
A APPENDIX: AN EXAMPLE TO ILLUSTRATE ALGORITHM 1 28

r

e e
e e

ee

v
1v 3

v 7

1

245

6

7

e
14

Figure 11: The primal graph G when the do loop in step 4 of Algorithm 1 terminates.

r

v v v

e ee e

*

1
*

2
*

7
*

1

*

2
*e

4
*

14
*+

5
*

# # #

e + e6 7
* *

Figure 12: The dual graph G� after the nontrivial scc (r�; v�8; v
�

2) is condensed to r�.



A APPENDIX: AN EXAMPLE TO ILLUSTRATE ALGORITHM 1 27

v

r

e

v

e e
e e

eee

v
1

2
v 3

v 7

8

1

2

3

45

6

7

8

e
14

Figure 9: Delete the edges connected to the two bad blue vertices in G.

r

v v

v

v v

e ee

e +e e

e

e

*

1
*

2
*

3
*

7
*

8
*

1
*

2
*

3
*

e4
*

5
*

6

*

7
*

8
*

14
*

# #

#

# #

Figure 10: Merge v�4 , v
�

9 and v�10 to r
�. The vertex v�8 becomes a tree vertex of T .



A APPENDIX: AN EXAMPLE TO ILLUSTRATE ALGORITHM 1 26

v v

r

e

v

e e
e e

eee

v
1

2
v 3

v4

v 7

8 9

v 10

1

2

3

45

6

7

8

e
12e13

e
14

Figure 7: Delete link edges e9; e10; e11 and e15 in G.

r

v v

v
v

v v v v

e ee

e +e e e
e

e

e

*

1
*

2
*

3
* 4

*

7
*

8 9
*

10
*

1
*

2
*

3
*

e4
*

5
*

6

*

7
*

8
* 12

*
13
*

14
*

+

# # #

# #

Figure 8: Condense the nontrivial scc (r�; v�5; v
�

6) to r� in G�.



A APPENDIX: AN EXAMPLE TO ILLUSTRATE ALGORITHM 1 25

A Appendix: An Example to Illustrate Algorithm 1

e

v v

r
e e ev v

e

v

e e
e e

eee

v
1

2
v 3

v4

56

v 7

8 9

v 10

1

2

3

45

6

7

8

91011

e
12e13

14

e
15

Figure 5: A compact digraph G, where the ei's are edges and the vi's are faces. The face r is the

external face of G. A square node represents a blue vertex.

r

v v

v
v

v

v

v v v v

e ee

e +e e e
e

e

e

e

e

e

*

1
*

2
*

3
* 4

*

5
*

6
*

7
*

8
*

9
*

10
*

1
*

2
*

3
*

e4
*

5
*

6

*

7
*

8
*

9
*

10
*

11
*

12
*

13
*

14
*# #

#

#

#

#

#

e
15

*

Figure 6: The dual digraph G� of G with r� being the dual vertex of r. The edges marked with #

are tree edges of the maximal divergent tree T rooted at r�.



REFERENCES 24

[8] Pnueli, A. and Zuck, L.

\Probabilistic veri�cation by tableaux"

Proc. 1st Symp. on Logic in Computer Science, 1986, p322-331.

[9] Ramachandran, V. and Reif, J. H.

\Planarity testing in parallel"

Technical Report, TR 90-15, CS Dept, UT Austin, 1990;

Preliminary version appears as \An optimal parallel algorithm for graph planarity"

Proc. 30th Ann. IEEE Symp. on Foundations of Comp. Sci., 1989, p282-287.

[10] Tarjan, R. E.

\Data structures and network algorithms"

SIAM, Philadelphia, PA, 1983.

[11] Tarjan, R. E.

\Depth-�rst search and linear graph algorithms"

SIAM J. Comp. 1:2, p146-160.

[12] Vardi, M.

\Automatic veri�cation of concurrent probabilistic �nite state programs"

Proc. 26th Symp. on Foundations of Computer Science, 1985, p327-338.

[13] Yannakakis, M.

\ Private communication"

June 1990.



REFERENCES 23

G� if G is compact, and we designed a linear time algorithm for �nding the closed partition of a

compact digraph based on this fact. Using this algorithm, we gave an algorithm for �nding the

closed partition in a general planar digraph which runs in O(n1:5) sequential time.

Our algorithms have a better time complexity than the algorithm known for general digraphs.

