
An extended abstract appears in Proc. ACM Symp. Parallel Algs. and Architectures (SPAA’97)

Modeling Parallel Bandwidth:

Local vs. Global Restrictions �

Micah Adlery Phillip B. Gibbonsz Yossi Matiasx Vijaya Ramachandran{

May 31, 1997

Abstract

Recently there has been an increasing interest in models of parallel computation that account
for the bandwidth limitations in communication networks. Some models (e.g., bsp, logp, and
qsm) account for bandwidth limitations using a per-processor parameter g > 1, such that each
processor can send/receive at most h messages in g �h time. Other models (e.g., pram(m)) account
for bandwidth limitations as an aggregate parameter m < p, such that the p processors can send
at most m messages in total at each step.

This paper provides the �rst detailed study of the algorithmic implications of modeling par-
allel bandwidth as a per-processor (local) limitation versus an aggregate (global) limitation. We
consider a number of basic problems such as broadcasting, parity, summation and sorting, and
give several new upper and lower time bounds that demonstrate the advantage of globally-limited
models over locally-limited models given the same aggregate bandwidth (i.e., p � 1

g
= m). In general,

globally-limited models have a possible advantage whenever there is an imbalance in the number of
messages sent/received by the processors. To exploit this advantage, the processors must schedule
the sending of messages so as to respect the aggregate bandwidth limit. We present a new parallel
scheduling algorithm for globally-limited models that enable an unknown, arbitrarily-unbalanced
set of messages to be sent through the limited bandwidth within a (1 + �) factor of the optimal
o�ine schedule w.h.p., even if the penalty for overloading the network is an exponential function of
the overload. We also present a near-optimal algorithm for the case where long messages must be
sent as its in consecutive time steps, as well as for the case where new messages to be sent arrive
dynamically over an in�nite time line. These results consider both message passing (distributed
memory) and shared memory scenarios, and improve upon the best results for the locally-limited
model by a factor of �(g). Finally, we present results quantifying the power of concurrent reads in
a globally-limited bandwidth setting, including showing an
(p lgm

m lg p
) time separation between the

exclusive-read and the concurrent-read pram(m) models, which, when m � p, greatly improves

upon the 2
(
p

lg p) separation known previously.

�Preliminary version to appear in Proc. 9th ACM Symp. on Parallel Algorithms and Architectures, June 1997.
yHeinz Nixdorf Institute, Room F1-119, F�urstenallee 11, D-33102 Paderborn, Germany. email: micah@uni-

paderborn.de. Part of the work was done while visiting Bell Laboratories.
zBell Laboratories (Lucent Technologies), 600 Mountain Ave, Murray Hill NJ 07974. email: gibbons@research.bell-

labs.com
xBell Laboratories (Lucent Technologies), 600 Mountain Ave, Murray Hill NJ 07974. email: matias@research.bell-

labs.com
{Dept. of Computer Sciences, University of Texas at Austin, Austin TX 78712. email: vlr@cs.utexas.edu. Supported

in part by NSF grant CCR/GER-90-23059. Part of the work was done while visiting Bell Laboratories.

1 Introduction

Recently there has been an increasing interest in high-level models for general-purpose parallel comput-
ing that account for the bandwidth limitations in communication networks. Some models, such as the
well-studied bsp [45] and logp [19] models, and the shared-memory qsm [24] model, assume that the
primary bandwidth limitation in the network is captured by a local restriction on the rate at which an
individual processor can send or receive messages. In the bsp model, processors communicate through
h-relations, in which each processor sends and receives at most h messages, at a cost of g � h, where g
is a bandwidth parameter. In the logp model, processors are charged o overhead to send or receive a
message and can only send a message every g steps. The qsm [24] is a shared-memory model with a
bandwidth parameter g at each processor, i.e., a processor can issue a request to shared-memory only
once every g steps. Thus in these models, a large value for the parameter g models a per-processor
restriction on network bandwidth. Other models, such as the pram(m) model [40], assume that the
primary bandwidth limitation in the network is captured by a global restriction on the rate at which
messages can traverse the network. In the pram(m) model, there are m memory cells that can be
used to communicate between the processors. A value for the parameter m that is much smaller than
the number of processors models an aggregate restriction on network bandwidth. The logp model
also provides a capacity constraint on the network, but this is modeled as a per-processor restriction
bounding the number of messages simultaneously in transit to or from any one processor.

Whether a local or a global bandwidth limitation is more suitable depends on the communication
network of the machine being modeled. Local bandwidth limitations seem more suitable for networks
in which each processor has access to its \share" of the network bandwidth and no more. Also, if
the primary bandwidth bottleneck is in the processor-network interface, then bandwidth should be
modeled on a per-processor basis. Global bandwidth limitations seem more suitable for networks in
which processors can \steal" unused bandwidth, by routing along alternative paths. If the primary
network bottleneck is the bisection bandwidth, and this bandwidth can be divided among any subset
of the processors, then bandwidth should be modeled on an aggregate basis.

As an example of the impact of local versus global bandwidth restrictions, consider the problem of a
single processor sending a distinct message to each of the p�1 other processors (one-to-all personalized
communication [34]). Suppose that a processor can send at most one message per time step. Then
with a per-processor bandwidth parameter g > 1, bandwidth restrictions impose a lower bound of
g(p� 1) time. On the other hand, with an aggregate bandwidth parameter m, the bandwidth is not
the bottleneck for any m � 1, and we have a lower bound of only p� 1.

Contributions of this paper. This paper provides the �rst detailed study of the algorithmic
implications of modeling parallel bandwidth as a per-processor limitation (locally-limited) versus an
aggregate limitation (globally-limited). For concreteness, we consider the following four models:

� The bsp model [45], a message-passing model with a per-processor bandwidth parameter g,
denoted in this paper as the bsp(g) model.

� The qsm model [25], a shared-memory model with a per-processor bandwidth parameter g,
denoted in this paper as the qsm(g) model.

� The bsp(m) model (de�ned in this paper), similar to the bsp(g) but with an aggregate bandwidth
parameter m.

1

� The qsm(m) model (de�ned in this paper), similar to the qsm(g) but with an aggregate band-
width parameter m.

Each of these models assumes that a processor can pipeline its messages or memory requests. Unlike,
e.g., the capacity constraints of the pram(m) and the logp, the bsp(m) and the qsm(m) impose
a penalty for overloading the network that grows with the amount of overload. For lower bounds,
we assume that the penalty is only linear in the overload, whereas for upper bounds, we assume
(pessimistically) that the penalty is exponential in the overload. The four models are bulk-synchronous
models, although many of our results extend to more asynchronous models.

We identify situations where strictly better algorithmic results can be obtained if the bandwidth
limitation is global, rather than local. First, we consider a number of basic problems such as broad-
casting, parity, summation, list ranking and sorting, and give several new upper and lower time bounds
that demonstrate and quantify the advantage that globally-limited models such as the bsp(m) and
qsm(m) have over locally-limited models such as the bsp(g) and qsm(g). The comparison applies to a
range of values of m and g, but for simplicity, we will assume in this paper that both types of models
have the same aggregate bandwidth (i.e., p � 1g = m). Some of our lower bound results are obtained
using a simple technique we develop to convert lower bounds for the crcw pram into lower bounds
for the bsp(g) and the qsm(g).

Next, we consider the general (unbalanced) routing problem, in which each processor has an
arbitrary number of messages to send to other processors. In locally-limited models, bandwidth
restrictions impose a lower bound of g � h, where h is the maximum number of messages sent or
received by any one processor. In globally-limited models, bandwidth restrictions and the fact that
each processor can send or receive only one message at a time impose a lower bound of max(nm ; h),
where n is the total number of messages to be sent. Note that when m = p

g , we have that max(nm ; h) =
max(g � np ; h) � g � h. Thus the local bandwidth lower bound is at best equal to the global bandwidth
lower bound and it is worse by a factor of g whenever there is a signi�cant imbalance (h � g � np).

To exploit this inherent advantage, the processors in globally-limited models must schedule (i.e.,
stagger) the sending of messages so as to respect the aggregate bandwidth limit. (Note that no
special scheduling is needed for locally-limited models.) When the communication pattern is known
in advance, careful o�ine scheduling can be done. However, in general, this may not be the case, and
we present the following three parallel scheduling algorithms for globally-limited models. The results
are stated for the BSP(m); the same techniques can be used to obtain similar results for the QSM(m),
an exercise left to the reader. Here, the parameter L is the periodicity parameter from the bsp model,
which reects message latency plus synchronization overheads. Let � < 1 be a small positive constant.

� A randomized algorithm for scheduling an unknown, arbitrarily-unbalanced h-relation on the
bsp(m) that runs in maxf(1 + �)n=m; h; Lg + � time, with high probability, where n is the
total number of messages sent and � = O(p=m+ L + L lgm= lgL) is the time to compute and
broadcast the value of n. For the important case where n � p and max(n=m; h) � L, � is
negligible, and hence this algorithm is roughly within a (1 + �) factor of the optimal o�ine
schedule. Alternatively, if n is known by all the processors, then � = 0, and again, we are within
a (1 + �) factor of optimal.

