
In SIAM JOURNAL ON COMPUTING, 1993. Copyright SIAM

On Finding a Smallest Augmentation to Biconnect a Graph�

Tsan-sheng Hsu and Vijaya Ramachandran

Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712

March 31, 1992

Abstract. We consider the problem of �nding a minimum number of edges whose

addition biconnects an undirected graph. This problem has been studied by several other

researchers, two of whom presented a linear time algorithm for this problem in an earlier

volume of this journal. However that algorithm contains an error which we expose in this

paper. We present a corrected linear time algorithm for this problem as well as a new e�cient

parallel algorithm. The parallel algorithm runs in O(log2 n) time using a linear number of

processors on an EREW PRAM, where n is the number of vertices in the input graph.

Key words. algorithm, linear time, graph augmentation, biconnected graph, parallel

computation, poly-log time, EREW PRAM

AMS(MOS) subject classi�cations. 68Q20, 68R10, 94C15, 05C40

�This work was supported in part by NSF Grant CCR-89-10707. This paper appears in SIAM Journal on

Computing, 1993, pp. 889-912.

1

1 Introduction

The problem of augmenting a graph to reach a certain connectivity requirement by adding

edges has important applications in network reliability [6, 12, 21] and fault-tolerant com-

puting. One version of the augmentation problem is to augment the input graph to reach a

given connectivity requirement by adding a smallest set of edges. We refer to this problem

as the smallest augmentation problem.

The following results are known for solving the smallest augmentation problem on an

undirected graph to satisfy a vertex connectivity requirement. Eswaran & Tarjan [4] gave

a lower bound on the smallest number of edges for biconnectivity augmentation and proved

that the lower bound can be achieved. Rosenthal & Goldner [18] developed a linear time

sequential algorithm for �nding a smallest augmentation to biconnect a graph. Watanabe

& Nakamura [26, 28] gave an O(n(n+m)2) time sequential algorithm for �nding a smallest

augmentation to triconnect a graph with n vertices and m edges. Hsu & Ramachandran [11]

developed a linear time algorithm for this problem. There is no polynomial time algorithm

known for �nding a smallest augmentation to k-vertex-connect a general graph, for k > 3.

There is also no e�cient parallel algorithm known to �nd a smallest augmentation to k-

vertex-connect a graph for k � 2.

For the problem of �nding a smallest augmentation for a graph to reach a given edge

connectivity property, several polynomial time algorithms on undirected graphs, directed

graphs and mixed graphs are known. These results can be found in Cai & Sun [1], Eswaran &

Tarjan [4], Frank [5], Gus�eld [8], Kajitani & Ueno [13], Naor, Gus�eld & Martel [15], Ueno,

Kajitani & Wada [24], Watanabe [25] and Watanabe & Nakamura [27]. E�cient parallel

algorithms for �nding smallest augmentations for 2-edge connectivity, strong connectivity

and making a mixed graph strongly orientable can be found in Soroker [20].

Another version of the problem is to augment a graph, with a weight assigned to each

edge, to meet a connectivity requirement using a set of edges with a minimum total cost.

Several related problems have been proved to be NP-complete. These results can be found

in Eswaran & Tarjan [4], Frank [5], Frederickson & Ja'Ja' [7], Watanabe & Nakamura [26]

and Watanabe, Narita & Nakamura [29].

In this paper, we present an e�cient parallel algorithm for �nding a smallest augmen-

tation to biconnect an undirected graph. In addition, we have discovered an error in the

2

sequential algorithm of Rosenthal & Goldner [18]. We �rst give a corrected linear time se-

quential algorithm for the problem. Our e�cient parallel algorithm is based on this corrected

sequential algorithm. However we have to utilize several insights into the problem in order

to derive the parallel algorithm. The algorithm runs in O(log2 n) time using a linear number

of processors on an EREW PRAM, where n is the number of vertices in the input graph.

(For more on PRAM models and PRAM algorithms see Karp & Ramachandran [14].)

The algorithmic notation used is from Tarjan [22] and Ramachandran [17]. We enclose

comments between `f�' and `�g'. We use the following pfor statement for executing a loop

in parallel.

pfor iterator ! statement list rofp

The e�ect of this statement is to perform the statement list in parallel for each value of the

iterator. We use the following form for an if statement.

if condition1 ! statement list1

j condition2 ! statement list2
...

j conditionn ! statement listn

�

The e�ect of this statement is to perform the �rst statement list whose corresponding con-

dition is true. If there is no condition is true, none of the statement lists is evaluated.

Parameters are called by value unless they are declared with the keywordmodi�es in which

case they are called by value and result.

2 De�nitions

Let G = (V;E) be an undirected graph with vertex set V and edge set E. Let fEij1 � i � kg

be a partition of E into a set of k disjoint subsets such that two edges e1 and e2 are in the

same partition if and only if there is a simple cycle in G containing e1 and e2 or e1 is equal

to e2. A vertex is called an isolated vertex if it is not adjacent to any other vertex. Let q

be the number of isolated vertices in G. Let fVij1 � i � k + qg be a collection of sets of

vertices, where Vi is the set of vertices in Ei for each i, 1 � i � k, and Vi+k contains only the

ith isolated vertex for each i, 1 � i � q. A vertex v is a cutpoint of a graph G if v appears

in more than one vertex set Vi. G is biconnected if it has at least 3 vertices and contains

no cutpoint or isolated vertex. The subgraph Gi = (Vi; Ei), 8i, 1 � i � k, is a biconnected

3

component of G if Vi contains more than two vertices. Note that Ei = ;, 8i, k < i � k + q,

since Vi contains an isolated vertex. The subgraph Gi = (Vi; Ei), 8i, 1 � i � k + q, is

called a block of G. Given an undirected graph G, we can de�ne its block graph blk(G) as

follows. Each block and each cutpoint of G is represented by a vertex of blk(G). The vertices

of blk(G) which represent blocks are called b-vertices and those representing cutpoints are

called c-vertices. Two vertices u and v of blk(G) are adjacent if and only if u is a c-vertex,

v is a b-vertex and the corresponding cutpoint of u is contained in the corresponding block

of v or vice versa. It is well known that blk(G) is a forest and if G is connected, blk(G) is a

tree. If blk(G) is a tree, it is also called a block tree.

Let nc be the number of c-vertices in blk(G). A vertex vi represents a c-vertex of

blk(G) and di is the degree of vi. We assume that di � di+1, 8i, 1 � i < nc throughout the

discussion. For convenience, we de�ne ai = di � 1. If blk(G) is a tree, let T be the rooted

tree obtained from blk(G) by rooting blk(G) at the b-vertex which connects to v1 and is on

the path from v1 to v2. We use Ti to represent the subtree of T rooted at vi for each i,

1 � i � nc, and we use T 0 to represent the subtree of T after deleting T1. Let li be the

number of leaves of Ti, 8i, 1 � i � nc. We also use Tv to represent the subtree rooted at a

vertex v of blk(G). The subgraph of T induced by deleting the vertex v is denoted by T � v.

In a forest, a vertex with degree 1 is a leaf. Let l be the number of leaves in blk(G). For

a graph G0, we use l0 to denote the number of degree-1 vertices in blk(G0). Let d(v) be the

degree of the vertex v in blk(G) and let d be the largest degree of all c-vertices in blk(G).

In �gures, we use a rectangle to represent a b-vertex and a circle to represent a c-vertex.

A line denotes an edge. A path in the block graph is represented by a thick dashed line while

a polygon represents a collection of subtrees. These notations are shown in Figure 1.

We also need the following de�nitions. Part of De�nition 4 is from [18].

De�nition 1 A vertex v of blk(G) is called massive if and only if v is a c-vertex with

d(v)�1 > d l
2
e. A vertex v of blk(G) is critical if and only if v is a c-vertex with d(v)�1 = d l

2
e.

The graph blk(G) is critical if and only if there exists a critical c-vertex in blk(G).

De�nition 2 A block graph blk(G) is balanced if and only if G is connected and without any

massive c-vertex. (Note that blk(G) could have a critical c-vertex.) A graph G is balanced if

and only if blk(G) is balanced.

4

an edge
a path

and a leaf

a -vertexb

a -vertexc

collections of subtrees

and the root of the tree

a -vertexb

Figure 1: Notations for �gures.

De�nition 3 [The leaf-connecting condition]

Two leaves u1 and u2 of blk(G) satisfy the leaf-connecting condition if and only if u1 and u2

are in the same tree of blk(G) and the path P from u1 to u2 in blk(G) contains either

(1) two vertices of degree more than 2,

or (2) one b-vertex of degree more than 3.

