn

and lg� ni < lg� n, the total time excluding the fat-tree searches is, w.h.p.,

O((� lg� n= lg lgn) lgn) +
X

1�i��

O((1=2 + �)i lgn) = O(lgn):

The total work is, w.h.p., X
1�i��

O(n lgni) = O(n lgn):

The time for bitonic sort on groups of size at most 2
p

lgn is O(lgn), while the total work
performed is O(n lgn) over all groups. Broadcasting whether any failure has occurred is done only
after the bitonic sort, and takes O(lgn) time and linear work.

We show in Lemma 6.4 below that for each element, the sum of the contentions it encounters
during all fat-tree searches is O(lgn). Theorem 6.1 follows.

6.2 Delay analysis

In this section, we complete the proof of Theorem 6.1, by presenting a detailed analysis showing that
the cumulative delay of any element through fat-trees at all levels of recursion is O(lgn) w.h.p. Our
analysis will repeatedly use the following useful lemma regarding the sum of Poisson-like random
variable.

Lemma 6.2 Let � > 2, c � � � 1, and � = lg c= lg(�=2). Let x1; : : : ; xm be independent random
variables over the positive integers so that Prob (xi = u) � c��u for all u > 0. Let Sm = x1 + � � �+
xm, for m � 1 and S0 = 0. Then, for all a,

Prob (Sm � �m + a) �
�
�

2

��a
: (1)

13

Proof. The proof is by induction on m.

The base case is m = 0: If a � 0 then Prob (S0 � a) = 1 �
�
�
2

��a
. If a > 0 then

Prob (S0 � a) = 0 <
�
�
2

��a
.

We assume inductively that (1) holds for m � 1 and prove the induction step for m > 0.

Prob (Sm � �m + a) =
1X

i=�1

Prob (xm = i ^ Sm�1 � �m + a� i)

by independence
=

1X
i=�1

Prob (xm = i) �Prob (Sm�1 � �m + a� i)

since xm > 0
=

1X
i=1

Prob (xm = i) �Prob (Sm�1 � �m + a� i)

by assumption
�

1X
i=1

c��i �Prob (Sm�1 � �m + a� i)

=
1X
i=1

c��i �Prob (Sm�1 � �(m � 1) + a + �� i)

by induction
�

1X
i=1

c��i �
�
�

2

��(a+��i)

=

�
�

2

��a
� c �

�
�

2

���
�
1X
i=1

��i �
�
�

2

�i

=

�
�

2

��a
� c �

�
�

2

���
�
1X
i=1

1

2i

<

�
�

2

��a
� c �

�
�

2

���
� = lg c= lg(�=2)

�
�
�

2

��a
:

Consider an input element e in the sorting algorithm. Let xi;j be the number of other elements
accessing the same memory location as the location accessed by e in the ith step of the search through
the binary search fat-tree in the jth level of recursion, i = 1; : : : ; lgnj=2, j = 0; : : : ; c0 lg lgn, where
c0 is chosen so that c0 lg lgn corresponds to the last level of recursion before we switch to bitonic
sort.

Lemma 6.3 There exist � > 2 and c > � � 1 such that for i = 1; : : : ; lgnj=2, j = 0; : : : ; c0 lg lgn,
Prob (xi;j � u) � c��u for all u > 0.

Proof. Let n0 be the number of elements in the subproblem at the ith level of the binary search
fat-tree in the jth level of recursion. W.h.p., n0 � 2nj=2i. Also, size of the fat-tree array for the ith
level is 2 � �nj=2i. We choose � > 2 and c = �.

Prob (xi;j � u) � C(n0; u)(2i=2�nj)
u w:h:p:

� ((2nj=2i)u=u!)(2i=2�nj)
u = (1=u!)(1=�)u � c � ��u

14

We now consider the cumulative delay of any element through fat-trees at all levels of recursion.

Lemma 6.4 The cumulative delay of any element through fat-trees at all levels of recursion is
O(lgn) w.h.p.