� Second, we consider the case where processors send messages of arbitrary lengths, and the its of
a long message must be sent in consecutive time steps. We provide a randomized algorithm for
scheduling an unknown, arbitrarily-unbalanced h-relation on the bsp(m) that runs in maxf(2+

2

�)n=m; h; Lg+O(p=m+ L+ L lgm= lgL) time, with high probability, where h is the maximum
total length of messages sent or received by any one processor and n is the total length of all the
messages sent.

� Third, we consider a dynamic scenario in which new messages to be sent by the processors are
generated according to an Adversarial Queuing Theory model over an in�nite time line. We
present a randomized algorithm that can successfully schedule and send messages through the
limited bandwidth up to an arrival rate that is within a constant factor of optimal.

We also show how the second algorithm given above can be employed in situations where a processor
incurs a non-unit start-up cost in initiating or receiving a message (e.g., as modeled by the overhead
parameter, o, in the logp model). Such start-up costs are often the motivation for sending long
messages, and we show that the second algorithm can be adapted to handle such costs with a running
time within a (2 + �) factor of optimal in many cases. One implication of the e�cient running times
of these routing protocols is that we can, in many scenarios, consider models with global bandwidth
restrictions that do not force the algorithm designer to explicitly schedule message transmission times.

Finally, we present results quantifying the power of concurrent-read versus exclusive-read and
queue-read in a globally-limited bandwidth setting. Among our results is an
(p lgmm lg p) time separation
between the exclusive-read and the concurrent-read pram(m) models, which, when m � p, greatly

improves upon the best previously known separation of 2
(
p

lg p) from [1].

Outline. The rest of the paper is organized as follows. Section 2 presents the de�nitions of the
models we consider. Section 3 describes the related work in detail. Section 4 considers a number
of basic problems for which we quantify the gap in time between locally-limited and globally-limited
models. Section 5 presents our results relating concurrent-read and exclusive- or queue-read. Our
results for sending unbalanced h-relations are given in Section 6.

2 Modeling parallel bandwidth

The BSP model. The Bulk-Synchronous Parallel (bsp) model [45, 46] consists of p processor/memory
components communicating by sending point-to-point messages. The interconnection network sup-
porting this communication is characterized only by a per-processor throughput parameter g and a
latency parameter L. The particular topology of the network is ignored and the cost to communicate
among processors is assumed to be uniform, independent of the identity of the processors. A bsp

computation consists of a sequence of \supersteps" separated by bulk synchronizations (typically, a
barrier synchronization among all the processors). In each superstep the processors can perform local
computations and send and receive a set of messages. Messages are sent in a pipelined fashion (i.e.,
each processor may issue messages and continue with its computation prior to the receipt of those
messages). Messages sent in one superstep will arrive prior to the start of the next superstep. The
time charged for a superstep is calculated as follows. Let wi be the amount of local work performed
by processor i in a given superstep. Let si (ri) be the number of messages sent (received) by processor
i. Let w = maxpi=1 wi, and h = maxpi=1max(si; ri). Then the cost, T , of a superstep is de�ned to be

T = max(w; g � h; L) :
Intuitively the communication throughput parameter, g, is the best sustainable gap between message
sends issued by each individual processor; therefore 1=g represents the available bandwidth per pro-

3

cessor. Intuitively the communication latency parameter, L, called the \periodicity factor" in [45], is
the worst case time to deliver a message between two processors in an otherwise unloaded network
plus the time to perform a barrier synchronization.

The model assumes that all messages are the same size; to extend to variable length messages,
one may replace \messages" with \its/packets" in the de�nition above such that a long message is
viewed as a sequence of its to be sent between a pair of processors. (The same g is used for both
short and long messages; see [3, 9] for examples of models that use distinct throughput parameters
for short and long messages.) In this paper, we denote the bsp model as the bsp(g) model, to make
explicit its per-processor bandwidth parameter g.

The BSP(m) model. We now consider a variant of the bsp model that replaces the per-processor
bandwidth parameter g by an aggregate bandwidth parameter m. We denote this globally-limited
bsp model as the bsp(m) model. Let w and h be de�ned as in the bsp(g). At each step t of a
superstep, each processor may initiate at most one message send. The interconnection network is
assumed to handle up to m message sends in a step; exceeding this limit results in a larger charge for
the step. Let mt be the number of message sends initiated in step t of a given superstep. Let fm be a
function of mt that equals 0 when mt = 0, equals 1 when 1 � mt � m, and such that when mt > m,
fm(mt) � mt=m is an increasing function of mt. Let � be the number of steps in a given superstep,
and let cm =

P�
t=1 fm(mt). Then the time cost, T , for the superstep is de�ned to be

T = max(w; h; cm; L) :

The de�nition allows for a choice of functions fm when mt > m. For lower bounds, we will assume
the minimum (linear) charge fm(mt) = f `m(mt) = mt=m; intuitively, this models a network that can
absorb arbitrary message injection rates and sustain a throughput of m messages at a time: there is
no penalty for overloading the network. For upper bounds, we will assume fm(mt) = fum(mt) = e

mt
m
�1

when mt > m; intuitively, this models a network that su�ers an exponential penalty for injecting
more messages than the network's aggregate bandwidth limit. We view this as representative of the
maximum charge likely to be incurred in a network.1 Note that fum(mt) � f `m(mt) for all m and all
mt �m.

Both the bsp(g) and the bsp(m) models can be extended to variable length messages by replacing
\messages" with \its/packets" in the de�nition above, and viewing a long message as a sequence of
its to be sent between a pair of processors. We consider both the case where its of a long message
must be injected in consecutive time steps and the case where they need not be. The latter case
thus reduces to the �xed-sized message case. The same g is used for both short and long messages;
see [3, 9, 33] for examples of models that use distinct throughput parameters for short and long
messages. Note that the bsp(g) model does not insist that its of long messages be injected in
consecutive time slots.

A simpli�ed cost metric. We also briey mention a variant of the bsp(m) model where we ignore
the exact sending times within a superstep and charge

T = max(w; h; n=m; L)

for any superstep that transmits n messages (where w, h and L are de�ned as before).2 We refer to this
as the self-scheduling bsp(m) model. By using the results we prove in Section 6, we can show that any

1With this pessimistic measure, m represents the breaking point at which the performance of the network deteriorates
drastically.

2This is similar to a model where the cost of a superstep is g1n=p+ g2h, as proposed in the conclusion of [36].

4

algorithm A that has running time t on the p-processor self-scheduling bsp(m) can be implemented
on a p-processor bsp(m) in time (1 + �)t with very high probability. Thus, we shall see that in most
situations, it is su�cient to consider the self-scheduling variant of the bsp(m) model. The simplicity
of this model eases the task of algorithm design.

The QSM model. The Queuing Shared Memory (qsm) model [25] consists of p processors, each with
its own private memory, communicating by reading and writing locations in a shared memory. The
interconnection network supporting this communication is characterized by a per-processor throughput
parameter g. Processors execute a sequence of bulk-synchronous phases (supersteps), each consisting
of an arbitrary interleaving of the following operations: (i) Shared-memory reads : Each processor i
copies the contents of ri shared memory locations into its private memory. The value returned by
a shared-memory read can only be used in a subsequent phase. (ii) Shared-memory writes : Each
processor i writes to wi shared-memory locations. (iii) Local computation: Each processor i performs
ci ram operations, involving only its private state and private memory.

Concurrent reads or writes (but not both) to the same shared-memory location are permitted in
a phase. In the case of multiple writers to a location x, an arbitrary write to x succeeds in writing
the value present in x at the end of the phase. Each shared memory location can be read or written
by any number of processors. Let the maximum contention of a qsm phase be the maximum, over all
locations x, of the number of processors reading x or the number of processors writing x.

Consider a qsm phase with maximum contention �. Let w = maxifcig for the phase, i.e. the
maximum over all processors i of its number of local operations, and let h = maxf1;maxifri; wigg for
the phase. Then the time cost, T , of the superstep is de�ned to be

T = max(w; g � h; �) :

Note that although the model charges g per shared memory request at a given processor (the g � h
term in the cost metric), it only charges 1 per shared memory request at a given location (the � term
in the cost metric). In this paper, we denote the qsm model as the qsm(g) model, to make explicit
its per-processor bandwidth parameter g.