A couple of open problems left by this work are:

1. Finding a linear time algorithm for the closed partition problem on a general planar digraph.

2. Improving the time bound for �nding the closed partition of a general digraph.

AcknowledgmentWe thank Mihalis Yannakakis for drawing our attention to the closed par-

tition problem, and the referees for helpful comments on the presentation of this material.

References

[1] Booth, K. and Lueker, G.

\Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree

algorithms"

J. Comp. Syst. Sci., vol 13, 1976, p335-379.

[2] Courcoubetis, C. and Yannakakis, M.

\Verifying temporal properties of �nite-state probabilistic programs"

FOCS 1988, p338-345.

[3] Even, S. and Tarjan, R.

\Computing an st-numbering"

Theoretical Computer Science, vol. 2, 1976, p339-344.

[4] Goldschlager, L. M.

\ The monotone and planar circuit value problems are log space complete for P"

SIGACT News, vol. 9, 1977, p25-29.

[5] Hopcroft, J. E. and Tarjan, R. E.

\E�cient planarity testing"

J. ACM, vol. 21, 1974, p549-568.

[6] Kao, M. and Shannon, G.

\Local reorientation, global order, and planar topology"

Proc. 18th Annual ACM Symp. on Theory of Computing, 1986, p160-168.

[7] Lempel, A., Even, S. and Cederbaum, I.

\An algorithm for planarity testing of graphs"

Theory of Graphs: International Symp., Gordon and Breach, New York, NY, 1967, p215-232.



7 CONCLUSION AND OPEN PROBLEMS 22

Step 1 can be implemented in linear time by various algorithms presented in ([5], [7], [3], [1],

[9]).

Steps 2 and 13 can be implemented in linear time.

Steps 4, 5 and 6 can be implemented in linear time. Since the number of nontrivial sccs in

G� is greater than or equal to
p
n at the beginning of each iteration of the do loop in step 3 of

Algorithm 2, at least
p
n edges are deleted during each iteration. Therefore the do loop in step 3

can be executed for at most
p
n times. Each iteration of the do loop takes O(n) time. Therefore

the total time needed in the do loop in step 3 is O(n1:5).

There are less than
p
n nontrivial sccs in G� at the beginning of step 8. Steps 9, 10 and 11 can

be implemented in linear time. Since each time Algorithm 1 is called, the number of nontrivial sccs

in G� is reduced by at least one (see Lemma 9 below), the do loop in step 8 can be executed for at

most
p
n times and the total time this do loop takes is O(n1:5).

Hence the time complexity of Algorithm 2 is O(n1:5).

Lemma 9 After each iteration of the do loop in step 8 of Algorithm 2, the number of nontrivial

sccs in G� decreases by at least one.

Proof: During each iteration of the do loop in step 8 of Algorithm 2, we choose a vertex v� in

a nontrivial scc S in G� and identify the primal face v as the external face r of G and then call

Algorithm 1.

Algorithm 1 then �nds the nontrivial scc S in G� and condenses it to r� (in steps 5-9 of

Algorithm 1). The condense-scc procedure does not create a new nontrivial scc in G� since the

edges deleted in G� in this procedure correspond to the primal edges in G whose removal combines

some faces with the external face r. Furthermore, the bad blue vertices found in the condense-scc

procedure are on the boundary of the external face r of G. Therefore the only possible nontrivial

scc formed in G� by deleting the edges connected to the bad blue vertices in G (in the two merge

procedures of Algorithm 1) should include the vertex r�. This newly formed nontrivial scc in G�

will be repeatedly condensed in the do loop in step 4 of Algorithm 1. Therefore at the end of each

iteration of the do loop in step 8 of Algorithm 2, no nontrivial scc in G� includes r� and no new

nontrivial scc is formed in G�. Hence the lemma holds. []

Theorem 3 Algorithm 2 works in sequential time O(n1:5). []

7 Conclusion and Open Problems

In this paper, we have presented sequential algorithms for �nding the closed partition of a compact

digraph and of a general planar digraph. Both algorithms use the fact that the link edges in a

plane digraph G are the primal edges of the edges in the nontrivial sccs of the dual graph G�.