Proof. Consider an element k in a subproblem in the jth level of recursion. Let yi = xi;j be
the contention of element k in the ith level of the fat-tree in this subproblem. By Lemma 6.3,
Prob (yi � u) < � � ��u (where we have set c = �). This assumes that the splitters are good, which
is true w.h.p. We also assume �=2 > 2.

The delay of element k through all levels of the fat-tree in the subproblem at the jth level of

recursion is
Plgnj

i=1 yi. Let � = lg �= lg(�=2). Then, by Lemma 6.2

Prob

0
@(

lg njX
i=1

yi) > (� + 2) lgnj + a

1
A < (�=2)�(a+2 lgnj)

Let �j be the time for all elements in the subproblem to complete their search through the fat-tree
in a subproblem at level j.

Prob (�j > � lgnj + a) < nj � (�=2)�(a+2 lgnj) < (�=2)�(a+lg nj)

The cumulative delay for element k through all levels of recursion is tk =
Pc0 lg lgn

j=1 �j.

Let � 0j = �j � � lgnj. Let t0k =
Pc0 lg lgn

j=1 � 0j. Thus

tk =

c0 lg lgnX
j=1

�j =

c0 lg lgnX
j=1

� 0j +

c0 lg lg nX
j=1

(� lgnj) < (w:h:p:) t0k + 2� lgn :

Now,
Prob

�
� 0j > a

�
< (�=2)�a

and since �=2 > 2, we have by Lemma 6.2,

Prob (t0k > �c0 lg lgn + a) < (�=4)�a

and therefore
Prob (t0k > �c0 lg lgn + b � lgn) < (�=4)�b lgn < n�b

since � > 4. This implies that

Prob (9 element l s:t: t0l > �c0 lg lgn + (b + 2�) lgn) < n�(b�1) :

Thus the cumulative delay of any element through fat-trees at all levels of recursion is O(lgn)
w.h.p.

7 Emulating Fetch&Add PRAM on QRQW Asynchronous

PRAM

The fetch&add pram model [GGK+83, Vis83] is a strong, non-standard variant of the crcw

pram. In this model, if two or more processors attempt to write to the same cell in a given step,

15

then their values are added to the value already written in the shared memory location and all
pre�x sums obtained in the (virtual) serial process are recorded. The fetch&add pram is strictly
stronger than the standard variants of the crcw pram. Indeed, each step of a (standard) crcw can
be easily emulated by O(1) steps of the fetch&add pram, using the same number of processors.
On the other hand, the parity and the pre�x sums problems with input size n can be solved in
constant time on a fetch&add pram using n processors, while requiring
(lgn= lg lgn) (expected)
time on a crcw pram when using nc processors, for any constant c > 0 [BH89].

In this section we give an emulation of one step of a fetch&add pram on a qrqw asyn-

chronous pram that takes sub-logarithmic time for moderate contention. Our emulation result
is:

Theorem 7.1 One step of an n-processor fetch&add pram, and hence of any standard n-
processor crcw pram, can be emulated on an n-processor qrqw asynchronous pram in
O(lgn= lg lgn + lg k) time with high probability, where k is the maximum contention (k unknown).

Proof. Let s = lgn= lg lgn and q =
p

lgn � lg lgn. Assume that the fetch&add pram has
memory [1::m]. In one step of a fetch&add pram the processors are partitioned into n0 � n sets
�i1 ;�i2; : : : ;�in0

, where each set �ij consists of the processors that read or \write" memory cell
ij 2 [1::m]. The emulation algorithm deals with each set separately, assuming that each set has an
allocated memory of size M = O(n �2q). The algorithm is described for one such set, �ij . The same
structure is used for both the read step and the write step. In the following we denote the value
that each processor in �ij needs to write to cell ij as its \contents".

A leader for the set �ij is elected by establishing a certain structure among the processors in
�ij : this structure enables combining the contents of all processors in �ij for the write step, and it
enables broadcasting the information from memory cell ij to all processors in �ij in the read step.
The combining and broadcasting procedures both use the following structure.