The QSM(m) model. Lastly, we consider a variant of the qsm(g) model that replaces the per-
processor bandwidth parameter g by an aggregate bandwidth parameter m. We denote this globally-
limited qsm model as the qsm(m) model. Let w, � and h be de�ned as in the qsm(g). Let mt be the
number of shared memory read or write requests initiated in step t of the given phase (superstep),
and let the function fm and the quantity cm be de�ned as in the bsp(m). Then the cost, T , of the
superstep is de�ned to be

T = max(w; h; �; cm) :

3 Related work

Several authors have pointed out that the bsp(g) model does not accurately reect the cost of sending
unbalanced communication patterns, and experimental evidence measuring this inaccuracy is provided
in [48]. Modi�cations to the bsp(g) model to more accurately reect communication costs have been
proposed, for example the e-bsp of [36] as well as the y-bsp of [21]. An early work that proposed and
studied an abstract model that addressed bandwidth considerations is the dram model of Leiserson
and Maggs [38], which assesses communication costs in terms of the congestion of messages across every

5

cut in the underlying network. The dram, as well the y-bsp and the e-bsp incorporate cost measures
which vary greatly depending on the underlying network architecture, and both the y-bsp and the
e-bsp incorporate cost measures designed to capture network proximity. Although this approach can
provide a more accurate estimation of running time, the complexity of the resulting models makes
it di�cult to isolate the relative e�ects of local and global bandwidth restrictions, and thus these
models are not well suited for the study presented here. These models also di�er from the globally-
limited models we study here in that they do not provide an advantage to algorithms that schedule
communication within a superstep so as to avoid exceeding the capacity of the network. However, as
we shall see in Section 6, there is a simple algorithm for scheduling messages to avoid exceeding the
network capacity, and thus this is a less signi�cant di�erence.

Many previous works have studied the total-exchange (also called complete exchange and all-to-
all personalized communication) primitive in which each processor has a distinct message to send to
every other processor (see, e.g., [8, 13, 16, 29, 31, 32, 34, 39, 43, 44]). The total-exchange primitive
has been incorporated into communication libraries such as the Collective Communication Library
provided with the ibm sp-2 [7]. It is used in matrix transposition, two-dimensional Fourier Transform,
conversion between storage schemes (remapping of arrays in HPF compilers), shu�e permutation, N -
body problems, matrix-vector multiplication, Ascend and Descend algorithms, and routing h-relations.
E�cient total-exchange algorithms have been studied for complete networks, hypercubes and tori, d-
dimensional mesh of busses, circuit-switched butteries, the ocpc, multi-port fully-connected message-
passing models, etc. Unlike previous work, this paper considers the total-exchange on an abstract, but
bandwidth-limited model, the bsp(m). Moreover, whereas most previous work has considered only
the case in which the messages sent between processors are the same length, we consider the more
general unbalanced total-exchange problem (unbalanced h-relation), in which each message may be of
a di�erent nonnegative length.

Bhatt et al. [13] have studied the unbalanced total-exchange problem (which they call \chatting")
on leveled networks. They consider a scenario in which (1) communication is performed in rounds, so
that all messages in an unbalanced total-exchange are routed before any new messages are generated,
(2) each message travels through the network as a contiguous stream of its, (3) the routing is oblivious,
and (4) there are no bu�ers or queues in the network. In this paper, we consider essentially the same
scenario, except that we consider a model, the bsp(m), which abstracts away the topology and bu�ering
considerations of the network. Speci�cally, we consider rounds as in (1), and present a schedule of
injecting messages such that a message of length xij consumes a unit of (bisection) bandwidth for
xij time steps, in the spirit of (2) and (4). The algorithm of Bhatt et al. �rst combines all p2

(source, destination, length) triples in a single processor that computes an e�cient schedule and then
broadcasts the schedule to all the processors; collecting these triples takes �(p2 + L) time on the
bsp(m). This contrasts with our algorithm, which only computes and broadcasts n, the sum of the
lengths of all the messages; this can be done in O(p=m+ L+ L lgm= lgL) time on the bsp(m).

Routing the dynamic case of the total-exchange problem (where the messages to be sent arrive
dynamically over an in�nite time line) has been considered in the context of routing messages through
multiple Ethernet-like channels by Raghavan and Upfal [42] and Goldberg and MacKenzie [26]. These
works study the problem of scheduling the transmission of messages from p processors to m commu-
nication channels. The arrival times of the messages are typically determined by a simple random
process, such as a Bernoulli distribution, and the objective is to successfully route the messages over
the requested channels. Di�erent routing protocols are analyzed, and the primary concern is to show
that the protocols are stable for su�ciently low arrival rates of messages. These results can be used to
provide dynamic unbalanced total-exchange algorithms for the case where the message arrival times

6

are chosen randomly, and at most m channels are utilized at any time step. We here consider the
case where a malicious adversary chooses the message arrival times, instead of an oblivious random
process.

Also, the models we consider here are incomparable to the multiple channel model. In the multiple
channel model, if more than one processor tries to send simultaneously using the same channel, no
processor is successful, but the channel is clear at the next time step. Thus, algorithms designed for
the multiple channel model have the advantage over our model that a single bad step does not cost
more than one unit of time, and can provide feedback for use at the next step. In the bsp(m) model we
consider, on the other hand, a single bad step can require time e

p

m
�1. On the other hand, algorithms

designed for the models considered here have the advantage that processors are not required to choose
a speci�c channel and that any attempted transmission is guaranteed to eventually be successful. For
example, consider the algorithm where every processor attempts to send a message at every time step
until it is successful. In the multiple channel model, if more than m processors have messages to send,
this algorithm never terminates. In our model, the algorithm is successful after one (possibly very
slow) step.

Algorithms for the pram(m) and closely related models have appeared in [47, 5, 40, 2, 1]. The
most signi�cant di�erence between the pram(m) and both the bsp(m) and the qsm(m) is that the
pram(m) model includes a separate, concurrently readable Read Only Memory that contains the
input to any problem being solved. This means that in this model, distributing the entire input to
the processor occurs without charge. Also, all the work in the pram(m) model has been in a crcw
framework, with the exception of [2], which assumed that reading was either exclusive or queued. Due
to these features, this model does not seem to have an e�cient emulation on lower level models such
as the bsp, or bsp(m). On the other hand, algorithm design for the pram(m) is complicated by the
fact that there are only m shared memory locations.

We �nally mention that several groups have been recently involved in implementations and exper-
imentations of parallel algorithms, using bandwidth-limited general purpose models (see, e.g., [6, 14,
17, 19, 20, 23, 28, 30, 41]).

4 Separation results between locally-limited and globally-limited

models

In this section we present some algorithmic results and lower bounds for certain problems that establish
various time separations of the qsm(m) and bsp(m) model with latency L from the qsm(g) model and
bsp(g) model with latency L respectively. In the following, we assume that the gap and the aggregate
bandwidth are related by g = p=m, where p is the number of processors. We note that any qsm(g)
algorithm can be emulated on the qsm(m) with the same time bound, as can a bsp(g) algorithm on
a bsp(m). This is done by grouping the qsm(g) or the bsp(g) processors (arbitrarily) into g groups
of p=g processors each, and by subdividing each communication step of the qsm(g) or the bsp(g) into
g substeps. The processors are then mapped on to the processors in the corresponding m model, and
the ith group of processors send their messages in the ith substep of each communication step.

Our results are tabulated in Table 1 for the case when p = n, the size of the input. All of the
upper bounds for qsm(m) and bsp(m) with the exception of the results for sorting follow from the
following observation. Given an erew pram or qrqw pram algorithm that runs in time t(n) and

7

Separation Results

problem stronger model weaker model time separation (for n = p)

One-to-all qsm(m): �(p) qsm(g): �(gp) �(g)
communication bsp(m): �(p+ L) bsp(g): �(gp+ L) �(g)

Broadcasting qsm(m): �(lgm+ p=m) qsm(g): �(g lg p= lg g) �(lg p= lg g)
bsp(m): O(L lgm= lgL+ bsp(g): �(L lg p= lg(L=g)) �(lgL lg p=(lg(L=g) lgm))

p=m + L)

Parity, qsm(m): �(lgm+ n=m) qsm(g):
(g lg n= lg lg n)
(lgn= lg lg n)
Summation bsp(m): O(L lgm= lgL+ bsp(g): �(L lgn= lg(L=g)) �(lgL lgn=(lg(L=g) lgm))

n=m + L)

List ranking qsm(m): O(lgm+ n=m) qsm(g):
(g lg n= lg lg n)
(lgn= lg lg n)
bsp(m): O(L lgm+ n=m) bsp(g):
(g lg n= lg lgn + L)
(lgn= lg lg n)

Sorting qsm(m): �(n=m) qsm(g):
(g lg n= lg lg n) �(lg n= lg lg n)
(m = O(n1��)) bsp(m): �(n=m+ L) bsp(g):
(g lg n= lg lgn + L) �(lg n= lg lg n)

Table 1: Some results separating the globally-limited models from the corresponding locally-limited
models. Here, g is the gap parameter, L is the latency, p is the number of processors, n is the size of
the input, and m = p=g is the bandwidth parameter in qsm(m) and bsp(m). The separation results
are for n = p, and for suitable values of L and g.

work w(n) it can be converted into a qsm(m) algorithm that runs in time O(n=m+ t(n) + w(n)=m)
as follows. We distribute the input elements evenly into the �rst m processors in time n=m, and then
simulate the pram algorithm on m processors in time O(w(n)=m+ t(n)) by a naive simulation of the
pram algorithm on the qsm(m). This is possible since the simulation will generate at mostm memory
accesses per step. This method will usually generate a bound of O(t(n) + w(n)=m) since w(n) � n

for most nontrivial problems. We can map this onto the bsp(m) to run in time O(L � t(n) +w(n)=m)
by pipelining the computations in each of the t(n) steps.