De�nition 4 Let v be a c-vertex of blk(G). We call those components of blk(G)� v which

contain only one vertex of degree 1 in blk(G) v-chains [18]. A degree-1 vertex of blk(G) in a

v-chain is called a v-chain leaf.

3 Main Lemmas

In this section, we present results that will be crucial in the development of our e�cient

parallel algorithm.

Lemma 1 If blk(G) has more than two c-vertices, then a1 + a2 + a3 � 1 � l.

Proof: Note that v1 is a c-vertex with the largest degree. Vertex v2 is a c-vertex with the

largest degree among all c-vertices other than v1. Vertex v3 is a c-vertex with the largest

degree among all c-vertices other than v1 and v2. Recall that if blk(G) is a tree, we root

blk(G) at the b-vertex b which connects to v1 and is on the path from v1 to v2. Let the rooted

tree be T . Recall that Ti is the subtree of T rooted at vi and li is the number of leaves in

5

Ti. T 0 is the subtree obtained from T by removing T1. Let lx be the number of leaves in T 0.

Case 1: If v3 is in T1, then l1 � a1�1+a3 and lx � a2. This implies l = l1+lx � a1+a2+a3�1.

Case 2: If v3 is in T 0, but not in T2, then l1 � a1 and lx � a2+a3. Thus l = l1+lx � a1+a2+a3.

Case 3: If v3 is in T2, then l1 � a1 and lx � l2 � a2 � 1 + a3. This implies l = l1 + lx �

a1 + a2 + a3 � 1.

Suppose that blk(G) is a forest and v1, v2 and v3 are in di�erent trees T1, T2 and T3,

respectively. If vi is the only c-vertex in Ti, then ai = li � 1. Otherwise, ai � li. Thus

a1 + a2 + a3 � l1 + l2 + l3 � l. It is easy to prove the lemma for the case that blk(G) is a

forest and any two of v1, v2 and v3 are in the same tree. 2

Corollary 1 If blk(G) has more than two c-vertices, then a3 �
l+1

3
.

Proof: From the de�nition, we know that a1 � a2 � a3. If a3 >
l+1

3
, then a1 � a2 � a3 >

l+1

3

which implies a1 + a2 + a3 >
l+1

3
� 3 = l + 1. This is a contradiction to Lemma 1. 2

Corollary 2 There can be at most one massive vertex in blk(G).

Proof: The corollary is obviously true if there are less than two c-vertices in blk(G). If blk(G)

has only two c-vertices v1 and v2, there is a b-vertex b� in blk(G) that connects to both v1

and v2. We root blk(G) at b�. Since there are only two c-vertices, the children of v1 and

v2 are all leaves. We know that a1 and a2 are equal to the number of children of v1 and v2

respectively, thus a1 + a2 = l. Suppose v1 is massive, then a1 >
l
2
. Thus a2 <

l
2
. If blk(G)

has more than two c-vertices and v1 and v2 are massive, then a1 + a2 > l. Since a3 � 1, we

have derived a contradiction to Lemma 1. 2

Corollary 3 If there is a massive vertex in blk(G), then there is no critical vertex in blk(G).

Proof: The proof of Corollary 2 also applies here. 2

Corollary 4 There can be at most two critical vertices in blk(G), if l > 2.

Proof: The corollary is obviously true if blk(G) has only one or two c-vertices. Assume

that blk(G) has more than two c-vertices. From corollary 1, we know that a3 �
l+1

3
. Since

d l
2
e � l

2
> l+1

3
; if l > 2, we know that v3 cannot be critical if l > 2. 2

6

Before introducing the next lemma, we have to study properties for updating the block

tree. The following fact for obtaining blk(G0) from blk(G) is given in Rosenthal & Goldner

[18].

Fact 1 Given a graph G and its block tree blk(G), adding an edge between two leaves u and

v of blk(G) creates a cycle C. Let G0 be the graph obtained by adding an edge between u0

and v0 in G where u0 and v0 are non-cutpoint vertices in the blocks represented by u and v

respectively. The following relations hold between blk(G) and blk(G0).

(1) Vertices and edges of blk(G) that are not in the cycle C remain the same in blk(G0).

(2) All b-vertices in blk(G) that are in the cycle C contract to a single b-vertex b0 in blk(G0).

(3) Any c-vertex in C with degree equal to 2 is eliminated.

(4) A c-vertex x in C with degree greater than 2 remains in blk(G0) with edges incident on

vertices not in the cycle. The vertex x also attaches to the b-vertex b0 in blk(G0).

An example of forming blk(G0) from blk(G) is illustrated in Figure 2.

Lemma 2 Let u1 and u2 be two leaves of blk(G) satisfying the leaf-connecting condition

(De�nition 3). Let � and � be non-cutpoint vertices in blocks of G represented by u1 and u2

respectively. Let G0 be the graph obtained from G by adding an edge between � and � and let

P represent the path between u1 and u2 in blk(G). The following three conditions are true.

(1) l0 = l � 2.

(2) If v is a cutpoint in P with degree greater than 2 in blk(G), then the degree of v decreases

by 1 in blk(G0).

(3) If v is a cutpoint in P with degree equal to 2, then v is eliminated in blk(G0).

Proof: Parts (2) and (3) of the lemma follow from parts (3) and (4) of Fact 1. We now prove

part (1) of the lemma.

From part (2) in Fact 1, we know that every vertex of G that is in a component

represented by a b-vertex in P is in a biconnected component Q of G0. Let Q be represented

by a b-vertex b in blk(G0).

Case 1: Suppose that part (1) of the leaf-connecting condition (De�nition 3) holds. Let

w and y be two vertices of blk(G) having degree more than 2 in blk(G) and let blk(G0) be

rooted at b. In blk(G), let w0 be a vertex adjacent to w and y0 be a vertex adjacent to y,

with neither w0 nor y0 in P . The vertex b has at least two children, w0 and y0, in blk(G0) and

7

1

2

3

4 5

6

7 8

9

10

12

11

13

14 1

2

3

4 5

6

7 8

9

10

12

11

13

14

3 6

5

9

12

A

B

C D

E

F

A

B

C
D

FE

F

A

3

12

A
F

X

X

The graph G.

G’The graph obtained from

by adding an edge between vertices 8 and 10.

G

blk(G) blk(G’)

15

H

15
H

H

6

H

Figure 2: An example of obtaining blk(G0) from blk(G). Vertices of G and G0 circled with a dotted
line are in the same block. For example, vertices 1, 2 and 3 of G are in block A. A vertex that
appears in more than one block is a cutpoint. For example, vertex 3 appears in block A and B,
thus it is a cutpoint. Vertices B, C, D and E in blk(G) are in a cycle if we add an edge between C
and D. The cycle contracts into a new b-vertex X in blk(G0). The degree of a c-vertex in the cycle
decreases by 1 in blk(G0), if the original degree is more than two. A degree-2 c-vertex in the cycle
is eliminated in blk(G0).

8

hence cannot be a leaf. Since leaves u1 and u2 are eliminated in blk(G0) and no new leaf is

created, l0 = l � 2.

Case 2: Suppose that part (2) of the leaf-connecting condition (De�nition 3) holds. Let w

be a b-vertex of degree more than 3. We can �nd at least two c-vertices, y0 and z0, connected

to w, but not in P . The same reasoning used in case 1 can be followed to prove this case. 2

4 The Algorithm

The original linear time sequential algorithm in Rosenthal & Goldner [18] consists of three

stages. However, we have discovered an error in stage 3 of the algorithm in [18]. We

present a corrected version of that stage of the algorithm in [18]. Our parallel algorithm

follows the structure of the corrected sequential algorithm. The �rst two stages are easy

to parallelize and we describe them in Section 4.1 and Section 4.2. However, stage 3 is

highly sequential. Most of our discussion is on a corrected algorithm for stage 3 and its

parallelization (Section 4.3).

We �rst state a lower bound on the number of edges needed to augment a graph to

reach biconnectivity.

Theorem 1 Eswaran & Tarjan [4]: [Lower bound on the augmentation number]

Let G be an undirected graph with h connected components and let q be the number of isolated

vertices in blk(G). Then at least maxfd+ h � 2,d l
2
e + qg edges are needed to biconnect G,

if q + l > 1.

4.1 Stage 1

Theorem 2 Rosenthal & Goldner [18]

Let G be an undirected graph with h connected components. We can connect G by adding h�1

edges, which we may choose to be incident on non-cutpoint vertices in blocks corresponding

to leaves or isolated vertices in blk(G).

Given blk(G), stage 1 is easy to parallelize in time O(log n) optimally on an EREW

PRAM by using the Euler tour technique described in Tarjan & Vishkin [23]. The block

graph can be updated by creating a new b-vertex b and two new c-vertices cv and cw for

9

each new edge (v,w). We create edges from b to cv and b to cw. Let bv and bw be the two

b-vertices in the block graph whose corresponding blocks contain v and w, respectively. We

create edges from cv to bv and from cw to bw.