The underlying structure. Consider a full binary tree T on M = �(n � 2q) leaves (here M is
the size of the allocated memory for the set �ij). In the tree T we consider O(s) hopping levels: the
hopping level i in T is the level containing dM=sie nodes. Thus, the leaves are in hopping level 0,
and the root is in hopping level ir = dlgM= lg se = �(lgn= lg lgn). The underlying structure is a
hybrid structure over T consisting of a main component and a complementary structure. The main
component is a \hopping tree" HT whose nodes are a subset of the nodes in the hopping levels of
T . The complementary structure is a \bridging tree" BT ,{ a subtree of T whose leaves are a subset
of the leaves of T and whose root is the root of T .

The trees HT and BT are determined (implicitly) as follows:

Initialization step:

� Each processor in �ij selects at random one leaf v of T , and moves to v.

By \moving" into a node we mean that the processor associates itself to the node (i.e., the node's
name is written in a local register), but no other operation is being done. The bridging tree BT is
de�ned to be the subtree of T consisting of the leaves that are selected in the initialization step and
their ancestors in T . The nodes of the hopping tree HT are the nodes of BT that are in the hopping
levels of T . The edges of HT are de�ned as follows: the parent (in HT) of a node in hopping level i
is its ancestor in hopping level i + 1 of T , for i = 0; : : : ; ir � 1. Note that each node in the hopping
tree can have up to s children.

The underlying structure through which the actual combining and broadcasting procedures occur
is a combination of the hopping tree and the bridging tree. Each processor handles two processes,

16

one for each tree. The idea is to have processes advance from the leaves of T towards its root, and
have them combined whenever two or more processes arrive at the same node in T . The bridging
tree consists of the nodes that would be visited if each process advances from a node to its parent
in T . Such a process would clearly take �(lgn) steps. The hopping tree is used to accelerate the
pace at which processes advance. By moving from one hopping level to the next, a process can reach
from a leaf to the root of T in O(lgn= lg lgn) hopping steps. The problem is that hopping steps may
take non-constant time, due to contention with other processes for the same hopping nodes, and
therefore using the hopping tree all the way to the root may be too expensive. In our method we use
hopping steps up to the hopping level that has k2s nodes (recall that k is the maximum contention
of the step), and show that this takes O(s) time; we then proceed from there through the bridging
tree, taking O(lg(k2s)) = O(s + lg k) time. The situation, however, is complicated by the fact that
k is unknown, so the hopping level ik is unknown. The combining procedure presented next uses
both the hopping tree HT and the bridging tree BT in parallel so as to enable this combination to
occur without relying on a knowledge of k.

The combining procedure

We would like each processor to advance from its selected leaf in T towards the root of T . The
combining algorithm consists of hopping steps and bridging phases. In the hopping steps processors
advance one level on the hopping tree. In the bridging phase processors advance O(lg s) levels on
the bridging tree (from one hopping level up to the next).

The hopping step. At each step of the algorithm, a processor may try to write into some node v
in HT . Let �(v) be the set of processors that try to write into the node v. If v is a leaf then �(v) is
the set of processors that selected v in the initialization step. If v is an internal node then �(v) is the
set of processors that have previously accessed nodes that are a children of v in HT . Thus, for an
internal node v, j�(v)j is the number of children of v in HT . A winner from �(v) can be selected in
constant time, and in O(j�(v)j) time all the processors in �(v) can know the identity of the winner.
The contents of the processors in �(v) can be combined into a single word in O(j�(v)j2) time; within
the same time, a list of all processors in �(v) may be computed and stored at v. Winners in hopping
level i proceed to the next hopping level i + 1 with the combined contents; the winner of a set �(v)
will now try to write into the parent of v in HT . The hopping step thus consists of the following
substeps:

� select a winner: Each processor P 2 �(v) attempts to claim the node v using the Test&Set
primitive; the winner records its index with v.

� move the winner to the parent of v in HT .

� combine data and create list: repeat j�(v)j times:

1. select a winner;

2. combine data: the winner adds its contents into the combined data;

3. append list: the winner adds its index to list(v);

4. remove the winner from �(v).