For the problem of sorting n keys, upper bounds of O(n=m) in the qsm(m) and O(n=m+L) for the
bsp(m) hold whenever m = O(n1��) for some � > 0. The algorithm that achieves these bounds routes
the input keys to a subset of m lgn processors. We can then sort these keys using the deterministic
sorting algorithm from [2], which is an adaptation of columnsort. When m = O(n1��), the running
time of this algorithm is within a constant of the time required to route a permutation of the n keys
that is balanced on the subset of m lgn processors. This requires time O(n=m) and O(n=m + L)
on the qsm(m) models and bsp(m) models respectively. The keys are then routed to the processors
that need to output them. For larger values of m, we can get a bound of O((n lgn)=m+ lgn) on the
qsm(m) (valid for all values for m) by using the general strategy described above of mapping regular
pram algorithms onto the qsm(m), and on the bsp(m) a bound of O((n=m+L) lgn) derivable either
from the qsm(m) algorithm or the bsp(g) algorithm.

In the next two subsections we �ll in the details of the remaining results in the table. In Section
4.1 we describe several lower bound results that are derived using a method that converts crcw pram

lower bounds into lower bounds for the g models. In Section 4.2 we present a tight lower bound for
the broadcasting problem on the g models.

8

4.1 Converting crcw pram lower bounds into bsp(g) lower bounds

We note that a time lower bound of
(t(n)) for p processors with unlimited local computational power
on the crcw pram implies a time lower bound for the same problem of
(g � t(n)) for p processors
with unlimited local computational powers on the qsm(g). However on a qsm(m) it translates into a
lower bound of only
(t(n)). Thus the crcw lower bound result of Beame and Hastad [10] gives a
lower bound for the n-element parity, summation, list ranking and sorting problems of
(g �lgn= lg lgn)
time on the qsm(g) for deterministic and randomized algorithms when the number of processors is
polynomial in n.

The result of [10] is also used to derive the lower bounds for the bsp(g) model. Any lower bound of
the form t(n) for the number of steps required on the crcw pram (with unlimited local computation,
and a polynomial number of processors) gives a lower bound of the form
(gt(n)) for the bsp(g).
To prove this, it is su�cient to show that we can realize an h-relation on the crcw in time O(h).
Given this, we can simulate any bsp(g) superstep requiring time T (n) for communication using time
O(T (n)=g) on the crcw pram. Thus, any algorithm that requires time g � t(n) for communication on
the bsp(g) gives an algorithm with t(n) steps on the crcw pram.

An h-relation can be realized on a crcw pram with a simple deterministic algorithm that runs in
O(h) time using polynomial space and polynomial number of processors:

� Compute m, the maximum number of messages to be sent by any processor (a simple constant
time computation with p2 processors).

� Use a p bym �p array, where the ith row is for messages to be sent to the ith processor. Partition
each row into p blocks of m elements each. The jth processor will write the messages destined
for the ith processor in the jth block of row i. This write is done in � h steps.

� Repeat:

{ Find the leftmost nonzero entry in each row in parallel (a constant time computation with
polynomial number of processors).

{ Transmit this information to the corresponding destination processor.

{ Zero out this leftmost nonzero entry in each row until no row has any nonzero entry

Each iteration of the repeat loop can be done in constant time, so the repeat loop takes O(h) time.

Furthermore, any randomized lower bound of the form t(n) for the number of steps required on a
p processor crcw pram (with unlimited local computation) gives a randomized lower bound of the
form g � t(n) �min(L+g

g lg� p ; 1) for the p-processor bsp(g). This follows from the fact that the h-relation
problem can be solved on the crcw pram in O(h+ lg� p) time and linear work with high probability,
as follows. The elements are �rst placed in an array of size O(hn), sorted by the index of their
destination processor; this can be done in O(lg�(nh)) time and O(nh) work w.h.p., using an algorithm
for approximate integer sorting [27]. Then, for each element a pointer to its nearest element on its
right in the array is found; this can be done in O(�(nh)) time (i.e., o(lg�(nh))) and O(nh) work, using
a nearest-zero algorithm [11]. The last step creates a list of elements, consisting of sub-lists of elements
with the same destination processors. The elements that are �rst in their sub-lists are identi�ed, and
their location is noti�ed to their destination processor; this can be done in constant time and O(hn)

9

work. Each destination processor can now scan its list in O(h) time. In the case that L � g lg� p, a
bound of t(n) for the crcw pram becomes a bound of g � t(n), and for all values of L and g, we get a
lower bound of at least g � t(n)= lg� p.

Also, any deterministic lower bound on time of the form t(n) for a (p lg lg p)-processor crcw pram

(with unlimited local computation and the arbitrary rule for resolving concurrent writes) provides a
deterministic lower bound of the form g � t(n) for the p-processor bsp(g). This follows since we can
realize an h-relation on a (p lg lg p)-processor arbitrary crcw pram with a deterministic algorithm
that runs in O(h) time, as follows.

� Compute and broadcast �x, the maximum number of messages to be sent by any processor. This
can be done in O(�x) time. Note that �x � h.

� If �x � lg lg p then processor i writes its xi messages to locations (i� 1)�x+ 1 through i�x in an
array of size �xp (if xi < �x, then processor i writes null values to the remaining locations). This
requires time O(�x) and work O(p�x). This array is then integer chain sorted by destination (the
universe is of size p). This requires time O(lg lg p) and work O(p�x lg lg p) [12]. Each processor
keeps track of the location of every key that it wrote to the sorted chain, and after the chain is
sorted, uses this information to �nd if any of these keys are the �rst message destined for any
processor. Each processor i can then be informed of the �rst message in the sorted list destined
for i, and then each processor reads the messages destined for it in time O(h).

� If �x < lg lg p, then each processor, in parallel, performs a concurrent write to a speci�ed location
for each of the destination processors for its messages (this requires a team of �x processors for
each of the p processors). For each write that succeeds, the corresponding message is read by
the destination processor. If a write does not succeed the processor repeats the write until its
write succeeds. This step can be performed in O(h) time and O(ph lg lg p) work.

We note that the time is optimal, and the work is a lg lg p factor from optimal.

4.2 A lower bound for broadcasting

The lower bound listed in the table for broadcasting in the bsp(g) has been shown in [35] for a model
where processors are not allowed to obtain information from non-receipt of messages. We can use a
sensitivity argument, as developed in [18], to derive a lower bound for broadcasting both on the bsp(g)
and the qsm(g) that accounts for non-receipt of messages. We here present the lower bound for the
broadcast problem in the bsp(g) model. In this model, the importance of considering non-receipt of
messages is demonstrated by the following algorithm, that uses non-receipt of messages to broadcast
a single bit in time gdlg3 pe, provided L � g.

Initially, processor 1 has a single bit b that is to be broadcast to processors 2 through p. We
maintain the invariant that at the start of step i � 1, processors 1 through 3i�1 know the value of
b. During step i, processor j � 3i�1 sends a message to processor j + 3i�1 if b = 0 and to processor
j + 2 � 3i�1 if b = 1. After each step, processors synchronize. This is enough information to maintain
the invariant, and thus after dlg3 pe such steps, every processor knows the value of b.

Theorem 4.1 Any deterministic algorithm for the broadcast problem on the bsp(g) model requires at
least time L lgp

2 lg(2L=g+1).

10

Proof. We consider algorithms that broadcast a single bit; this provides a lower bound for the more
general problem of an arbitrary number of bits. Let S(i; j) be the set of possible states that processor
i can be in during step j of any possible execution of a given broadcast algorithm. Since we are
considering deterministic algorithms, and the input to the problem consists of only one bit, there are
exactly two possible program executions, and thus for any i; j jS(i; j)j � 2. We say that processor i is
sensitive at step j if jS(i; j)j= 2. Let S(t) be the set of processors that are sensitive during any step
of superstep t. Note that any algorithm for the single bit broadcast problem cannot complete before
there exists some t for which jS(t)j = p.

Let xt be the maximum number of messages sent by any processor during the tth superstep of the
broadcast algorithm when the input is a 1. Let �xt be the maximum number of messages sent by any
processor during the tth superstep of the broadcast algorithm when the input is a 0. Both xt and �xt
are de�ned to be 0 for t larger than the respective running times of the algorithm.