4.2 Stage 2

Theorem 3 Rosenthal & Goldner [18]

Let G be connected and let v� be a massive vertex in G. Let � = d � 1 � d l
2
e. Then we can

�nd at least 2� + 2 v�-chains. Let Q be the set of v-chain leaves. By adding 2k; k � � edges

to connect 2k + 1 vertices of Q, we can reduce both the degree of the massive vertex and the

number of leaves in the block tree by k.

Corollary 5 Rosenthal & Goldner [18]

Let G be connected and let v� be a massive vertex in G. Let � = d � 1 � d l

2
e and let Q be

the set of v�-chain leaves. By adding 2� edges to connect 2�+1 vertices of Q, we can obtain

a balanced block tree.

In stage 2, v�-chain leaves can be found by �rst �nding the number of leaves in each

subtree rooted at a child of v�. A leaf is in a v�-chain if and only if it is in a one-leaf subtree

rooted at a child of v�. Let Q be the set of vertices (excluding v�) on cycles created by

adding edges. The new block graph can be updated by merging vertices in Q into a single

b-vertex b. Vertices b and v� are connected by a new edge. These procedures can be done

optimally in time O(log n) on an EREW PRAM.

4.3 Stage 3

In this stage, we have to deal with a graph G where blk(G) is balanced. The idea is to add

an edge between two leaves y and z under the conditions that the path P between y and

z passes through all critical vertices and the new block tree has two less leaves if blk(G)

has more than 3 leaves. Thus the degree of any critical vertex decreases by 1 and the tree

remains balanced.

In Rosenthal & Goldner [18], blk(G) is rooted at a b-vertex b�. A path P is found that

contains two leaves y and z such that if blk(G) contains two critical vertices v and w, P

10

A

B

C

D

E

F

G

H

I J

K

L

M

N

O

A

E

F

G

H

I J

K

L

M

X

J

K

L

M

A

D

N

O

X

Figure 3: A counter example for the linear time sequential algorithm given by Rosenthal & Goldner.
The left tree is blk(G) rooted at B. Vertex A is the c-vertex with the largest degree. The middle
tree is the new block tree after connecting two non-cutpoint vertices of G in the corresponding
blocks represented by C and D. The number of leaves decreases by 1. The right tree is the new
block tree after connecting two non-cutpoint vertices of G in the corresponding blocks represented
by C and E. The number of leaves decreases by 2. The pair C and D could be chosen by the
algorithm given by Rosenthal & Goldner while the pair C and E can be chosen to reduce the
number of leaves by 2.

contains both of them. If blk(G) contains less than 2 critical vertices, P contains b� and a

c-vertex with degree d (recall that d is the maximum degree of any c-vertex). It is possible

that in the case that blk(G) is balanced with more than three leaves and less than two critical

vertices, P contains only one vertex of degree more than 2. If we add an edge between the

two end points of P , it is possible that the new block tree has only one less leaf. An example

of this is shown in Figure 3. Thus the lower bound cannot be achieved by this method.

We now give a corrected version of stage 3 which runs in linear time. Our method

is based on the proof of the tight bound given in Eswaran & Tarjan [4], but we add an

additional step to handle the case d = 2 (that is, a1 = 1); the analysis of this case is omitted

in [4]. We present our revised version of stage 3 below.

graph function seq bca(graph G);

f� G has at least 3 vertices and blk(G) is balanced; l is the number of degree-1 vertices in

blk(G); a1 + 1 is the largest degree of all c-vertices in blk(G). �g

tree T ; vertex v;w; y; z; �; �;

let T be blk(G) rooted at an arbitrary b-vertex;

do l � 2 !

11

if a1 = 1 ! if l = 2 ! let v be any c-vertex in T ; w := v

j l > 2 !

1. let v be a b-vertex with degree greater than 2;f�Such a vertex

must exist if l > 2 and a1 = 1. �g

w := v;f� This is the default value for w. �g

if 9 a b-vertex in T � v with degree greater than 2 !

2. let w be a b-vertex in T � v with degree greater than 2

�

�

j a1 > 1 !

3. let v be a c-vertex with the largest degree in T ;

if the largest degree for c-vertices in T � v is greater than 2 !

4. let w be a c-vertex in T � v with the largest degree

j the largest degree for c-vertices in T � v is less than 3

or there is no c-vertex in T � v !

w := v;f� This is the default value for w. �g

if 9 a b-vertex in T with degree greater than 2 !

5. let w be a b-vertex in T with degree greater than 2

�

�

�;

6. �nd two leaves y and z such that the path between them passes through v and w;

�nd a non-cutpoint vertex � in the corresponding block of G represented by y;

�nd a non-cutpoint vertex � in the corresponding block of G represented by z;

add an edge between � and �; update the block graph T

od;

return G

end seq bca;

Claim 1 If blk(G) is balanced, we can biconnect G by adding d l

2
e edges using algorithm

seq bca.

Proof: We �rst discuss the case when blk(G) has more than 3 leaves. In this case, a critical

vertex must have degree more than 2.

12

Case 1: If blk(G) has two critical vertices v and w, then algorithm seq bca �nds them in

steps 1 and 2 or 3 and 4, respectively.

Case 2: If blk(G) has only one critical vertex v, algorithm seq bca �nds it in step 1 or step 3.

Because blk(G) is balanced and l > 3, there must exist another vertex w with degree more

than 2. Otherwise v is massive. Algorithm seq bca �nd w in one of the steps 1, 2, 4 or 5.

Case 3: The block tree blk(G) has no critical vertex. Then either there is only one vertex

(which must be a b-vertex) with degree more than 3 or there are two vertices with degrees

more than 2. If there is only one vertex v with degree more than 3, algorithm seq bca �nds v

in step 1. Suppose there are two vertices v and w with degrees more than 2 in the block tree.

If v and w are both c-vertices, algorithm seq bca �nds them in steps 3 and 4, respectively.

If v and w are both b-vertices, algorithm seq bca �nds them in steps 1 and 2, respectively.

If one of v and w is a c-vertex and the other one is a b-vertex, algorithm seq bca �nds the

c-vertex in step 3 and the b-vertex in step 5.

In all three cases, we can �nd two vertices of degree more than 2 or a b-vertex of degree

more than 3. Thus by Lemma 2, the number of leaves in the new block tree reduces by two.

Because v and w are the possible critical vertices, we reduce the value of d by 1. Thus the

block tree remains balanced. Hence we can achieve the lower bound in Eswaran & Tarjan

[4] by the algorithm.

For the case of l = 3, we can reduce blk(G) into a new block tree with two leaves by

picking any pair of leaves in blk(G) and connecting them. We know that we can reduce a

block tree of 2 leaves into a single vertex by connecting the two leaves. Thus the claim is

true. 2

Claim 2 Algorithm seq bca runs in O(n +m) time.

Proof: The block tree can be built in O(n +m) time. The total number of vertices in the

block tree is O(n). A linear time bucket sort routine is used to sort degrees of c-vertices

and b-vertices. The data structure in Rosenthal & Goldner [18] can be used to keep track

of current degrees of vertices in blk(G). Vertices in blk(G) with the same degree are kept in

a linked list. An array is used to store the �rst element of each linked list. A vertex of the

largest degree can be found in constant time and the position, in the array of linked list, of a

vertex in the path found in step 6 can also be updated in constant time. To implement step

6, algorithms in Harel & Tarjan [10] and Schieber & Vishkin [19] are used to �nd the path

P between two vertices v and w in O(jP j) time. By Fact 1, the number of times a vertex is

13

visited is no more than its degree. Since the summation of degrees of all vertices in a tree

with n vertices is O(n), the claim is true. 2

In the rest of this section we describe an e�cient parallel algorithm for stage 3. Recall

that the sequential algorithm adds one edge at a time and keeps adding edges until the

block tree becomes a single vertex. In our parallel algorithm, however, we will �nd several

pairs of leaves such that the path between any such pair of leaves passes through all critical

c-vertices, if any. Thus the degrees of critical vertices in the new block tree decrease by the

number of edges added to the original block tree. These pairs also satisfy the leaf-connecting

condition (De�nition 3), which guarantees that the number of leaves in the new block tree

decreases by twice the number of edges added. The following Lemma 3 tells us that the

addition of several edges in parallel as outlined above is a valid strategy.