Note that the winner moves into the next level in HT in one step. It takes however O(j�(v)j2)
time to combine the data and create a list of processors, due to the contention. A slight complication
arises when taking the asynchrony into account. Some processors of �(v) may arrive at v after other
processors have already combined their data. Late arrivals are handled separately; thus, arrival
time partitions �(v) into subsets �1(v);�2(v); : : : such that all processors in �j(v) arrive at v after
all processors in �j�1(v) have �nished their hopping step. For each subset there is a winner that
proceeds to the next level in HT .

17

The bridging phase. Processors can also advance in the bridging tree similarly to the hopping
tree: a winner at a node u will try to access in the next step the parent v of u in BT . Let �0(v)
be the set of processors that try to write into the node v in BT . For each node v 2 BT we have
j�0(v)j � 2, and therefore advancing by one level at the bridging tree takes constant time. As a
result, a node in hopping level i will receive the combined contents of all its children in hopping
level i � 1 (in HT) after O(lg s) steps; denote this as a bridging phase. Clearly, a bridging phase is
faster than a hopping step for nodes v such that j�(v)j > p

lg s. Asynchrony is handled in a manner
similar to the method used in the hopping step.

The combined strategy. During the combining procedure we do not know in advance the values
of j�(v)j, v 2 HT , and we therefore cannot predetermine whether HT or BT should be used from
one hopping level to the other. Therefore, we let the combining procedure advance in parallel in
both trees HT and BT . The combined contents may eventually arrive at the node v in two copies,
one through HT and one through BT . Due to the asynchrony among the processors, we are able to
proceed when the �rst copy arrives, without waiting for the other copy to arrive. To implement the
hybrid strategy, we let a winner in a node u in hopping level i spawn into two processes. One will
try to advance by a hopping step directly to u's parent v in HT (in hopping level i + 1), and the
other will advance by a bridging phase in the bridging tree BT . When either process arrives at the
node v, it �rst checks if the other process has already arrived at this node. If this is the case, the
process halts; otherwise, it marks its arrival and goes on with the combining algorithm.

The spawning technique should be controlled carefully as it is implemented by only a single
processor as it advances through the two trees. Whenever a hopping step terminates before the
corresponding bridging phase, the terminating process halts the bridging phase and retrieves the
second process for the next hopping step. Note that in the bridging phase, a processor only accesses
memory cells with constant contention, hence retrieving the second process takes constant time.
We note that this is not quite the case with the processor implementing the hopping step, since an
access with high contention (up to s) may occur. However, it is shown in the analysis below that
the probability for the bridging phase to terminate before the hopping step is negligible, when the
process is at a hopping level that contains at least k � 2s nodes. Therefore, once the bridging phase
terminates before the hopping step we assume that we are past the hopping level i and we go on
with the bridging phases only; we do not wait for the hopping step to terminate.

There is one issue to be taken care of regarding the halting of a bridging process. Such a process
may be already combined with another process in the bridging tree. Due to asynchrony, the other
process may get to the next hopping level before its corresponding hopping step has terminated. To
prevent possible confusion, whenever a hopping step terminates before the corresponding bridging
phase, we make sure that all the hopping steps into the same node will also be considered as if they
had terminated before their corresponding bridging phases. This is easy to implement for processes
that have not yet terminated, by leaving an appropriate mark at the node. However, there may be
processes for which both the hopping step and bridging phase have already terminated, with the
latter being �rst. To handle such processes, we keep a list of all processes that have terminated at
a node; whenever a hopping step terminates, it appends itself to this list. This list will enable a
processor to notify all the appropriate processors about their new status; they will learn it when
needed.

Analysis

Consider a hopping level i with ni = k �2s nodes, and let ~�i = fP 2 �(v) : v in hopping level ig; i.e.,
~�i is the set of processors that try to write into any node in hopping level i. After the processors in ~�i

arrive at hopping level i, the combining procedure for these processors will take O(lgni) = O(lgk+s)
time, using the bridging phases over the tree BT , and thus the computation will terminate in
O(lgk + s) steps after arriving at hopping level i. In the following we analyze the time needed to

18

arrive at hopping step i.