For a compact digraph, we used the additional fact that there is at most one nontrivial scc in



6 AN ALGORITHM TO FIND THE CLOSED PARTITION OF A GENERAL PLANAR DIGRAPH21

6 An Algorithm to Find the Closed Partition of a General Planar

Digraph

If an embedded planar digraph G is not compact, its dual digraph G� may have more than one

nontrivial scc. We could apply Algorithm 1 repeatedly, which would give us an O(n2) time sequen-

tial algorithm for the closed partition problem on a planar digraph. The reason why we require the

graph to be compact in Algorithm 1 is that there is at most one nontrivial scc in G� which can be

easily detected by examining the back edges to r� in T . But the other operations in Algorithm 1

are still valid in the case of a general plane digraph if we choose to work on one nontrivial scc in G�

at a time. We recall that Lemma 3, Lemma 4, Lemma 6, Lemma 7, Observation 1 and Observation

2 all hold for a general plane digraph. By Lemma 4, there is still a one to one correspondence

between a link edge in G and a dual edge in a nontrivial scc in G�. The order in which we remove

link edges and bad blue vertices in G is not important. Therefore we can �rst reduce the number

of nontrivial sccs in G� to less than
p
n and then work on the nontrivial sccs in G� one at a time.

In the following, we use Algorithm 1 to �nd the closed partition of any planar digraph in O(n1:5)

time.

Algorithm 2: Finding the Closed Partition of a General Planar Digraph

Input: A planar digraph G = (V;E) with a subset of V marked blue. jV j = n.

Output: The closed partition of G with respect to the blue vertices.

1. embed G in the plane (we still call the embedding G for simplicity);

2. construct the dual digraph G� of the embedding G;

3. do G is not empty and the number of nontrivial sccs in G� � p
n �!

4. delete primal edges in G whose dual edges are in nontrivial sccs of G�;

5. delete bad blue vertices in G that are the tails of the edges deleted in step 4;

6. reconstruct the dual digraph G� from the reduced primal graph G;

7. od;

8. do the number of nontrivial sccs in G� > 0 �!
9. choose a vertex v� in a nontrivial scc in G�;

ff let v be the primal face of v�gg
10. identify face v as the external face in G;

11. apply steps 1-14 of Algorithm 1 on G;

12. od;

13. �nd all the sccs in the reduced primal graph G and output the set of nontrivial sccs

end.

The correctness of Algorithm 2 follows from the informal discussion above. The details of the

proof are omitted.



5 DETAILED DESCRIPTION OF THE ALGORITHM FOR COMPACT DIGRAPHS 20

where Tfind�scc; Tcondense�scc ; Tmerge�tree and Tmerge�dis are the total times needed in the above

four substeps respectively during the entire execution of the do loop in step 4 of Algorithm 1. We

claim that each of the times is O(n).

� Claim 1: Tfind�scc = O(n)

Since all vertices in the mark-list (except r�) will be deleted later in the condense-scc procedure

and the total number of vertices in G� is O(n), Claim 1 follows.

� Claim 2: Tmerge�tree = O(n)

All edges processed in this procedure are made connected to r� if not deleted. There are three

cases:

Case (1). An internal nontree edge incoming to r� (back edge to r�) will be deleted in the

next condense-scc procedure.

Case (2). An internal nontree edge (or a tree edge) outgoing from r� will be processed in this

procedure or the condense-scc procedure for at most one more time.

Case (3). An external nontree edge incoming to r� from a discrete vertex w� will be processed

in the merge-dis procedure for at most once and it will become an internal nontree edge

incoming to r� (which will be deleted in the condense-scc procedure at the next iteration of

the do loop) if not deleted. This is because when w� is processed in the merge-dis procedure,

it is either deleted or pulled into the tree. No external nontree edge outgoing from r� exists

in T .

Therefor an edge in G� is processed in this procedure for at most three times and Claim 2

holds.

� Claim 3: Tmerge�dis = O(n)

We notice that all edges processed in this procedure are external edges since an end point of

the edge to be merged is a discrete vertex. When an edge is processed, if it is not deleted,

it either changes to a tree edge or an internal nontree edge in which case the edge will not

appear in this procedure again or it becomes an external nontree edge incoming to r� and the

argument in Claim 2 case (3) can be applied here. Therefore the time spent on this procedure

is O(n).

� Claim 4: Tcondense�scc = O(n)

Any edge processed in this procedure is made connected to r� if it is not deleted. We can use

the same argument as in Claim 2, case (2) and (3) to prove Tcondense�scc = O(n).

Summarizing the above discussion, we have T = O(n). Hence Algorithm 1 runs in O(n) time.

[]



5 DETAILED DESCRIPTION OF THE ALGORITHM FOR COMPACT DIGRAPHS 19

4. Let G�

i1 be the reduced dual graph after the nontrivial scc is condensed in G�

i and let Gi1 be

Gi�f e j e is a link edge in Gi g. By Corollary 2, G�

i1 is the dual graph of Gi1. Since removing

all link edges in Gi leaves all sccs in Gi1 immediately enclosed by the external face, Gi1 is

still compact.