Lemma 3 Let G be a graph whose block graph is balanced and let G0 be the graph obtained

from G by adding a set of k edges A = f(s1; t1), (s2; t2),� � �,(sk; tk)g. For each i, 0 � i � k,

let Gi be the graph obtained from G by adding the set of edges f(s1; t1),� � �,(si; ti)g. Let s0i
and t0i, 0 � i � k, be the b-vertices in blk(Gi) whose corresponding blocks contain si and ti,

respectively. If the path between s0i+1 and t0i+1, 8i, 1 � i < k, in blk(Gi) passes through all

critical vertices in blk(Gi) and s0i+1 and t
0
i+1 satisfy the leaf-connecting condition in Gi, then

blk(G0) remains balanced and the value of the lower bound given in Theorem 1 applied to G0

is k less than the same lower bound applied to G.

Proof:We always obtain the same block graph for Gk no matter in what sequence we choose

to add these k edges, since there is an unique block graph for each graph G. Thus blk(G0)

= blk(Gk). Since blk(Gi), 8i, 1 � i � k, is balanced, blk(G0) is balanced. We know that the

value of lower bound given in Theorem 1 applied to Gi is 1 less than the value of the same

lower bound applied to Gi�1, 8i, 1 � i � k, where G0 = G. Hence the value of the lower

bound given in Theorem 1 applied to G0 is k less than the value of the same lower bound

applied to G. 2

From Theorem 1 and Claim 1, we know that exactly d l
2
e edges must be added to bicon-

nect G if blk(G) is balanced. That is, we have to eliminate l leaves during the computation.

Our parallel algorithm runs in stages with at least 1

4
of the current leaves eliminated in

parallel time O(log n) using a linear number of processors during each stage. We call this

subroutine O(log n) times to complete the augmentation.

14

v
1

U1

b*

the leftmost leaf

...

...

Figure 4: Each shadowed rectangle represents the leftmost leaf in a subtree rooted a child of v1.
Leaves in U1 consist of leftmost leaves in every subtree rooted a child of v1.

Recall that ai + 1 is equal to the degree of the ith c-vertex vi and ai � ai+1. T 0 is the

subtree obtained from T by deleting the subtree rooted at v1. Let Ui = fuju is the leftmost

leaf of Ty, where y is a child of vig. For example, the leaves in U1 are illustrated as shadowed

rectangles in Figure 4.

Depending on the degree distribution of vertices in the block tree, the parallel algorithm

for stage 3 is divided into 2 cases. In case one, a1 >
l

4
. We have a c-vertex with a high

degree. We pick the �rst minfa1�1, d l
2
e�a3g leaves in U1 and call themW1. Leaves in W1

are matched with the �rst minfjW1j,jU2j � 1g leaves in U2. Unmatched leaves in W1, if any,

are matched with all remaining leaves but one in T 0 and �nally properly matched within

themselves, if necessary. In case two, a1 �
l

4
. There is no c-vertex with a large degree. We

show that we can �nd a vertex u� with approximately the same number of leaves in each

subtree rooted at a child of u�. If u� is a b-vertex, a suitable number of leaves between

subtrees rooted at children of u� are matched. Otherwise, u� is a c-vertex and a suitable

number of subtrees rooted at children of u� are �rst merged into a single subtree rooted at

u�. Then leaves in the merged subtree are matched with leaves outside.

The algorithm �rst �nds the matched pairs of leaves in each case. Then we add edges

between matched pairs of leaves and update the block tree at the end of each case. The

block tree and the sequence of cutpoints v1; � � � ; vnc
will not be changed during the execution

of each case.

We now describe the two cases in detail.

15

b*

v2

1v

...

...

Figure 5: A normalized tree. Vertex v1 is a c-vertex with the largest degree. Vertex v2 is a c-vertex
with a degree larger than or equal to any other c-vertices in T � v1. We permute the children of v1
in non-increasing order (from left to right) of the number of leaves in subtrees rooted at them.

4.3.1 Case 1: a1 >
l
4

We root the block tree at the b-vertex b� which is adjacent to v1 and is on the path from v1

to v2. Let v1 be the leftmost child of b�. We permute the children of v1 in non-increasing

order (from left to right) of the number of leaves in subtrees rooted at them. We will call

this procedure tree-normalization and the resulting tree T . Figure 5 illustrates a normalized

tree.

Recall that U1 is the set of leftmost leaves in subtrees rooted at children of v1. We

select the �rst (from left to right) minfa1� 1,d l
2
e � a3g leaves from U1 and call the set W1.

The order of the leaves as speci�ed in the original tree is preserved. There are four phases

for this case. In phases 1 and 2, leaves in W1 are matched with leaves not in T1. In phase 3,

leaves in W1 are matched with leaves in T1 excluding those in W1. In phase 4, the remaining

leaves in W1 are matched between themselves. The algorithm executes each phase in turn

once until there is no leaf in W1 left to be matched.

We now describe the four phases in detail. After the description, we give the overall

parallel algorithm for case 1 and prove that it eliminates a constant fraction of the leaves

while maintaining the lower bound described in Theorem 1.

Phase 1: All leaves but the rightmost one in U2 are matched with the rightmost a2� 1

leaves of W1. The matched leaves are removed from W1. An example of the pairs of leaves

matched in phase 1 is given in Figure 6.

16

*

1

2

b

v

v

2

l
3a-

...

U

W

a -12

1

2

.........

min a -11
{ },

Figure 6: Pairs of matched leaves found in phase 1 of case 1 are connected by dotted lines. W1

consists of the leftmost leaves from the �rst minfa1� 1,d l
2
e�a3g subtrees rooted at children of v1.

All of the leftmost leaves in subtrees rooted at children of v2 are in the set U2, and all except the
rightmost leaf in U2 are matched (if possible).

set of pairs of vertices function phase1(modi�es set of vertices W1; U2);

set of pairs of vertices L; vertex u; v;

L := fg;f� L is the set of matched pairs. �g

number leaves in W1 from right to left starting from 1;

number leaves in U2 from left to right starting from 1;

k := minfjU2j � 1,jW1jg;

pfor i = 1 .. k !

u := the ith leaf in W1; remove u from W1;

v := the ith leaf in U2; remove v from U2;

L := L [f(u; v)g

rofp;

return L

end phase1;

Phase 2: We match all remaining leaves but one in T 0 with the rightmost leaves of W1

and remove matched leaves from W1. An example of the pairs of leaves matched in phase 2

17

*

1

b

v

...

W1

T’

... ...

... ...

Figure 7: Pairs of matched leaves found in phase 2 of case 1 are connected by dotted lines. Recall
that T1 is the subtree of T rooted at v1. T

0 is the subtree of T obtained by deleting T1. W1 consists
of the leftmost leaves in the �rst minfa1 � 1,d l

2
e � a3g�a2 + 1 subtrees rooted at children of v1.

Leaves in W1 are matched with all but the rightmost leaf in T 0.

is given in Figure 7.

set of pairs of vertices function phase2(modi�es set of vertices W1,tree T 0);

set of pairs of vertices L; vertex u,v;

L := fg;f� L is the set of matched pairs. �g

number leaves in W1 from right to left starting from 1;

number leaves in T 0 from left to right starting from 1;

k := minfthe number of leaves in T 0 minus 1, jW1jg;

pfor i = 1 .. k !

u := the ith leaf in W1; remove u from W1; v := the ith leaf in T 0;

L := L [f(u; v)g

rofp;

return L

end phase2;

Phase 3: Recall that T is the original block tree before phase 1, l is the number of

leaves in T , v1 is a c-vertex with the largest degree in T , T1 is the subtree of T rooted at v1,

l1 is the number of leaves in T1, T
0 is the tree obtained from T by removing T1 and U1 = fuju

is the leftmost leaf of Ty, where y is a child of v1g. Note that there are minfa1� 1,d l

2
e� a3g

�(l� l1� 1) leaves remaining in W1. Leaves in W1 come from the �rst jW1j members (from

18

2Q

*

1

b

v

...1z z
r-1 z

r
z
h

1Q

W1

...

.....................

y

s

Figure 8: Notations used in the proof of a claim used in phase 3 of case 1. The tree shown is T �,
the updated block tree obtained by adding edges between pairs of matched leaves found in phase
1 and phase 2. Q2 consists of all but the rightmost leaf in each subtree rooted at a child of v1. Q1

consists of v1-chain leaves in W1 after phase 2. The number of subtrees rooted at a child of v1 with
more than one leaf is r. the number of v1-chain leaves not in Q1 is y.

left to right) of U1. Let the set of v1-chain leaves in W1 be Q1. We denote by Q2 the set

of leaves other than the rightmost one of each subtree rooted at a child of v1. (Note that

Q1\Q2 = ;.) In this phase, we match all leaves in Q1 (i.e., all v1-chain leaves inW1) with an

equal number of leaves in Q2. Leaves in W1 that are matched in phase 3 (Q1 and W1 \Q2)

are removed from W1.