If i = 0 then the hopping level i corresponds to the leaves of the hopping tree. Each of the k
processors chooses a random leaf. Consider a �xed leaf l, and consider a sequence of Bernoulli trials,
one for each processor in �ij , where the trial is a success if the processor chooses leaf l and is a
failure otherwise. The probability of success is 1=M and hence the expected number of processors
that move into leaf l is k=M � 1=2q since k � n. Hence by Lemma 2.1, the number of processors
that move into leaf l is O((lgn)=q) = O(

p
s) w.h.p. It follows that the number of processors that

move into any given leaf is O(
p
s) w.h.p., and hence the combining step at all leaves is executed in

O(s) time w.h.p.

For the rest of the analysis we assume that i > 0, i.e., the hopping level is strictly above the
leaves. Recall that the time taken by a processor to advance at some node w is deg(w)2, where
deg(w) is the number of children of w in HT . For a node v in HT , let Lv be the set of leaves of
the sub-tree of HT rooted at v, and let Xv = jLvj. Consider a path p from a node v to a leaf u in
Lv. For every pair of nodes w1 and w2 that are not on the path p but their parents are in p, the
sets Lw1

and Lw2
do not have any common leaf. Therefore, the total time it takes a processor to

advance from the leaf u to node v along the path p is

X
w2p

deg(w)2 =

 X
w2p

(deg(w)� 1)2

!
+

 X
w2p

2 deg(w)

!
+ jpj � X2

v + 2Xv + O(lgn= lg lgn) :

Xv is a random variable whose outcome is determined in the initialization step. Speci�cally, if
v is in hopping level i then each processor in ~�i selects a leaf in Lv with probability 1=ni. Since
j~�ij � k, Xv is stochastically smaller than a binomial variable Yv on a sequence of k Bernoulli trials
with probability of success 1=ni. Since E[Yv] = 1=2s, by Lemma 2.1, Yv = O((lgn)=s) = O(lg lgn)
w.h.p. Thus Xv = O(lg lgn) w.h.p.

Therefore, with high probability all processors in ~�i arrive at hopping level i in O(s + lg lgn)
time, i.e., in O(s) time. Moreover, if a bridging phase terminates before its corresponding hopping
step then with high probability the processes have arrived at hopping level i for which ni � k � 2s,
as required.

The broadcasting procedure

For the (standard) crcw pram a read step is executed by broadcasting the datum at memory cell
ij to all the processors in �ij . The broadcasting procedure uses the structure that was built in the
combining procedure, and is essentially based on reversing the execution of the combining procedure,
broadcasting the data backwards from the root of T to the leaves. The data is broadcasted from
hopping level i to hopping level i � 1 using either the analog to the hopping step, or the analog to
a bridging phase, depending on which has terminated earlier during the combining procedure (this
information can be recorded).

In case the hopping step is selected, the broadcasted datum x will be written at a node v by the
winner of �(v). Then, the processors in �(v) read x, and each processor P 2 �(v) writes x at the
node u, the child of v in HT , in which P was a winner in the combining procedure. Letting the
processors of �(v) probe a shared memory cell in v in search for the broadcasted datum x may be
too costly. Instead, we let each processor have a designated register into which x will be written by
the winner of �(v). Thus, each processor in �(v) can repeatedly probe its designated register with
only constant time cost. The list list(v) of �(v), computed at the hopping step of the combining
procedure and kept at the node v, will enable the winner of �(v) to distribute x to the processors
in �(v) in O(j�(v)j) time.