Let G�

i2 be the reduced dual graph after applying steps 10-13 of Algorithm 1 to G�

i1 and let

Gi2 be Gi1�f e j e is an edge whose dual edge is deleted in steps 10-13 of Algorithm 1 in

phase ig. Then by Observation 2 in this section, G�

i2 is the dual of Gi2. A bad blue vertex

that is the tail of a link edge of Gi is on the outer boundary of the scc that contains the bad

blue vertex. By Lemma 1, deleting the edges connected to the bad blue vertices that are the

tails of link edges does not a�ect the compactness of Gi1. Nor does deleting the single face

boundary edges of the external face r. A bad blue vertex v with an outgoing edge to a deleted

bad blue vertex w is also on the outer boundary of an scc (the original scc that contains both

v and w may have been broken into several sccs after deleting w). Again, by Lemma 1, Gi2

is still compact.

Since G�

i2 = G�

i+1 and Gi2 = Gi+1, G
�

i+1 is the dual of Gi+1 at the beginning of phase i+1

and Gi+1 is compact.

Therefore conditions 1, 2, 3 and 4 hold at the beginning of phase i+ 1. Hence the claim holds

for all phases.

The number of edges in G is �nite and each phase reduces the number of edges in the primal

graph of that phase. Therefore the do loop in step 4 of Algorithm 1 will stop eventually. On

termination of the do loop, there is no bad blue vertex in the reduced G since there is no link edges

in the reduced G. Therefore we can �nd the collection of closed components in the reduced primal

graph G in step 15 of Algorithm 1 by �nding all the sccs in the reduced G.

In conclusion, our algorithm correctly solves the closed partition problem. []

Theorem 2 Algorithm 1 works in sequential time O(n), where n is the number of vertices in the

input compact digraph G.

Proof: We �rst notice that the input graph is a plane digraph and by Euler's formula the number

of edges is O(n).

Steps 1-2 and 14-15 of Algorithm 1 can be performed in O(n) time using known techniques.

Step 3 can be implemented by applying depth �rst search on G� starting from r� to construct T .

This step requires O(n) time. The do loop in step 4 of Algorithm 1 consists of four substeps: �nd

the nontrivial scc (�nd-scc), condense-scc, merge-tree and merge-dis.

The total execution time T is

T = Tfind�scc + Tcondense�scc + Tmerge�tree + Tmerge�dis



5 DETAILED DESCRIPTION OF THE ALGORITHM FOR COMPACT DIGRAPHS 18

Base: (vn�1; r�) is an internal nontree edge. So vn�1 is marked in step 6 of Algorithm 1.

Induction step: Suppose vi+1 is marked for some i, 1 � i < n. Consider edge e = (vi; vi+1). If e is

a tree edge, then vi is the parent of vi+1 and is marked in step 6 of Algorithm 1; If e is an internal

nontree edge, then vi is marked in step 8 of Algorithm 1. []

Observation 2 In a plane digraph G with no link edge, deleting the edges connected to a vertex v

on the boundary of the external face r will cause the surrounding faces of v to become a single face

(we still call it r) and some edges to become single face boundary edges of r (which are obviously

link edges). Let G� be the dual graph of G and let r� be the dual vertex of r. Then merging the

dual vertices of the surrounding faces of v to r� in G� corresponds to deleting all edges connected

to v and the single face boundary edges of r in G. []

Theorem 1 Algorithm 1 correctly solves the closed partition problem on a compact digraph.

Proof: We denote the reduced dual graph G� at the beginning of phase i of the do loop in step 4

of Algorithm 1 by G�

i . We denote the primal graph obtained by deleting from G the primal edges

whose dual edges are deleted in G� up to phase i� 1 of the do loop by Gi. Then we have G1 = G

and G�

1 = G�.

We claim that at the beginning of the ith phase of the do loop in step 4 of Algorithm 1, the

following four conditions hold.

1. T is a maximal divergent tree of G�

i .

2. The edges deleted in G�

i in steps 5-9 of Algorithm 1 in phase i are dual edges of the link edges

of Gi.

3. The blue vertices deleted during each phase are bad blue vertices.

4. G�

i is the dual graph of Gi and Gi is a compact digraph.

We prove the above claim by induction on the number of phases executed of the do loop in step

4 of Algorithm 1.