Claim 3 shows that we can always �nd enough leaves in Q2 to match all leaves in Q1.

Claim 3 jQ2j � jQ1j, if l > 3.

Proof: If jQ1j = 0, the claim is true. Let jQ1j > 0. Recall that there is only one unmatched

leaf s left in T 0 after phase 2. Let T � be the block tree obtained from T by adding edges

between matched pairs of leaves found in phase 1 and phase 2. We root T � at the b-vertex

b� which is adjacent to v1 and is on the path from v1 to s. Let r be the number of subtrees

rooted at a child of v1 in T � with more than one leaf. Let y be the number of v1-chain leaves

not in Q1. The notations used in this proof are shown in Figure 8.

19

The total number of leaves in T � is equal to jQ1j + jQ2j + r + y + 1 if jQ1j > 0. The

degree of v1 in T � is equal to jQ1j+ r+ y+1. Since T � is balanced (for a proof, see Claim 5

at the end of this section), v1 is not massive and hence

jQ1j+ r + y � d
jQ1j+ jQ2j+ r + y + 1

2
e:

Thus

2jQ1j+ 2r + 2y � jQ1j+ jQ2j+ r + y + 2

) jQ1j+ r + y � 2 � jQ2j

We know that r � 1, otherwise v1 is massive if l > 3. It is also true that y � 1 if jQ1j > 0.

Thus jQ1j � jQ2j. 2

The procedure for phase 3 is described below.

set of pairs of vertices function phase3(modi�es set of vertices Q1; Q2);

set of pairs of vertices L; vertex u; v;

L := fg;f� L is the set of matched pairs. �g

number leaves in Q2 from right to left starting from 1;

number leaves in Q1 from 1 to jQ1j in arbitrary order;

k := jQ1j;

pfor i = 1 .. k !

u := the ith leaf in Q2; remove u from Q2;

v := the ith leaf in Q1; remove v from Q1;

L := L [f(u; v)g

rofp;

return L

end phase3;

Phase 4: The remaining leaves of W1 that are not matched during phase 3 are matched

within themselves. If the number of remaining leaves in W1 is odd, we match one of them

with the rightmost leaf in the subtree rooted at v1. An example of the pairs of leaves matched

in phase 4 is given in Figure 9.

20

*

1

b

v

...1 2 h-1 h
zz zz

...

Figure 9: Illustrating phase 4 of case 1. The remaining leaves in W1 are matched within themselves.

set of pairs of vertices function phase4(modi�es set of vertices W1,tree T);

set of pairs of vertices L; vertex u; v;

L := fg;f� L is the set of matched pairs. �g

number leaves in W1 in arbitrary order from 1 to jW1j;

k := d jW1j
2
e;

pfor i = 1 .. k !

u := the (2 � i� 1)th leaf in W1; remove u from W1;

if 2 � i � jW1j ! v := the (2 � i)th leaf in W1; remove v from W1

j 2 � i > jW1j ! v := the rightmost leaf in the subtree rooted at v1

�;

L := L [f(u; v)g

rofp;

return L

end phase4;

We now describe our algorithm for case 1.

set of pairs of vertices function case1(tree T);

set of pairs of vertices L; set of vertices W1; Q1; Q2;vertex b�; tree T 0;

root T at the b-vertex b� which is adjacent to v1 and is on the path from v1 to v2;

let v1 be the leftmost child of b� in T ;

21

permute the children of v1 in non-increasing order (from left to right)

of the number of leaves in subtrees rooted at them;

W1 := the �rst (from left to right) minfa1 � 1,d l
2
e � a3g leaves of U1;

L := phase1(W1; U2); f� L is the set of matched pairs. �g

if W1 6= fg ! L := L[phase2(W1; T
0) �;

T 0
1
:= the subtree of T1 with the �rst jW1j subtrees rooted at children of v1;

Q1 := the set of v1-chain leaves in Tv1;

Q2 := fuju is a non-leftmost leaf of Ty, where Ty has more than 1 leaf

and y is a child of v1 in T 0
1g;

if W1 6= fg ! L := L[phase3(Q1; Q2) �; W1 := W1 \ Q2;

if W1 6= fg ! L := L[phase4(W1,T) �;

return L

end case1;

Claim 4 The number of matched pairs k in case 1 satis�es d l
2
e � a3 � k � l

8
, if l > 3.

Proof: Let z = minfa1 � 1,d l
2
e � a3g. If the procedure does not execute phase 3 and 4, we

match z pairs. Because a1 � 1 � l

4
and bd l

2
e � a3c � b l

8
c for l > 3 (Corollary 1), we know

that z � l

8
, if l > 3. Otherwise in the worst case, we match only a2� 1 pairs during phase 1

and phase 2. A pair of vertices matched during phase 3 or 4 might be both members of W1.

Thus

k � a2 � 1 + d
z � a2 + 1

2
e �

z + a2 + 1

2
:

If z = d l
2
e � a3, then k �

d l

2
e�1

2
, which is greater than or equal to l

8
if l > 3 and k is an

integer. If z = a1 � 1, then k � da1�1
2
e. Because a1 >

l
4
, k � l

8
. 2

Claim 5

(1) Each pair of matched vertices found in function case1 satis�es the leaf-connecting con-

dition (De�nition 3).

(2) Let us place an edge between each matched pair found in function case1 sequentially and

update the block graph each time we add an edge. Critical vertices, if any, of the block graph

are on the path between the endpoints of each edge placed.

Proof: From part (4) in Fact 1, degrees of v1 and v2 decrease only by 1 by adding an edge

between a pair of vertices matched. Let us consider paths between pairs of vertices matched

22

in each phase. We show that we can �nd at least two vertices with degrees more than 2 in

each path.

Phase 1: The path between each pair of matched vertices passes through v1 and v2 whose

degrees are at least 3.

Phase 2: The path between each pair of matched vertices passes through v1 and the root b�

whose degrees are at least 3.

Phase 3 and phase 4: The path P between each pair of matched vertices passes through v1

whose degree is at least 3. P also passes through a child u of v1 where the subtree rooted at

u has more than one leaf. Thus the degree of u is more than 2.

Thus the leaf-connecting condition (De�nition 3) holds for each pair of matched vertices.

Because we only add minfa1�1,d l
2
e�a3g edges during case 1, v3 and thus vi, 8i, such

that i � 4, does not become critical. From the previous discussion, the path between each

pair of matched vertices passes through v1 and v2, the only two possible critical vertices,

during phase 1. We reduce degrees of possible critical vertices by one by adding one new

edge between each pair of matched vertices. If we match any pair of vertices after phase 1,

the degree of v2 is at most 2 and the degree of v1 is at least 3. Thus v1 is the only possible

critical vertex. The path between each pair of matched vertices passes through v1 after phase

1. We reduce the degree of the possible critical vertex, v1, by one by adding one new edge

between any pair of matched vertices. Thus the claim is true. 2

Corollary 6 Let k be the number of matched pairs found in function case1. Let G0 be the

resulting graph obtained from the current graph G by adding a new edge between each matched

pair of leaves. The value of the lower bound given in Theorem 1 applied to G0 is k less than

the value of the same lower bound applied to G and blk(G0) remains balanced. Let l be the

number of leaves in blk(G). The number of leaves in blk(G0) is at most 3l
4
, if l > 3.

Proof: From part (1) in Claim 5, the number of leaves in blk(G0) is 2k less than the number

of leaves in blk(G). Since k � l

8
if l > 3 (Claim 4), the number of leaves in blk(G0) is at

most 3l

4
if l > 3. From part (2) in Claim 5, the block graph of each intermediate graph

remains balanced even if we place a new edge between each matched pair of leaves found in

function case1 sequentially. By Lemma 3, we know that the value of the lower bound given

in Theorem 1 applied to G0 is k less than the value of the same lower bound applied to G

and blk(G0) remains balanced. 2

23

4.3.2 Case 2: a1 �
l
4

In this case, we take advantage of the fact that no c-vertex has a large degree. Because

there is no critical c-vertex, the algorithm can add at least d l

2
e � a1 edges between leaves

that satisfy the leaf-connecting condition (De�nition 3) without worrying about whether the

path between them passes through a critical c-vertex. This gives a certain degree of freedom

for us to choose the matched pairs. We �rst root the block tree such that no subtree other

than the one rooted at the root has more than half of the total number of leaves.

Given any rooted tree T , we use lv to denote the number of leaves in the subtree rooted

at a vertex v. The following lemma shows that we can reroot T at a vertex u� such that no

subtree rooted at a child of u� has more than half of the total number of leaves.

Lemma 4 Given a rooted tree T , there exists a vertex u� in T such that lu� >
l
2
, but none

of the subtrees rooted at children of u� has more than l

2
leaves.