Broadcasting for the Fetch&Add PRAM. Recall that in the fetch&add pram model,

19

processors are ranked in arbitrary order, a pre�x sums sequence of the written values together with
the value x (in the memory cell) is computed, and each processor receives its appropriate pre�x
sum. It is straightforward to see that broadcasting the appropriate pre�x sums is the reversal of the
combining procedure with minor modi�cations, except for the fact that now the list of processors
is already given and the time complexity is therefore O(j�(v)j). As in the combining procedure,
asynchrony adds some complications due to possible late arrivals of processors. We note however
that processors that arrive late can be given larger rank in the pre�x sums sequence; hence their value
will not a�ect the values that are broadcasted to processors with smaller rank. Late arrivals can
therefore be handled in the broadcasting step similar to the way they are handled in the combining
step.

The theorem follows.

We note that the one-step emulation above cannot be used directly for multi-step emulation
since a synchronization barrier is required after each step. It is an interesting open problem to see
whether it may become useful for such emulation.

8 Discussion

The cost metric for the qrqw asynchronous pram is tailored towards ease of use and is meant
to model asynchronous systems in which processors run at more or less the same rate. On the
other hand, algorithms must be correct under worst case assumptions on the �nite delays incurred
by processors and in processing memory requests. This separation of correctness from analysis,
with correctness accounting for asynchrony but analysis assuming synchrony, was pioneered by
Gibbons [Gib89] and has been subsequently adapted by several other asynchronous models such as
the LogP model [CKP+93].

As an example of the ease of designing algorithms under such a cost metric consider designing an
algorithm to �nd the maximum of n numbers on an asynchronous parallel machine. On the qrqw

asynchronous pram we have a simple linear work algorithm using n= lgn processors that basically
mimics the standard erew pram algorithm. Each processor works on a block of lgn elements in
the input and �nds their maximum. The processors then cooperate to compute the maximum in
a `binary tree' computation. In case a value that is wanted by a processor is not yet available the
processor waits for that value to be written. Under the qrqw asynchronous pram cost metric
this algorithm takes 2 lgn time. The algorithm is simple with low overheads, and correct regardless
of any asynchrony among the processors of the asynchronous parallel machine. In case of small
delays among the machine processors the running time will increase only slightly.

This algorithm can be contrasted with algorithms designed using asynchronous models whose
cost metrics account for more general asynchrony among the processors. For example, Martel et
al. [MPS92] describe a randomized algorithm to compute the maximum of n numbers on their a-
pram model, a model whose cost metric accounts for worst case asynchrony. Despite assuming a
more powerful crcw contention rule, the expected running time of this algorithm is greater than
10 � lgn time even if all processors execute at the same rate. This extra overhead is due to designing
for a cost metric that accounts for worst case asynchrony. The advantage of this algorithm arises
only in cases of very large delays among the machine processors.

Most asynchronous models, e.g. [CZ89, CZ90, Nis90, And92, AR92, DHW93, LAB93], account for
more general asynchrony among the processors in their cost metrics, and hence algorithms designed
using these models su�er from similar overheads in order to more robustly handle cases with very
large delays.

We should point out that the qrqw asynchronous pram cost metric is open to abuse as shown

20

by the following example involving two processors P1 and P2:

P1 P2

x := 0 y := 0
x := 1 y := 1

if (x = y) then do short computation
else do very long computation

Here both the short computation and the very long computation produce the same (correct) output.
Under the cost metric for the qrqw asynchronous pram, this computation will take only a
short time. However, if processor P2 is delayed more than processor P1 then the test x = y will
return false resulting in a very long computation. None of the algorithms we have presented in this
paper have this property of transforming into a dramatically slower algorithm if di�erent processors
encounter slightly di�erent delays. However the above example shows that it is possible to design
such algorithms under our cost metric. It would be interesting to come up with a cost metric that
penalizes large changes in running time in the presence of small delays while at the same time
retaining the advantages of our current cost metric.