Claim 4.2 jS(t+ 1)j � (xt + �xt + 1)jS(t)j.

Proof. A processor i can only be sensitive during superstep t + 1 if either it was sensitive during
superstep t, or some sensitive processor k sends a message to processor i during some possible execution
of the algorithm. However, since there are only two possible executions of the algorithm, the total
number of processors that a sensitive processor k can possibly send a message to during any execution
of the tth super step is at most xt + �xt.

Thus, in order for a broadcast algorithm to successfully terminate on both inputs in n steps, we
require that

nY
t=1

(xt + �xt + 1) � p:

The stated lower bound follows by minimizing the following expression for the worst case running time
of the algorithm, subject to the requirement given above.

max

nX

t=1

max(L; gxt);
nX

t=1

max(L; g �xt)

!
:

Let yt = max(xt; �xt). We see that

2T �
nX

t=1

max(L; gyt) = Y

where a necessary condition is that

Z =
nY

t=1

(2yt + 1) � p:

A convexity argument gives us that for any �xed value of Z, Y is minimized by setting all the yt = y
for some value y. Thus, we wish to �nd the minimum value of nmax(L; gy) subject to (2y + 1)n � p.
We see that n � lg p

lg(2y+1) , and thus we instead minimize lg p
lg(2y+1) max(L; gy). This is minimized by

setting y = L
g , which gives us that Y � L lg p

lg(2L=g+1) . The stated bound on T follows directly.

11

5 The power of concurrent read in limited bandwidth

In this section, we discuss the power provided by concurrent access to data in a limited bandwidth
setting. When bandwidth is not limited, there is a separation of �(lg p) between concurrent reading
and exclusive reading; this section discusses the analogous separation when bandwidth is limited.
This separation is an issue when the primary bandwidth bottleneck is either a global restriction, or
a local restriction. An example of a setting where processors have concurrent read access to limited
bandwidth is a set of processors that communicate over a shared broadcast bus with insu�cient
bandwidth to handle communication by every processor at every clock cycle. When the processors are
able to access the bus at every time step, this is an environment with concurrent read and a global
bandwidth restriction. If, on the other hand, there is a high local cost for accessing the bus, this is an
environment with concurrent read and a local bandwidth restriction.

Since the ability to sort p keys e�ciently is used in most simulations of concurrent read using
exclusive or queued read, the results on the separation between globally-limited and locally-limited
bandwidth restrictions for the problem of sorting (discussed in Section 4) have an important impact
on this problem. We here consider the problem of simulating concurrent read with exclusive or
queued read in a globally-limited bandwidth setting. To model concurrent read limited bandwidth,
we use the crcw pram(m) of [40]. In the crcw pram(m), p processors communicate only through a
shared memory consisting of m shared memory cells that can be read and written concurrently. The
input to the problem resides in a separate Read Only Memory (ROM) that processors can also read
concurrently. For details and motivation for the model, see [40].

Theorem 5.1 One step of the crcw pram(m) can be simulated on the qsm(m) in time O(p
m),

provided m = O(p1��); � > 0.

Proof. Sorting the keys allows us to remove duplicates of locations that are accessed in the case of
writes. It is more di�cult to distribute the information accessed by reads, and this is why the standard
erew pram simulation of a crcw pram is not optimal when used to simulate the crcw pram(m)
on a qsm(m). We here provide an algorithm that distributes the information read e�ciently. Each
processor i writes the pair (j; i) into an array A of size p, where j is the address of the memory location
that processor i reads. The array A is sorted using the sorting algorithm of the previous section, and
the sorted values are stored in an array B. When m = O(p1��); � > 0, this can be performed in time
O(p

m). Every processor i reads the ith location of B; processor i determines the value stored in the
memory location which has an address stored in B[i]. Once this has been accomplished, the processor
that appears in B[i] can be informed of this value by using another 2p

m steps.

Each of the m processors i, where i is congruent to 0 mod p
m , reads the memory location whose

address appears in B[i] by using the standard erew pram simulation of a step of a crcw pram

algorithm. This takes time O(lgm) = O(p
m , provided that m = O(p1��). The value read by processor

i is written to location mi
p of a third array C, along with the address of the memory location that was

read to produce this value.

The next p
m steps are called central read steps. At the jth central read step processor i, where i is

congruent to j mod p
m , reads location bmi

p c of C. If the memory location address which appears in C

is the same address that processor i reads from the array B, then processor i obtains the value stored
in that memory location from the array C; otherwise processor i reads that memory location directly.

12

After O(p
m) central read steps, every processor i knows the value of the memory location stored in

B(i). Note that during each central read step, processor i only reads from the shared memory outside
the array C if processor i is reading a di�erent memory location than processor bi= p

mc read. Since
the addresses of the memory locations read are sorted, at most one processor reads any memory cell
during any step of the central read steps, and thus the central read steps can all be performed in time
O(p

m).

This can be seen to be asymptotically optimal by comparing the time to broadcast in the two
models. The broadcast problem also shows that there is a gap between the qsm(g) and the crcw
pram(m) of at least g lg p= lg g. However, in the pram(m), limited bandwidth does not a�ect the cost
of distributing the input to the processors. We here show that the di�erence between the two models
studied is not just a result of the crcw pram(m) being able to e�ciently distribute the input to the
processors. We show that if we add to the qsm(m) model a Read Only Memory containing the input,
the simulation with slowdown O(p

m) is still close to optimal. The same result can be used to show a

gap between the er pram(m) and the cr pram(m) of
(p lgmm lg p), which, when p� m, greatly improves

the best previous gap of 2
(
p

lg p) between the two models, shown in [1].

Theorem 5.2 The worst case time to simulate one step of the crcw pram(m) on the qsm(m) is

(p lgmmw �min(w

lgp ; 1)), where w is the number of bits contained in each memory cell.

We show that for the following problem, even if every processor in the qsm(m) model is given the
entire input in advance, the crcw pram(m) is faster than the qsm(m) by a factor of
(p lgmm lg p).

De�nition 5.1 The Leader Recognition problem.

� Input: p memory locations, one contains the value 1, and the rest contain the value 0.

� Output at each processor: the address of the memory location that contains the value 1.

Again, w is the number of bits contained in any memory cell. Note that the previously described
simulation assumes that w =
(lg p + lgM), where M is an upper bound on the size of the shared
memory. The theorem follows from the following lemma, and the fact that the leader recognition
problem can be solved in the crcw pram(m) in time O(max(lg pw ; 1)), by every processor reading a
distinct input cell, after which the one processor that �nds a 1 broadcast its processor number to the
remainder of the processors.

Lemma 5.3 Any algorithm that solves the leader recognition problem in the qsm(m) requires time at
least
(p lgmmw), even if every processor knows the entire input in advance.

The proof of the lemma, which uses techniques developed in [2], follows from the following claim:

Claim 5.4 Any processor that solves the leader recognition problem either on some input examines
p lgm=2mw inputs, or on average the number of bits read from the shared memory by that processor
is at least lgm=2.

13

Proof. (of claim) In [2], it is shown that the behavior of a processor can be modeled as a decision
tree where nodes in the tree occur as a result of either reading bits from the shared memory, called
communication branching, or of reading inputs to the problem, called input branching. Furthermore,
the actions of every processor can be represented by a tree where no communication branching node
has a parent that is a input branching node. Call any input branching node that has a communication
branching node as a parent a �rst input node.

Consider any processor i that examines less than p lgm
2m inputs to the problem. In order to always

respond correctly to the problem, processor i must produce at least p distinct results, and thus must
have at least p leaves in this decision tree. However, any input to this problem contains exactly one 1,
and thus if processor i never examines more than p lgm

2m inputs to the problem, the number of distinct

leaves descendent from any �rst input node is at most p lgm
2m , since there is at most one leaf for each

of the p lgm
2m di�erent locations where the 1 in the input could appear. Therefore, the communication

branching nodes of the tree must separate the p inputs to the problem into sets of size at most p lgm
2m .

This implies that the number of communication bits must on average be at least lg(2m
lgm).

Proof. (of lemma) If there exists some processor that examines at least p lgm=2mw inputs to the
problem, then the running time of the algorithm must also be at least p lgm=2mw. Otherwise, by
the linearity of expectation, the average total number of communication bits read is at least p lgm=2.
Since at most wm bits can be read at any time step, at least p lgm=2mw steps are required.

6 Sending unbalanced h-relations

In this section, we consider the general (unbalanced) routing problem, in which each processor has
an arbitrary number of messages to send to other processors. We present three randomized parallel
algorithms for scheduling an unknown, arbitrarily-unbalanced h-relation on a bsp(m) that are quite
close to optimal; these algorithms handle the short messages, the varying-length messages and the
dynamically-arriving messages cases. In irregular applications, processors can have varying amounts
of messages to send due to skew in the inputs, skew in the fraction of data that is already local to the
processor (e.g., sorting a nearly-sorted list or list-ranking a nearly-ordered list), skew in the amount of
new values produced by the processors (e.g., an intermediate result of a join operation), skew in the
number of new tasks spawned by the processors (e.g., in a nested parallel language), etc. Moreover,
when m � p, the limited bandwidth of the bsp(m) makes the standard pram techniques for fast
balancing of this skew unacceptably slow.