Proof: We permute children of each non-leaf vertex v from left to right in non-increasing

order of the number of leaves in the subtrees rooted at them. Let us consider the leftmost

path P of the tree T . It is obvious that there exists such a vertex u� in P . 2

We root the block tree at u� and permute children of u� from left to right in non-

increasing order of the number of leaves in subtrees rooted at them. Let the rooted tree be

T . Let ui, 8i, 1 � i � r, be the children (from left to right) of u� and xi be the number

of leaves in the subtree rooted at ui. Note that xi �
l
2
, for each i. There are two subcases

depending on whether u� is a b-vertex or a c-vertex. We describe the two subcases in detail

in the following paragraphs.

Subcase 2.1: u� is a b-vertex

We show that we can partition subtrees rooted at children of the root into two sets \evenly"

such that we can match leaves between the two partitions. We �rst give a claim to show

how to perform the partition.

Claim 6 There exists p, such that 1 � p < r and l
2
�
Pp

i=1 xi >
l
4
.

Proof:We know that xi � xi+1, 8i, 1 � i < r, and xi �
l
2
, 8i, 1 � i � r. Thus 9p; 1 � p < r,

such that

24

*u

...

Z

u1
u
p u

p+1 ur

x x x
1 p p+1

xr

Z2

1

...

Figure 10: The notations used in case 2.1. The number of leaves in the subtree rooted at ui is xi.
We �nd the largest p such that the total number of leaves in the �rst p subtrees rooted at children
of the root is greater than l

4
, but less than or equal to l

2
. Leaves in the �rst p subtrees rooted at

children of b� are in Z1. Z2 consists of the rest of the leaves in the tree.

pX

i=1

xi �
l

2
and

p+1X

i=1

xi >
l

2
:

Because xi � xi+1, 8i, 1 � i < r, we know that
Pp

i=1 xi >
1

2
(l
2
). 2

The notations used for this subcase are illustrated in Figure 10.

Corollary 7
Pp

i=1 xi � l �
Pp

i=1 xi.

We matchminf(
Pp

i=1 xi)�1,d l
2
e�a1g leaves in subtrees Tui

, 8i, 1 � i � p, with leaves

outside them. From Claim 6 and Corollary 7, we know that the matching can be done.

Corollary 8 The number of matched pairs k in case 2.1 satis�es d l
2
e�a1 � k > l

4
, if l > 3.

set of pairs of vertices function case2 1(tree T);

f� l is the number of leaves in T . �g

integer p; set of pairs of vertices L; set of vertices Z1; Z2; vertex u,v;

let ui be the ith (from left to right) child of the root;

let xi be the number of leaves in the subtree rooted at ui;

�nd the largest integer p such that
Pp

i=1 xi �
l
2
, but

Pp+1
i=1 xi >

l
2
;

25

L := fg;f� L is the set of matched pairs. �g

Z1 := the set of leaves in the subtrees rooted at ui, 8i, 1 � i � p;

Z2 := the set of leaves in the subtrees rooted at ui; i > p;

number leaves in Z1 in arbitrary order from 1 to jZ1j;

number leaves in Z2 in arbitrary order from 1 to jZ2j;

k := minf(
Pp

i=1 xi)� 1,d l
2
e � a1g;

pfor i = 1 .. k !

u; v := the ith vertex in Z1 and Z2, respectively;

L := L [f(u; v)g

rofp;

return L

end case2 1;

Claim 7 Any matched pair found in function case2 1 satis�es the leaf-connecting condition

(De�nition 3), if l > 3.

Proof: Consider the path P between a pair of matched leaves u and v. Let u be a leaf in a

subtree rooted at a ux, 1 � x � p, and let v be a leaf in a subtree rooted at a uy, p < y � r.

Since we match minfjZ1j � 1,d l
2
e � a1g leaves in Z1 with an equal number of leaves in Z2

and jZ1j � jZ2j (Corollary 7), there is at least one leaf in a subtree rooted at a ui, 1 � i � p,

that is not matched and there is also another leaf in a subtree rooted at a uj, p < j � r,

that is not matched if l > 3. The path P contains the root. If the degree of the root is

at least 4, u and v satisfy the leaf-connecting condition (De�nition 3). If the degree of the

root is 3, P contains either ui or uj, whose degree is at least 3. Otherwise, P contains both

ui and uj whose degrees are at least 3. Thus u and v satisfy the leaf-connecting condition

(De�nition 3). 2

Corollary 9 Let k be the number of matched pairs found in function case2 1. Let G0 be

the resulting graph obtained from the current graph G by adding a new edge between each

matched pair of leaves. The value of the lower bound given in Theorem 1 applied to G0 is k

less than the value of the same lower bound applied to G and blk(G0) remains balanced. Let

l be the number of leaves in blk(G). The number of leaves in blk(G0) is at most l

2
, if l > 3.

26

Proof: From Claim 7, the number of leaves in blk(G0) is 2k less than the number of leaves in

blk(G). Since k � l

4
if l > 3 (Corollary 8), the number of leaves in blk(G0) is at most l

2
. From

Corollary 8, we add at most d l

2
e�a1 edges, thus no c-vertex in blk(G0) becomes massive. By

Lemma 3, we know that the value of the lower bound given in Theorem 1 applied to G0 is k

less than the value of the same lower bound applied to G and blk(G0) remains balanced. 2

Subcase 2.2: u� is a c-vertex

Recall that the ui, 8i, 1 � i � r, are the children (from left to right) of u� (the root). Let

xi be the number of leaves in the subtree rooted at ui. We know that l

2
� xi, 8i, 1 � i � r,

and xi � xi+1, 8i, 1 � i < r.

We partition the set of subtrees rooted at children of the root into two sets such that

we can match leaves between two sets. We �rst give a claim to show how to partition the

set of subtrees.

Claim 8 Let q be the largest integer with xq � 2. There exists an integer p such that

1 � p � q and l

2
�
Pp

i=1 xi >
l

8
+ (p� 1).

Proof: If x1 >
l
8
, then p = 1. If x1 �

l
8
, we can �nd an integer p such that l

2
�
Pp

i=1 xi >
3l
8

using an argument similar to the one given in the proof of Claim 6. By de�nition, we

know that xp � 2 because otherwise the root (a c-vertex) is massive. Thus p � l

4
. Hence

(
Pp

i=1 xi)� (p� 1) > l

8
. 2

Let Tui
be the subtree rooted at ui. We de�ne the merge operation for the collection

of subtrees Tui
, 8i, 1 � i � p, as follows. We �rst connect the rightmost leaf of Tui

and

the leftmost leaf of Tui+1
, 8i, 1 � i < p. This can be done by the fact that each Tui

, 8i,

1 � i � p, has at least 2 leaves.

Claim 9 Let T � be the block tree obtained from T by collapsing b-vertices that are in the same

fundamental cycle created by the addition of new edges introduced by the merge operation.

(1) The merge operation creates only one b-vertex b�.

(2) Vertex b� is a child of the root and b� is the root of the subtree that contains the updated

portion of the block tree.

Proof: Let Ci, 8i, 1 � i < p, be the fundamental cycle created by connecting the rightmost

leaf of Tui
and the leftmost leaf of Tui+1

. The cycles Ci and Ci+1, 8i, 1 � i < p�1, share the

27

x
1

xp+1 xr

Y2

Y 1

x
2 p-1

xpx

*u

...u1 u
p u

p+1 ur...
u
p-1u2

... ...
... ...

Figure 11: The notations used in case 2.2. The number of leaves in the subtree rooted at ui is xi.
We �nd the largest p such that the total number of leaves in the �rst p subtrees rooted at children
of the root is greater than l

8
+ (p � 1), but at most l

2
. We �rst merge subtrees rooted at ui, 8i,

1 � i � p, by connecting the rightmost leaf in the subtree rooted at ui and the leftmost leaf in the
subtree rooted at ui+1, 8i, 1 � i < p. Leaves in the �rst p subtrees rooted at children of u� are in
Y1. Y2 consists of the rest of leaves in the tree. We then match minf(

Pp
i=1 xi) � 1, d l

2
e � a1g �

(p� 1) leaves in Y1 with leaves in Y2.

b-vertex ui. From part (2) in Fact 1, we know that all b-vertices in cycles Ci, 8i, 1 � i < p,

shrink into a single b-vertex in the new block tree. Let this new b-vertex be b�. Thus part

(1) of the claim is true. Part (2) of the claim follows from part (4) in Fact 1. 2

Note that if we root the updated block tree T � given in Claim 9 at the b-vertex b�, the

situation is similar to that in case 2.1. Thus we can match an additional minf(
Pp

i=1 xi) �

1,d l
2
e � a1g � (p � 1) pairs of vertices by pairing up unmatched leaves in subtrees Tui

, 8i,

1 � i � p, and leaves in subtrees in subtrees Tui
, 8i, p < i � r. This procedure is given

below in case2 2. The notations used are shown in Figure 11.