Base: i = 1. Clearly 1, 2, 3 and 4 hold after the execution of step 3 of Algorithm 1.

Induction step: Suppose 1, 2, 3 and 4 hold at the beginning of phase i.

1. Condition 1 is preserved during the i th phase by steps 8 to 14 of the merge-dis procedure.

2. By Lemma 8, steps 5-8 of Algorithm 1 �nd the nontrivial scc in G� and mark the vertices in

the scc. The dual edges deleted by the condense-scc procedure in phase i correspond to link

edges in Gi by Corollary 2.

3. We notice that the blue vertices found in the condense-scc procedure are indeed bad blue

vertices since they are detected by procedure detect-bad-blue-vertex(e�) when the dual edge

e� of a link edge e is deleted. A blue vertex is identi�ed as a bad blue vertex only if it is the

tail of a deleted link edge.



5 DETAILED DESCRIPTION OF THE ALGORITHM FOR COMPACT DIGRAPHS 17

procedure merge-tree(v�; r�);

1. for e� = (v�, r�) or e� = (r�, v�) �!
2. delete e�;

3. detect-bad-blue-vertex(e�)

rof;

4. for every edge e� = (w�; v�) �!
5. e� := (w�, r�);

ff step 6 is to handle the case when w� is the parent of v�gg
6. if w�.type = tree vertex �! e�.type:= internal nontree edge �

rof;

7. for every edge e� = (v�; w�) �!
8. e� := (r�; w�)

rof;

9. delete v�

end;

procedure condense-scc(mark-list);

1. for every vertex v� (except r�) in the mark-list �!
2. for every edge e� = (w�; v�) :

3. w� is marked �! delete e�; detect-bad-blue-vertex(e�)

4. j w� is not marked �! e� := (w�; r�)

rof;

5. for every edge e� = (v�; w�) :

6. w� is marked �! delete e�; detect-bad-blue-vertex(e�)

7. j w� is not marked �! e� := (r�; w�)

rof;

8. delete v�

rof

end;

We now establish the correctness of Algorithm 1.

Lemma 8 Steps 5-8 in Algorithm 1 mark all vertices in the nontrivial scc in G�.

Proof: By Lemma 5, we know that there is at most one nontrivial scc in G� and this scc includes

r�. If G� does not have a nontrivial scc (in which case every connected component in G is strongly

connected), then Lemma 8 holds vacuously. Suppose G� has one nontrivial scc. Let v be any

vertex in the scc. Then there is a directed path P = [v = v1; : : : ; vn�1; vn = r�] in G�. We prove

by induction on the indices of the vertices in P that v is marked.



5 DETAILED DESCRIPTION OF THE ALGORITHM FOR COMPACT DIGRAPHS 16

We now specify the four procedures used in Algorithm 1.

procedure detect-bad-blue-vertex(e�);

if the tail v of the primal edge of e� is a blue vertex �!
add all dual vertices (except r�) of the surrounding faces of v to merge-list

�

end;

procedure merge-dis(v�, r�);

1. for multiple edges e� = (v�, r�) �!
2. delete e�;

3. detect-bad-blue-vertex(e�)

rof;

4. subtree-list := empty;

5. for every edge e� = (w�, v�) �! e� := (w�, r�) rof;

6. for every edge e� = (v�, w�) �!
7. e� := (r�, w�);

8. if w�.type = tree vertex �! e�.type:= internal nontree edge

9. j w�.type = discrete vertex �! e�.type:= tree edge;

w�.type:= tree vertex;

add w� to subtree-list

�

rof;

B ff add more discrete vertices to tree T to keep it a maximal divergent tree gg
10. do subtree-list is not empty �!

11. pick a vertex v0� from subtree-list;

12. for every edge e0� = (v0�, w0�) :

13. w0�.type = tree vertex �! e�.type = internal nontree edge

14. j w0�.type = discrete vertex �! e0�.type= tree edge;

w0�.type:=tree vertex;

if w0� is not already on subtree-list �!
add w0� to subtree-list

�

rof

od;

15. delete v�

end;



5 DETAILED DESCRIPTION OF THE ALGORITHM FOR COMPACT DIGRAPHS 15

Algorithm 1: Finding the Closed Partition of a Compact Digraph

Input: A compact plane digraph G with a subset of vertices marked blue.

Output: The closed partition of G with respect to the blue vertices.