6.1 The Static Problem

We consider the following routing problem: Each processor i, i = 1; : : : ; p, has xi messages to send.
Let n =

Pp
i=1 xi and �x = maxpi=1 xi. Let yi be the number of messages destined for processor i, and

let �y = maxpi=1 yi. Each processor i knows xi, but n, �x, yi and �y are unknown.

A lower bound for the problem on the bsp(g) is obtained directly from the de�nition of the problem,
and a matching upper bound is obtained by a straightforward execution:

Proposition 6.1 On the bsp(g), the routing problem takes �(g(�x+ �y) + L).

14

We devise simple algorithms for the bsp(m) that take time O(n=m+ (�x+ �y) + L(1 + lgm= lgL))
with very high probability in m. These algorithms are similar to techniques used for wormhole routing
(see for example [22]).

Algorithm Unbalanced-Send

� Processors perform a pre�x sum and a broadcast to inform every processor of the value n.

� For each processor i:

{ If xi � (1+ �)n=m for some small �, then processor i selects, uniformly at random, some ji
from the interval [1; : : : ; (1+�)n=m]. Let j0i = (1+�)n=m�ji+1. Processor i sends min(xi; j

0
i)

messages consecutively starting at time step ji, and max(0; xi� j0i) messages consecutively
starting at time step 1 (i.e., the messages are sent consecutively (mod (1 + �)n=m) in the
xi locations starting at ji).

{ If xi > (1 + �)n=m then processor i sends all messages consecutively starting at time 1.

Theorem 6.2 Let � = max((1 + �)n=m; �x; �y) + O(L + L lgm= lgL). Algorithm Unbalanced-Send
completes in time � with probability at least 1 � e�
(�

2m), provided n < e�m, where � is a constant
determined by the analysis. Also, for any k, the probability that algorithm Unbalanced-Send requires
more than time k� is at most 1

k4
� e�
(�2m).

Proof. The pre�x sum and broadcast require time O(L+L lgm= lgL). The total number of sending
steps required by the remainder of the algorithm is at most max((1+ �)n=m; �x), and thus it su�ces to
show that with probability at least 1 � e�
(�

2m), no more than m messages are sent at every step of
the algorithm. Since the number of processors with more than n=m messages to send can be at most
m, this must be the case for any time slot larger than (1 + �)n=m.

Consider a time slot � , 1 � � � (1 + �)n=m. Let ri be an indicator random variable that is a 1
if a message is being sent by processor i at time slot � , and a 0 otherwise. The probability that a
message from processor i is being sent at time slot � is Pr[ri = 1] = �i = min(1; xi=((1 + �)n=m)).
The expected number of messages being sent at time � is hence

P
i �i � n=((1+ �)n=m) = m=(1+ �).

The ris are mutually independent. By Cherno� Bounds, the number of messages at time � exceeds m
with probability at most exp(��2m=3), and hence the number of messages at all times is at most m
with probability 1� (1 + �)n=m � exp(��2m=3).

We also show that for any k, the probability that algorithmUnbalanced-Send requires more than
time k� is at most 1

k4
e�
(�

2m). We see from the Cherno� Bound Pr [
P
ri > (1 + �)�] � (e=(1 + e))�� ;

which holds whenever � � e, that for any l, and any time step � , the probability that the number of
messages sent does not exceed lm is at least 1�e�
(l�

2m). Such a time step requires time at most el�1.
Thus, the probability that the algorithm requires more time than �el is at most �e�
(l�

2m), which
when n < e�m, is at most (el)�4 � e�
(�2m).

The exponential bound on the probability that the running time of the algorithm exceeds k�
assures us that the expected running time is also O(�). The bound will also be used in our analysis of
the dynamic problem. Note that theUnbalanced-Send algorithm can be easily adapted to any other
sending pattern, such as if we insist on having a certain separation between every two messages sent
by the same processor. We can use the same algorithm on any sending pattern \template", where the

15

sending times are chosen by cyclically shifting the template by j slots. We elaborate on this further
below.

We next consider a slight modi�cation of the previous algorithm, calledUnbalanced-Consecutive-
Send. This algorithm has the advantage that it can be used in scenarios where a processor must send
long messages using consecutive time steps. This is useful in the case where there are large mes-
sage startup costs. This algorithm is the same as Unbalanced-Send with the modi�cation that if
xi � (1 + �)n=m, then processor i sends all its messages starting at time ji.

Algorithm Unbalanced-Consecutive-Send

� Processors perform a pre�x sum and a broadcast to inform every processor of the value n.

� For each processor i:

{ If xi � (1 + �)n=m for some small �, then processor i selects, uniformly random, some j
from the interval [1; : : : ; (1 + �)n=m], and sends all its messages consecutively starting at
time step j.

{ If xi > (1+ �)n=m then processor i sends all messages consecutively starting at time slot 1.

Let X be the set of processors that have no more than (1 + �)n=m messages to send. Let �x0 be the
maximum number of messages any processor in X has to send. The proof of the following theorem
proceeds along the same lines as the analysis of the algorithm Unbalanced-Send.

Theorem 6.3 Algorithm Unbalanced-Consecutive-Send completes in time max((1 + �)n=m +
�x0; �x; �y) +O(L+L lgm= lgL) with probability at least 1� e�
(�

2m), provided that n < e�m, where � is
a constant determined by the analysis.

The restriction about n being limited by e�m can be replaced by a restriction on p instead, which
may be more reasonable. To obtain this, the algorithm is slightly modi�ed as follows. Let t0 be the
average over the xis, that is, t

0 = n=p. For analysis purposes, let us \pad" each xi that is smaller than
t0 to become equal to t0. This results with getting n at most twice its original value. Let c be some
constant.

Algorithm Unbalanced-Granular-Send

� Processors perform a pre�x sum and a broadcast to inform every processor of the value n.

� For each processor i:

{ If xi � n=m then processor i selects at random some j from the interval 0; : : : ; (cn=m �
xi)=t0 � 1, and sends all messages consecutively starting at time slot j � t0 + 1.

{ If xi > n=m then processor i sends all messages consecutively starting at time 1.

Theorem 6.4 There exists a constant c such that algorithm Unbalanced-Granular-Send completes
in time cn=m with probability at least 1 � e�
(�

2m), provided that p < e�m, where � is a constant
determined by the analysis.

16

Proof. It is easy to verify that due to the new \granularity", for each processor i there are at most
t0 time slots (the last ones) that may not be used for sending messages. Therefore, for any time slot � ,
� = j �t0+1 for some j, the probability to have a message sent at � by processor i is � � xi=(cn=m�t0) �
xi=((1 + �)n=m). This probability is the same for all � 0s in �; : : : ; � + t0 (unlike the situation in the
previous algorithm). We continue as before, showing that the expected number of messages is at most
m=(1 + �) for � , and are therefore more than m with probability at most exp(�
(m)). The number
of events we now have to sum up over is (c0n=m)=t0 = (c0n=m)=(n=p) = c0p=m, where c0 = (1 + �).
Therefore, the number of messages is at most m for all steps with high probability, provided that p is
at most e�m.

Finally, we mention (without providing details) two other settings in which a variant ofUnbalanced-
Send algorithm may be useful. First, we consider the situation in which a processor has messages of
various sizes to be sent. The Unbalanced-Send algorithm is used with the following modi�cation. If
a certain long message of length ` is allocated with time j; j+1; : : : ; (1+ �)n=m; 1; : : : ; (1+ �)n=m� 1,
then instead we send it in time slots j; j + 1; : : : ; j + ` � 1. The additive time factor due to this
change is at most ^̀, which is an upper bound over the length of the various messages (some further
improvements are possible here if the messages are of di�erent lengths). This is a better bound than
the �x0 additive bound obtained for the Unbalanced-Consecutive-Send algorithm.

A second situation, is where a certain gap, o, is required between two consecutive messages being
sent. (Such gap may be associated with the overhead of initiating a message, as in the logp model.)
Let �̀ be the average size of a message over all messages, and let n0 = (1 + o=�̀). A simple approach is
to apply the variant described above for long messages where each message is now prepended with a
dummy message of length o, and n is replaced by n0. The (1 + �)n=m+ ^̀ component is then replaced
by (1 + �)(1 + o=�̀)n=m+ ^̀+ o. A better result may be obtained by a more careful re�nement, which
is not included here.