Corollary 10 The number of matched pairs k in case 2.2 satis�es d l
2
e � a1 � k � l

8
, if

l > 3.

set of pairs of vertices function case2 2(tree T);

vertex u,v; integer p; set of vertices Y1; Y2; set of pairs of vertices L;

let ui, 8i, 1 � i � r, be the children of the root u�;

let Tui
be the subtree rooted at ui; let xi be the number of leaves in Tui

;

�nd the largest integer p such that l
2
�
Pp

i=1 xi >
l
8
+ (p � 1);

Y1 := the set of leaves in the subtrees rooted at ui, 8i, 1 � i � p;

28

Y2 := the set of leaves in the subtrees rooted at ui; i > p;

L := fg; f� L is the set of matched pairs. �g

pfor i = 1 .. p� 1 !

let u be the leftmost leaf of Tui
; let v be the rightmost leaf of Tui+1

;

L := L[f(u; v)g; remove u and v from Y1

rofp;

number the leaves in Y1 in arbitrary order from 1 to jY1j;

number the leaves in Y2 in arbitrary order from 1 to jY2j;

k := minf
Pp

i=1 xi,d
l

2
e � a1g � (p � 1);

pfor i = 1 .. k !

u; v := the ith vertex in Y1 and Y2, respectively;

L := L [f(u; v)g

rofp;

return L

end case2 2;

Claim 10 Each pair of vertices matched in function case2 2 satis�es the leaf-connecting

condition (De�nition 3), if l > 3.

Proof: By Claim 9 and similar arguments given in the proof of Claim 7. 2

Corollary 11 Let k be the number of matched pairs found in function case2 2. Let G0 be

the resulting graph obtained from the current graph G by adding a new edge between each

matched pair of leaves. The value of the lower bound given in Theorem 1 applied to G0 is k

less than the value of the same lower bound applied to G and blk(G0) remains balanced. Let

l be the number of leaves in blk(G). The number of leaves in blk(G0) is at most 3l

4
, if l > 3.

Proof: From Claim 10, the number of leaves in blk(G0) is 2k less than the number of leaves

in blk(G). Since k � l

8
if l > 3 (Corollary 10), the number of leaves in blk(G0) is at most

3l
4
. From Corollary 10, we add at most d l

2
e � a1 edges, thus no c-vertex in blk(G0) becomes

massive. By Lemma 3, we know that the value of the lower bound given in Theorem 1

applied to G0 is k less than the value of the same lower bound applied to G and blk(G0)

remains balanced. 2

The complete procedure for case 2 is shown below.

29

set of pairs of vertices function case2(tree T);

f� l is the number of leaves in T ; a1 + 1 is the largest degree of all c-vertices in T . �g

vertex u�;

root T at an arbitrary vertex;

�nd a vertex u� such that there are more than l
2
leaves in the subtree rooted at u�,

but none of the subtrees rooted at a child of u� have more than l

2
leaves;

root T at u�;

permute children of u� (from left to right) in non-increasing order of

the number of leaves in subtrees rooted at them;

if u� is an b-vertex ! return case2 1(T) j u� is a c-vertex ! return case2 2(T) �

end case2;

The correctness of this algorithm is shown earlier in the two subcases (Corollary 9 and

Corollary 11).

5 The Complete Parallel Algorithm and Its Implementation

We �rst describe the overall parallel algorithm and then an e�cient parallel implementation

on an EREW PRAM.

5.1 The Complete Parallel Algorithm

We are ready to present the complete parallel algorithm for the biconnectivity augmentation

problem.

graph function par bca(graph G);

f� The input graph G has at least 3 vertices; l is the number of leaves in the block graph T .

�g

set of pairs of vertices L; tree T ; vertex u, v, �, �; set of edges S;

T := blk(G);

if T is a forest ! perform the procedure speci�ed in Section 4.1 �;

if T is not balanced ! perform the procedure speci�ed in Section 4.2 �;

do l � 2 !

30

if l > 3 ! if a1 >
l

4
! L := case1(T) j a1 �

l

4
! L := case2(T) �

j l � 3 ! let u and v be two leaves in T ; L := f(u; v)g

�;

S := fg;

pfor each (u; v) 2 L !

�nd a non-cutpoint vertex � in the corresponding block of G represented by u;

�nd a non-cutpoint vertex � in the corresponding block of G represented by v;

add an edge between � and �; S := S [f(u; v)g

rofp;

1. T := par update(T ,S) f� The procedure par update returns the updated block tree

after adding the set of edges in S. �g

od;

return G

end par bca;

The correctness of algorithm par bca follows from the correctness we established earlier

of the various cases (Corollary 6, Corollary 9 and Corollary 11).

In the previous sections, we have shown details of each step in algorithm par bca except

step 1. We now describe an algorithm for updating the block tree given the original block

tree T and the set of edges S added to it (step 1 in algorithm par bca).

To describe the parallel algorithm for updating the block graph T after adding a set

of edges S, we de�ne the following equivalence relation R on the set of b-vertices B, where

B=fvjv is a b-vertex in T and v is in a cycle created by adding the edges in Sg. A pair (x,y)

is in R if and only if x 2 B, y 2 B and vertices in blocks represented by x and y are in

the same block after adding the edges in S. It is obvious that R is re
exive, symmetric and

transitive. Since R is an equivalence relation, we can partition B into k disjoint subsets Bi,

1 � i � k, such that for each i, x; y 2 Bi implies (x,y) 2 R and for any (x,y) 2 R, x and y

both belong to the same Bi.

The following claim can easily be veri�ed by using Fact 1 and the above de�nition for

the equivalence relation on the set of b-vertices.

Claim 11 Two b-vertices b1 and b2 are in the same equivalence class if and only if there

exists a set of fundamental cycles fC0; � � � ; Cqg such that b1 2 C0, b2 2 Cq and Ci and Ci+1

31

share a common b-vertex, for 0 � i < q. 2

Notice that fundamental cycles in the block tree created by adding edges between pairs

of leaves found in phase 1 and phase 2 of case 1 and subcase 2.1 share a common b-vertex (the

root). Any pair of fundamental cycles created by adding edges between pairs of leaves found

in phase 3 of case 1 either share a child of v1 (a b-vertex) or do not share any b-vertex at

all. Fundamental cycles created by adding edges between pairs of leaves found in phase 4 of

case 1 do not share any b-vertex with any other fundamental cycle. Any pair of fundamental

cycles created by adding edges between pairs of leaves found in subcase 2.2 share either the

root (a b-vertex) or a b-vertex created by the merge operation (Claim 9).

From the above discussion, we know that b-vertices in fundamental cycles formed by

adding edges due to phase 1 and phase 2 of case 1 shrink into a single b-vertex in the new

block tree. The b-vertices in fundamental cycles formed by adding edges due to phase 3 of

case 1 which share a common child of v1 shrink into a single b-vertex. The b-vertices in

a fundamental cycle formed by adding edges due to phase 4 of case 1 shrink into a single

b-vertex. The b-vertices in all fundamental cycles formed by adding edges due to subcase 2.1

or subcase 2.2 shrink into a single b-vertex. Thus we know how to compute the equivalence

classes of R.

We now describe the algorithm for updating the block tree given the original block tree

T and the set of edges S added to it.

tree function par update(tree T ,set of edges S);

vertex w; integer k; set of edges S1,S2,S3,S4;

let B be the set of b-vertices in a cycle in T [S;

f� The partition fBij1 � i � kg of B is computed such that two b-vertices b1 and b2 are

in the same set if and only if there exists a set of fundamental cycles fC0; � � � ; Cqg in

T [S with b1 2 C0, b2 2 Cq and Ci and Ci+1 share a common b-vertex, 80 � i < q. �g

if S is constructed from pairs found in case 1 !

let Si, 8i, 1 � i � 4, be the edges in S corresponding to the pairs found in phase i;

let B1 be the set of b-vertices in fundamental cycles in T [S1 [S2;

pfor the ith child zi of v1 !

let Bi+1 be the set of b-vertices in fundamental cycles in T [S3 that contain zi

rofp;

32

k := 1 + the number of children of v1 in T ;

pfor the ith edge ei in S4 !

let Bi+k be the set of b-vertices in the fundamental cycle in T [feig

rofp;

k := k + jS4j

j S is constructed from the pairs found in case 2 !