9 Conclusions

In this paper we have de�ned the qrqw asynchronous pram and presented some algorithmic
results for the model. In particular, we have shown two instances in which we have better algorithms
for the qrqw asynchronous pram than those known for the qrqw pram. The �rst is for
computing the or of n bits for which we described a simple deterministic linear work algorithm that
runs in O(lgn= lg lgn) time; we also showed that this bound is tight. In contrast, no deterministic
sub-logarithmic time algorithm for this problem is known for the qrqw pram. The second result is
an implementation of the randomized sample sort algorithm that runs in O(lgn) time and O(n lgn)
work on the qrqw asynchronous pram; the fastest implementation known for this algorithm on
the qrqw pram runs in O(lg2 n= lg lgn) time. We have also shown adaptations of several qrqw
pram algorithms to the qrqw asynchronous pram with the same work-time bounds and a
simulation of a fetch&add pram on the qrqw asynchronous pram.

Additional results for the qrqw asynchronous pram can be found in a recent paper by
Adler [Adl96]. That paper presents a number of new results on low-contention search structures,
beyond the binary search fat-tree considered in this paper.

One interesting direction for future work is to develop a good emulation of the qrqw asynchro-

nous pram on a distributed memory machine model such as the bsp. In [GMR97] we presented an
optimal work emulation of the qrqw pram on the bsp with only a logarithmic slowdown. It appears
that the strategy used in that emulation does not carry over directly to the qrqw asynchronous

pram and new insights are needed. Alternatively, one could consider developing good emulation
results by imposing suitable restrictions on the qrqw asynchronous pram.

References

[ABM93] Y. Afek, G. M. Brown, and M. Merritt. Lazy caching. ACM Trans. on Programming
Languages and Systems, 15(1):182{205, 1993.

[Adl96] M. Adler. Asynchronous shared memory search structures. In Proc. 8th ACM Symp. on
Parallel Algorithms and Architectures, pages 42{51, June 1996.

21

[AJ96] C. Armen and D. B. Johnson. Deterministic leader election on the Asynchronous QRQW
PRAM. Parallel Processing Letters, 1996. To appear.

[AKS83] M. Ajtai, J. Komlos, and E. Szemeredi. Sorting in c lgn parallel steps. Combinatorica,
3(1):1{19, 1983.

[And92] R. J. Anderson. Primitives for asynchronous list compression. In Proc. 4th ACM Symp.
on Parallel Algorithms and Architectures, pages 199{208, June-July 1992.

[AR92] Y. Aumann and M. O. Rabin. Clock construction in fully asynchronous parallel systems
and PRAM simulation. In Proc. 33rd IEEE Symp. on Foundations of Computer Science,
pages 147{156, October 1992.

[Bat68] K. E. Batcher. Sorting networks and their applications. In Proc. AFIPS Spring Joint
Summer Computer Conference, pages 307{314, 1968.

[BGMZ95] G. E. Blelloch, P. B. Gibbons, Y. Matias, and M. Zagha. Accounting for memory bank
contention and delay in high-bandwidth multiprocessors. In Proc. 7th ACM Symp. on
Parallel Algorithms and Architectures, pages 84{94, July 1995.

[BH89] P. Beame and J. H�astad. Optimal bounds for decision problems on the CRCW PRAM.
Journal of the ACM, 36(3):643{670, July 1989.

[CKP+93] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian,
and T. von Eicken. LogP: Towards a realistic model of parallel computation. In Proc.
4th ACM SIGPLAN Symp. on Principles and Practices of Parallel Programming, pages
1{12, May 1993.

[Col88] R. Cole. Parallel merge sort. SIAM Journal on Computing, 17(4):770{785, 1988.

[CZ89] R. Cole and O. Zajicek. The APRAM: Incorporating asynchrony into the PRAM model.
In Proc. 1st ACM Symp. on Parallel Algorithms and Architectures, pages 169{178, June
1989.

[CZ90] R. Cole and O. Zajicek. The expected advantage of asynchrony. In Proc. 2nd ACM
Symp. on Parallel Algorithms and Architectures, pages 85{94, July 1990.

[DHW93] C. Dwork, M. Herlihy, and O. Waarts. Contention in shared memory algorithms. In
Proc. 25th ACM Symp. on Theory of Computing, pages 174{183, May 1993.

[DKR94] M. Dietzfelbinger, M. Kuty lowski, and R. Reischuk. Exact lower time bounds for com-
puting boolean functions on CREW PRAMs. Journal of Computer and System Sciences,
48(2):231{254, 1994.