6.2 The Dynamic Problem

We consider here the case of the unbalanced routing problem where the messages to be sent are
introduced to the system dynamically over an in�nite time line. We consider the case where the
introduction times of the messages, as well as their destinations are determined by an Adversarial
Queuing Theory model, as introduced in [15], and studied further in [4]. In this model, there is
an adversary that injects messages into the system, but there is a set of restrictions, rules that the
adversary must adhere to. We wish to �nd a protocol, if one exists, for sending the messages in the
system such that for any adversary that adheres to the restrictions, the system is stable. By stable
we mean that there is a value v, (which is allowed to depend on any parameters in the system except
the time t), such that as t approaches 1, the expected number of messages in the system at time t is
bounded above by v.

We consider the following restrictions on the adversary. There is a parameter w, called the window
size, a parameter �, called the global arrival rate, as well as a parameter �, called the local arrival
rate. For any set of L � w consecutive time steps, the adversary is allowed to inject up to d�Le
point-to-point messages into the system. Furthermore, the adversary can request at most d�Le of
these messages to be sent from any given processor, and at most d�Le messages can be destined for
any given processor. Note that the adversary only informs the message source of the existence of a
message. Also, note that the adversary is non-adaptive: the strategy taken by the adversary is allowed
to depend on the algorithm, but not on any random choices made by the algorithm.

17

Consider for a moment the bsp(g) model.

Theorem 6.5 For the bsp model where g > 1, if � � � > 1
g , then there exists an adversary where

the system is not stable for any algorithm. However, if � � 1
g , there is an algorithm that is stable for

any adversary.

Proof. For any locally-limited model, if � � � > 1
g , then the adversary can inject one message for

some processor i to send every max(1; 1�) time steps. If g > 1, then at time t, processor i has sent at

most d tge messages, the adversary has given processor i at least d�te to send. Thus, the number of

messages that processor i has waiting to be sent at time t is at least t(� � 1
g) � 1. Since � � 1

g > 0,
the system is not stable.

When � � 1
g we use the following algorithm for the bsp(g) model. We partition the time line

into consecutive intervals of size max(g � dw=ge; L). During the �rst interval, no sending occurs.
The messages received during the ith interval are sent during the i + 1st interval in time simply
by routing all the messages as a single h-relation. The adversary is constrained such that at most
(1=g)max(g �dw=ge; L) messages can arrive in any interval, and thus we can always route any messages
that the adversary is allowed to request during a single interval in the time we have available.

Corollary 6.6 For any adversary that requests messages at a total rate higher than p
g , there is no

stable algorithm.

in the bsp(g) model, the global arrival rate only e�ects the algorithm if it is smaller than the local
arrival rate. When we have a globally-limited model, on the other hand, both arrival rates become
interesting. We show that in the globally-limited models, we can handle a much higher local arrival
rate, while maintaining a global arrival rate that is within a constant factor of the optimal described
above. For simplicity, we assume here that w � L. It is straightforward to incorporate the parameter
L into the analysis for the more general case.

Theorem 6.7 Let A be an algorithm that always solves the synchronous unbalanced routing problem
when n is known, where A completes in time � = max(a n

m ; b�x; b�y) with probability at least 1 � r for
any a; b � 1, and any r � 1. Furthermore, for any k, the probability that A requires more than time
k� is at most 1

k4 r. There is an algorithm B for the bsp(m) which is stable for the dynamic unbalanced
routing problem provided that � � m

a � mu
wa and � � 1

b � u
wb , where u � b1:21rwc+ 1. Furthermore,

the expected service time of any arrival is O(w2=u).

Proof. We use the following algorithm B. We partition the time line into consecutive intervals of
size w. During the �rst interval, no sending occurs. The messages that arrive during the ith interval
are sent using algorithm A using the value n = d�we, starting at time max(t1; t2), where t1 is the start
of the i + 1st interval, and t2 is the �rst time step after algorithm A completes sending the i � 1st
interval.

We call an interval i successful if algorithm A, when sending the messages that arrive during i,
requires time at most w � u. In each interval, the adversary is constrained so that for the routing

18

problem that A must solve, n � w�u
a , �x � w�u

b , and �y � w�u
b . Thus, each interval i, regardless of the

outcomes of previous intervals, is successful with probability at least 1 � r. The adversary has some
control over the amount of time required to run algorithm A (and can thus create some dependence
on previous outcomes), but is not able to cause the algorithm to run longer than time w � u with
probability more than r. We need to show that even when some of the intervals are not successful,
the system is stable.

We show that the following equivalent system S is stable, where each arrival to a FIFO server
corresponds to one set of messages received during an interval. There is one arrival to this queue every
w time steps. The service time of this arrival may depend on both previous arrivals, as well as the
arrival time, but given all previous arrivals, with probability at least 1 � r, any arrival has service
time at most w�u. Furthermore, given all previous arrivals, the service time of any arrival is at most
k(w � u) with probability at least 1� r=k4.

Let S1 be the distribution of the service time for the �rst arrival. Let Si be the distribution of
the service time for the ith arrival, given the service times of the 1st through i� 1st arrivals. Let S00
represent the distribution that takes on the value w � u with probability exactly 1 � r, and, for any
integer k > 1, takes on the value k(w� u) with probability exactly r=(k� 1)4� r=k4. We see that for
any i, S00 �st Si, where by �st we mean stochastically dominates. Thus, we can analyze the system
S0, which is identical to S, except that every service time is determined by drawing an independent
sample from the distribution S00. The expected queue length at any time t in the system S 0 is at least
as large as the expected queue length at time t in the system S. Thus, if S0 is stable, then so is S.
The theorem follows from the following claim.

Claim 6.8 S0 is stable. Furthermore, the expected service of any arrival to S0 is O(w2=2).

Proof. We see that the expected number of intervals (of size w) that an arrival will be in the system
is equal to the expected service time of an arrival in the following system S00: there is an arrival to a
FIFO server at each step independently of all previous steps with probability r. The service time of
this arrival is drawn from the distribution S000 , which, for all integers k � 1 takes on value kw=u with
probability 1=k4�1=(k+1)4. To see that the two systems are equivalent, note that in system S0 we do
not change the amount of work at the FIFO queue by giving priority to any arrival with service time
w � u. Thus, S0 can be viewed as a system where the only arrivals are the ones which have service
time at least 2(w � u), and each of these only receives u units of service out of every w time steps.
The system S00 is equivalent to a scaled version of this system.

However, we see that the system S 00 is just an M=G=1 queue, which is well known to be stable
whenever the product of the service time and the arrival rate is strictly less than 1. We see that the
arrival rate is r, and the expected service time is � w=u

P1
i=1

1
i3
< 1:21w=u. For our choice of u, we

have that 1:21wr=u < 1.

Furthermore, we can now bound the expected service time of any arrival. The average queue size

at customer departure instants is r�� + r2 ��2

2(1�r��) , where r is the arrival rate, �� is the expected service

time, and ��2 is the second moment of the service-time distribution (see for example [37]). In the

system S00, this evaluates to approximately 2:42wru�0:18w2r2

2u2�2:42wru . Thus, the expected time in the system of

an arrival in the system S0 is at most 2:42w2=u+ 2:42w2ru�0:18w3r2

2u2�2:42wru . The expected service time in the
system S is no higher.

19

7 Conclusions

We have shown that for a number of basic problems, models that impose aggregate restrictions on
bandwidth enjoy a considerable advantage over models that impose per-processor restrictions on band-
width. In addition, we have demonstrated randomized on-line algorithms that schedule the transmis-
sion times of an arbitrarily-imbalanced set of messages in an aggregate bandwidth setting. These
algorithms considerably improve upon the best possible results that can be achieved in models with
per-processor restrictions. These results imply that it is important to use models that impose the
type of restriction on bandwidth that most accurately reects the machine in question. The routing
results also indicate that the models with an aggregate bandwidth parameter, in most situations, can
be replaced by the analogous model with the simpli�ed cost metric discussed in Section 2.

Acknowledgements

We thank Torsten Suel for helpful comments.

References

[1] M. Adler. New coding techniques for improved bandwidth utilization. In Proc. 37th IEEE Symp. on

Foundations of Computer Science, pages 173{182, October 1996.

[2] M. Adler, J. W. Byers, and R. M. Karp. Parallel sorting with limited bandwidth. In Proc. 7th ACM

Symp. on Parallel Algorithms and Architectures, pages 129{136, July 1995.

[3] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Sheiman. LogGP: Incorporating long messages into
the LogP model | one step closer towards a realistic model for parallel computation. In Proc. 7th ACM

Symp. on Parallel Algorithms and Architectures, pages 95{105, July 1995.

[4] M. Andrews, B. Awerbuch, A. Fernandez, J. Kleinberg, T. Leighton, and Z. Liu. Universal stability results
for greedy contention-resolution protocols. In Proc. 37th IEEE Symp. on Foundations of Computer Science,
October 1996.

[5] Y. Azar. Lower bounds for threshold and symmetric functions in parallel computation. In SIAM Journal

of Computing, volume 21(2), pages 329 { 338, 1992.