B1 := B; k := 1

�;

pfor i = 1 .. k !

collapse all b-vertices in Bi into a single b-vertex

rofp;

eliminate parallel edges created by collapsing b-vertices;

let T 0 be this graph;

pfor each c-vertex w in T 0 ! if degree(w) = 1 ! eliminate w � rofp;

return T 0

end par update;

Claim 12 Function par update returns the updated block tree.

Proof: From Claim 11 and parts (3) and (4) in Fact 1. 2

Note that we can get the updated block tree by using an algorithm for �nding bicon-

nected components. We will, however, show in Section 5.2 that the time needed on an EREW

PRAM for updating the block tree using function par update is less than what is needed

to compute connected components using a linear number of processors. Hence we do not

want to use the straightforward algorithm for �nding connected components to implement

function par update.

5.2 The Parallel Implementation

We now describe an e�cient parallel implementation for algorithm par bca.

Given an undirected graph, we can �nd its block graph in time O(log2 n) using a linear

number of processors on an EREW PRAM by the parallel algorithm in Tarjan & Vishkin

33

[23] for �nding biconnected components and using some procedures in Nath & Maheshwari

[16].

The parallel versions of stage 1 and stage 2 are described in Section 4.1 and Section 4.2,

respectively. In stage 3, the children-permutation procedure can be done in time O(log n)

using a linear number of processors on an EREW PRAM by calling the parallel merge

sort routine in Cole [2] and using the Euler tour technique in Tarjan & Vishkin [23] to

restructure and normalize the tree. To perform functions case1, case2 and par update, we

need the following procedures.

� A procedure that numbers leaves in the tree from left to right or from right to left.

� For each vertex v in a tree, �nd the number and the set of leaves in the subtree rooted

at v.

� For a vertex v in a tree, �nd the leftmost leaf of each subtree rooted at a child of v.

� For a tree T with a set of edges S added between leaves in T , compute:

{ the number of cycles that pass through a vertex in T [S;

{ the set of vertices in a cycle in T [S.

All of these procedures can be done in O(log n) time using a linear number of processors on

an EREW PRAM by using the Euler technique in Tarjan & Vishkin [23] and procedures in

Schieber & Vishkin [19].

From Corollary 6, Corollary 9 and Corollary 11, we know that algorithm par bca

removes at least a quarter of the leaves in the current block graph during each execution

of the do loop. Initially, the number of leaves is at most n. Hence the main do loop in

algorithm par bca is executed O(log n) times. Each iteration takes O(log n) time using a

linear number of processors, since the parallel sorting routine used in permuting children

needs O(n) processors. This establishes the following claim.

Claim 13 The biconnectivity augmentation problem on an undirected graph can be solved

in time O(log2 n) using a linear number of processors on an EREW PRAM, where n is the

number vertices in the input graph.

34

6 Conclusion

In this paper we have presented a linear time sequential algorithm and an e�cient parallel

algorithm to �nd a smallest augmentation to biconnect a graph. Our sequential algorithm

corrects an error in an earlier algorithm proposed for this problem in Rosenthal & Goldner

[18]. Our parallel algorithm is new, and it runs in O(log2 n) time using a linear number of

processors on an EREW PRAM. Although the parallel algorithm follows the overall structure

of our sequential algorithm, the parallelization of some of the steps required new insights into

the problem. Our parallel algorithm can be made to run within the same time bound using

a sublinear number of processors by using the algorithm for �nding connected components

in [3] and the algorithm for integer sorting in [9].

35

References

[1] G.-R. Cai and Y.-G. Sun, The minimum augmentation of any graph to a k-edge-

connected graph, Networks, 19 (1989), pp. 151{172.

[2] R. Cole, Parallel merge sort, SIAM J. Comput., 17 (1988), pp. 770{785.

[3] R. Cole and U. Vishkin, Approximate and exact parallel scheduling with applications

to list, tree and graph problems, in Proc. 27th Annual IEEE Symp. on Foundations of

Comp. Sci., 1986, pp. 478{491.

[4] K. P. Eswaran and R. E. Tarjan, Augmentation problems, SIAM J. Comput., 5

(1976), pp. 653{665.

[5] A. Frank, Augmenting graphs to meet edge-connectivity requirements, in Proc. 31th

Annual IEEE Symp. on Foundations of Comp. Sci., 1990, pp. 708{718.

[6] H. Frank and W. Chou, Connectivity considerations in the design of survivable

networks, IEEE Trans. on Circuit Theory, CT-17 (1970), pp. 486{490.

[7] G. N. Frederickson and J. Ja'Ja', Approximation algorithms for several graph

augmentation problems, SIAM J. Comput., 10 (1981), pp. 270{283.

[8] D. Gusfield, Optimal mixed graph augmentation, SIAM J. Comput., 16 (1987),

pp. 599{612.

[9] T. Hagerup, Towards optimal parallel bucket sorting, Information and Computation,

75 (1987), pp. 39{51.

[10] D. Harel and R. E. Tarjan, Fast algorithms for �nding nearest common ancestors,

SIAM J. Comput., 13 (1984), pp. 338{355.

[11] T.-s. Hsu and V. Ramachandran, A linear time algorithm for triconnectivity aug-

mentation, in Proc. 32th Annual IEEE Symp. on Foundations of Comp. Sci., 1991,

pp. 548{559.

[12] S. P. Jain and K. Gopal, On network augmentation, IEEE Trans. on Reliability,

R-35 (1986), pp. 541{543.

36

[13] Y. Kajitani and S. Ueno, The minimum augmentation of a directed tree to a k-edge-

connected directed graph, Networks, 16 (1986), pp. 181{197.

[14] R. M. Karp and V. Ramachandran, Parallel algorithms for shared-memory ma-

chines, in Handbook of Theoretical Computer Science, J. van Leeuwen, ed., North

Holland, 1990, pp. 869{941.

[15] D. Naor, D. Gusfield, and C. Martel, A fast algorithm for optimally increasing

the edge-connectivity, in Proc. 31th Annual IEEE Symp. on Foundations of Comp. Sci.,

1990, pp. 698{707.

[16] D. Nath and N. Maheshwari, Parallel algorithms for the connected components and

minimal spanning tree problems, Information Processing Letters, 14 (1982), pp. 7{11.

[17] V. Ramachandran, Parallel open ear decomposition with applications to graph bi-

connectivity and triconnectivity, in Synthesis of Parallel Algorithms, J. H. Reif, ed.,

Morgan-Kaufmann, 1992, to appear.

[18] A. Rosenthal and A. Goldner, Smallest augmentations to biconnect a graph, SIAM

J. Comput., 6 (1977), pp. 55{66.

[19] B. Schieber and U. Vishkin, On �nding lowest common ancestors: Simpli�cation

and parallelization, in Proc. 3rd Aegean Workshop on Computing, vol. LNCS #319,

Springer-Verlag, 1988, pp. 111{123.

[20] D. Soroker, Fast parallel strong orientation of mixed graphs and related augmentation

problems, Journal of Algorithms, 9 (1988), pp. 205{223.

[21] K. Steiglitz, P. Weiner, and D. J. Kleitman, The design of minimum-cost

survivable networks, IEEE Trans. on Circuit Theory, CT-16 (1969), pp. 455{460.

[22] R. E. Tarjan, Data Structures and Network Algorithms, SIAM Press, Philadelphia,

PA, 1983.

[23] R. E. Tarjan and U. Vishkin, An e�cient parallel biconnectivity algorithm, SIAM

J. Comput., 14 (1985), pp. 862{874.

[24] S. Ueno, Y. Kajitani, and H. Wada,Minimum augmentation of a tree to a k-edge-

connected graph, Networks, 18 (1988), pp. 19{25.

37

[25] T. Watanabe, An e�cient way for edge-connectivity augmentation, Tech. Rep. ACT-

76-UILU-ENG-87-2221, Coordinated Science lab., University of Illinois, Urbana, IL,

1987.

[26] T. Watanabe and A. Nakamura, On a smallest augmentation to triconnect a

graph, Tech. Rep. C-18, Department of Applied Mathematics, faculty of Engineering,

Hiroshima University, Higashi-Hiroshima, 724, Japan, 1983. revised 1987.

[27] T. Watanabe and A. Nakamura, Edge-connectivity augmentation problems, J.

Comp. System Sci., 35 (1987), pp. 96{144.

[28] T. Watanabe and A. Nakamura, 3-connectivity augmentation problems, in Proc.

of 1988 IEEE Int'l Symp. on Circuits and Systems, 1988, pp. 1847{1850.

[29] T. Watanabe, T. Narita, and A. Nakamura, 3-edge-connectivity augmentation

problems, in Proc. of 1989 IEEE Int'l Symp. on Circuits and Systems, 1989, pp. 335{338.

38