[GGK+83] A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuli�e, L. Rudolph, and M. Snir. The
NYU Ultracomputer { designing an MIMD shared memory parallel computer. IEEE
Trans. on Computers, C-32(2):175{189, 1983.

[Gib89] P. B. Gibbons. A more practical PRAM model. In Proc. 1st ACM Symp. on Parallel
Algorithms and Architectures, pages 158{168, June 1989. Full version in The Asyn-
chronous PRAM: A semi-synchronous model for shared memory MIMD machines, PhD
thesis, U.C. Berkeley 1989.

[GLL+90] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy.
Memory consistency and event ordering in scalable shared-memory multiprocessors. In
Proc. 17th International Symp. on Computer Architecture, pages 15{26, May 1990.

[GM92] P. B. Gibbons and M. Merritt. Specifying nonblocking shared memories. In Proc. 4th
ACM Symp. on Parallel Algorithms and Architectures, pages 306{315, June-July 1992.

22

[GMG91] P. B. Gibbons, M. Merritt, and K. Gharachorloo. Proving sequential consistency of
high-performance shared memories. In Proc. 3rd ACM Symp. on Parallel Algorithms
and Architectures, pages 292{303, July 1991.

[GMR93] P. B. Gibbons, Y. Matias, and V. Ramachandran. QRQW: Accounting for concurrency in
PRAMs and Asynchronous PRAMs. Technical report, AT&T Bell Laboratories, Murray
Hill, NJ, March 1993.

[GMR96] P. B. Gibbons, Y. Matias, and V. Ramachandran. E�cient low-contention parallel
algorithms. Journal of Computer and System Sciences, 53(3):417{442, 1996. Special
issue devoted to selected papers from the 1994 ACM Symp. on Parallel Algorithms and
Architectures.

[GMR97] P. B. Gibbons, Y. Matias, and V. Ramachandran. The Queue-Read Queue-Write PRAM
model: Accounting for contention in parallel algorithms. SIAM Journal on Computing,
1997. To appear. Preliminary version appears in Proc. 5th ACM-SIAM Symp. on Discrete
Algorithms, pages 638-648, January 1994.

[J�aJ92] J. J�aJ�a. An Introduction to Parallel Algorithms. Addison-Wesley, Reading, MA, 1992.

[KR90] R. M. Karp and V. Ramachandran. Parallel algorithms for shared-memory machines.
In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, Volume A, pages
869{941. Elsevier Science Publishers B.V., Amsterdam, The Netherlands, 1990.

[LAB93] P. Liu, W. Aiello, and S. Bhatt. An atomic model for message-passing. In Proc. 5th
ACM Symp. on Parallel Algorithms and Architectures, pages 154{163, June-July 1993.

[Lam79] L. Lamport. How to make a multiprocessor computer that correctly executes multipro-
cess programs. IEEE Trans. on Computers, C-28(9):690{691, 1979.

[MPS92] C. Martel, A. Park, and R. Subramonian. Work-optimal asynchronous algorithms for
shared memory parallel computers. SIAM Journal on Computing, 21(6):1070{1099, 1992.

[Nis90] N. Nishimura. Asynchronous shared memory parallel computation. In Proc. 2nd ACM
Symp. on Parallel Algorithms and Architectures, pages 76{84, July 1990.

[Rei85] R. Reischuk. Probabilistic parallel algorithms for sorting and selection. SIAM Journal
on Computing, 14(2):396{409, May 1985.

[Rei93] J. H. Reif, editor. A Synthesis of Parallel Algorithms. Morgan-Kaufmann, San Mateo,
CA, 1993.

[Smi95] B. Smith. Invited lecture, 7th ACM Symp. on Parallel Algorithms and Architectures,
July 1995.

[Vis83] U. Vishkin. On choice of a model of parallel computation. Technical Report 61, De-
partment of Computer Science, Courant Institute of Mathematical Sciences, New York
University, 251 Mercer St., New York, NY 10012, 1983.

23