[6] D. A. Bader and J. J�aJ�a. Practical parallel algorithms for dynamic data redistribution, median �nding,
and selection. In Proc. 10th International Parallel Processing Symposium, pages 292{301, April 1996.

[7] V. Bala, J. Bruck, R. Cypher, P. Elustondo, A. Ho, C.-T. Ho, S. Kipnis, and M. Snir. CCL: A portable
and tunable collective communication library for scalable parallel computers. IEEE Trans. on Parallel and

Distributed Systems, 6(2):154{164, 1995.

[8] A. Bar-Noy, J. Bruck, C.-T. Ho, S. Kipnis, and B. Schieber. Computing global combine operations in the
multiport postal model. IEEE Trans. on Parallel and Distributed Systems, 6(8):896{900, 1995.

[9] A. Baumker and W. Dittrich. Fully dynamic search trees for an extension of the BSP model. In Proc. 8th

ACM Symp. on Parallel Algorithms and Architectures, pages 233{242, June 1996.

[10] P. Beame and J. H�astad. Optimal bounds for decision problems on the CRCW PRAM. Journal of the

ACM, 36(3):643{670, July 1989.

[11] O. Berkman and U. Vishkin. Recursive star-tree parallel data structure. SIAM Journal on Computing,
22(2):221{242, 1993.

20

[12] P. C.P. Bhatt, K. Diks, T. Hagerup, V. C. Prasad, T. Radzik, and S. Saxena. Improved deterministic
parallel integer sorting. Information and Computation, 94:29{47, November 1991.

[13] S. N. Bhatt, G. Bilardi, G. Pucci, A. Ranade, A. L. Rosenberg, and E. J. Schwabe. On bu�erless routing
of variable length messages in leveled networks. IEEE Trans. on Computers, 45(6):714{729, 1996.

[14] R.H. Bisseling and W.F. McColl. Scienti�c computing on bulk synchronous parallel architectures. In Proc.

133th IFIP World Computer Congress, pages 509{514, 1994.

[15] A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, and D. P. Williamson. Adversarial queueing theory. In
Proc. 28th ACM Symp. on the Theory of Computing, pages 376{385, May 1996.

[16] J. Bruck, C.-T. Ho, S. Kipnis, and D. Weathersby. E�cient algorithms for all-to-all communications in
multi-port message-passing systems. In Proc. 6th ACM Symp. on Parallel Algorithms and Architectures,
pages 298{309, June 1994.

[17] T. Cheatham, A. Fahmy, D.C. Stefanescu, and L.G. Valiant. Bulk synchronous parallel computing { a
paradigm for transportable software. In Proc. IEEE 28th Hawaii Int. Conf. on System Science, January
1995.

[18] S. Cook, C. Dwork, and R. Reischuk. Upper and lower bounds for parallel random access machines without
simultaneous writes. SIAM Journal on Computing, 15:87{97, 1985.

[19] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian, and T. von Eicken.
LogP: Towards a realistic model of parallel computation. In Proc. 4th ACM SIGPLAN Symp. on Principles

and Practices of Parallel Programming, pages 1{12, May 1993.

[20] D. E. Culler, A. Dusseau, R. Martin, and K. E. Schauser. Fast parallel sorting under LogP: from theory
to practice. In Proc. Workshop on Portability and Performance for Parallel Processing, Southhampton,
England, July 1993.

[21] P. de la Torre and C. P. Kruskal. Submachine locality in the bulk synchronous setting. In Proc. Euro-Par'96,
pages 352{358, August 1996.

[22] S. Felperin, P. Raghavan, and E. Upfal. A theory of wormhole routing in parallel computers. In Proc. 33rd

IEEE Symp. on Foundations of Computer Science, 1992.

[23] A. V. Gerbessiotis and C. J. Siniolakis. Deterministic sorting and randomized median �nding on the BSP
model. In Proc. Eighth Annual ACM Symposium on Parallel Algorithms and Architectures, pages 223{232,
June 1996.

[24] P. B. Gibbons, Y. Matias, and V. Ramachandran. Can a shared-memory model serve as a bridging model
for parallel computation? these proceedings.

[25] P. B. Gibbons, Y. Matias, and V. Ramachandran. Can a shared-memory model serve as a bridging model
for parallel computation? In Proc. 9th ACM Symp. on Parallel Algorithms and Architectures, June 1997.
To appear.

[26] L. A. Goldberg and P. D. MacKenzie. Analysis of practical backo� protocols for contention resolution with
multiple servers. In Proc. 7th ACM-SIAM Symp. on Discrete Algorithms, pages 554{563, January 1996.

[27] M.T. Goodrich, Y. Matias, and U. Vishkin. Optimal parallel approximation algorithms for pre�x sums. In
Proc. 5th ACM-SIAM Symp. on Discrete Algorithms, pages 241{250, 1994.

[28] M. Goudreau, K. Lang, S. Rao, T. Suel, and T. Tsantilas. Towards e�ciency and portability: Programming
with the BSP model. In Proc. Eighth Annual ACM Symposium on Parallel Algorithms and Architectures,
pages 1{12, June 1996.

[29] H. Gupta and P. Sadayappan. Communication e�cient matrix multiplication on hypercubes. In Proc. 6th

ACM Symp. on Parallel Algorithms and Architectures, pages 320{329, June 1994.

[30] D. R. Helman, D. A. Bader, and J. J�aJ�a. Parallel algorithms for personalized communication and sort-
ing with an experimental study. In Proc. Eighth Annual ACM Symposium on Parallel Algorithms and

Architectures, pages 211{222, June 1996.

21

[31] S. Hinrichs, C. Kosak, D. R. O'Hallaron, T. M. Stricker, and Riichiro Take. An architecture for optimal
all-to-all personalized communication. In Proc. 6th ACM Symp. on Parallel Algorithms and Architectures,
pages 310{319, June 1994.

[32] A. Jagota. A near-optimal algorithm for gossiping in a d-dimensional mesh bus interconnection network.
In Proc. 9th International Parallel Processing Symposium, pages 331{337, April 1995.

[33] J. J�aJ�a and K. W. Ryu. The Block Distributed Memory model. Technical Report UMIACS-TR-94-5,
University of Maryland Institute for Advanced Computer Studies, College Park, MD, January 1994.

[34] S. L. Johnsson and C.-T. Ho. Optimum broadcasting and personalized communication in hypercubes.
IEEE Trans. on Computers, 38(9):1249{1268, 1989.

[35] B H. H. Juurlink. Ph.D. Thesis, Leiden University, 1996.

[36] B. H. H. Juurlink and H. A. G. Wijsho�. The E-BSP Model: Incorporating general locality and unbalanced
communication into the BSP Model. In Proc. Euro-Par'96, pages 339{347, August 1996.

[37] L. Kleinrock. Queueing Systems Volume I: Theory. John Wiley & Sons, 1975.

[38] C. E. Leiserson and B. M. Maggs. Communication-e�cient parallel algorithms for distributed random-
access machines. Algorithmica, 3(1):53{77, 1988.

[39] Y.-D. Lyuu and E. Schenfeld. Total exchange on a recon�gurable parallel architecture. In Proc. 5th IEEE

SYmp. on Parallel and Distributed Processing, pages 2{10, December 1993.

[40] Y. Mansour, N. Nisan, and U. Vishkin. Trade-o�s between communication throughput and parallel time.
In Proc. 26th ACM Symp. on Theory of Computing, pages 372{381, 1994.

[41] R. Miller. A library for bulk-synchronous parallel programming. In Proc. of the British Computer Society

Parallel Processsing, Specialist Group Workshop on General Purpose Parallel Computing, December 1993.

[42] P. Raghavan and E. Upfal. Stochastic contention resolution with short delays. In Proc. 27th ACM Symp. on

Theory of Computing, pages 229{237, May-June 1995.

[43] S. Rao, T. Suel, T. Tsantilas, and M. Goudreau. E�cient communication using total-exchange. In Proc. 9th
International Parallel Processing Symposium, pages 544{550, April 1995.

[44] Y.-C. Tseng and S. K. S. Gupta. All-to-all personalized communication in a wormhole-routed torus. IEEE
Trans. on Parallel and Distributed Systems, 7(5):498{505, 1996.

[45] L. G. Valiant. A bridging model for parallel computation. Communications of the ACM, 33(8):103{111,
1990.

[46] L. G. Valiant. General purpose parallel architectures. In J. van Leeuwen, editor, Handbook of Theo-

retical Computer Science, Volume A, pages 943{972. Elsevier Science Publishers B.V., Amsterdam, The
Netherlands, 1990.

[47] U. Vishkin and A. Wigderson. Trade-o�s between depth and width in parallel computation. In SIAM

Journal of Computing, volume 14(2), pages 303 { 314, 1985.

[48] H. A. G. Wijsho� and B. H. H. Juurlink. A quantitative comparison of parallel computation models. In
Proc. 8th ACM Symp. on Parallel Algorithms and Architectures, pages 13{24, June 1996.

22