1. construct the dual digraph G� with r� being the dual vertex of the external face r of G;

2. merge-list, mark-list := empty, empty;

3. construct a maximal divergent tree T rooted at r� in G�, and label all vertices that are

not in T as discrete vertices;

4. do there exists an internal nontree edge incoming to r� �!
ff �nding the nontrivial scc in G� gg
5. for every internal nontree edge (v�; r�) �!

6. mark the ancestors of v� (including v�) that are not already marked and

add them to mark-list;

7. for every internal nontree edge (x�; y�) for which y� is marked �!
8. mark all ancestors of x� (including x�) and add them to mark-list until

a marked ancestor is met

rof

rof;

ff condense the scc to r� and detect bad blue vertices gg
9. condense-scc(mark-list);

ff delete bad blue vertices by merging and detecting more bad blue vertices gg
10. do merge-list is not empty �!

11. for every vertex v� in merge-list :

12. v�.type = discrete vertex �! merge-dis(v�; r�)

13. j v�.type = tree vertex �! merge-tree(v�; r�)

rof

od

od;

14. delete primal edges in the primal digraph G whose dual edges were deleted in G�;

15. �nd all the sccs in the reduced primal digraph and output the set of nontrivial sccs

end.



5 DETAILED DESCRIPTION OF THE ALGORITHM FOR COMPACT DIGRAPHS 14

procedure is to place w� into tree T , i.e., let w� become a child of r� and put w� in a list

called subtree-list (this list is used to temporarily hold the discrete vertices that are going to

be placed in tree T ). We then repeatedly place the discrete vertices that are reachable from

a vertex in subtree-list into T until no more discrete vertex can be reached from T .

As noted above, the algorithmic notation in this paper is from [10]. We use three control

structures: if : : : �, do : : : od, and for : : : rof.

The form of an if statement is:

if condition1 �! statement list1 j condition2 �! statement list2 j : : :
j conditionn �! statement listn �.

The e�ect of this statement is to cause the conditions to be evaluated and the statement list

for the �rst true condition to be executed; if none of the conditions is true none of the statement

lists is executed.

The form of a do statement is:

do condition1 �! statement list1 j condition2 �! statement list2 j : : :
j conditionn �! statement listn od.

The e�ect of this statement is similar to that of an if except that after the execution of a

statement list the conditions are reevaluated, the appropriate statement list is executed, and this

is repeated until all conditions evaluated to false.

The form of a for statement is:

for iterator �! statement list rof.

This statement causes the statement list to be evaluated once for each value of the iterator. We

allow the following abbreviations: \for x 2 s : condition1 �! statement list1 j : : : j conditionn �!
statement listn rof" is equivalent to \for x 2 s �! if condition1 �! statement list1 j : : : j
conditionn �! statement listn � rof."

In the following algorithms, edge (x; y) denotes a directed edge pointing from x to y. A `*' will

be attached to the edges and vertices in the dual graph. Comments are enclosed between a pair of

double curly brackets (`ff' and `gg').



5 DETAILED DESCRIPTION OF THE ALGORITHM FOR COMPACT DIGRAPHS 13

surrounding faces of the bad blue vertices found when deleting link edges. Two merge procedures

are used repeatedly to perform the operations that corresponds to deleting the edges connected to

bad blue vertices in G. But actually the two merge procedures do more than just deleting the edges

connected to the bad blue vertices. They also delete the single face boundary edges of r already

existing or created by deleting the edges connected to the bad blue vertices. The condense and

merge procedures are applied repeatedly until we �nd the collection of closed components in G.

At the end of the algorithm, we form the reduced primal digraph from the reduced dual graph

by deleting all the primal edges in G whose dual edges are deleted in G�2 and then apply the well

known algorithm for �nding sccs in G [11] once to get the solution.

There are four procedures in the algorithm.

1. detect-bad-blue-vertex(e�). Whenever a dual edge e� in G� is deleted, this procedure is called

to check if the tail of the primal edge of e� is a blue vertex. If it is, which means the blue

vertex is bad, the procedure adds the dual vertices of the surrounding faces of this bad blue

vertex to a list called merge-list (which is implemented as a global variable). The vertices in

the merge-list are to be merged in the procedures merge-tree and merge-dis.

2. condense-scc(mark-list). The vertices in the nontrivial scc of G� are provided in the mark-list.

Condense-scc procedure condenses the scc in G� as follows. All edges of G� in the scc are

deleted. Each time a dual edge is deleted, detect-bad-blue-vertex procedure is called to �nd

more bad blue vertices and to add the dual vertices of the surrounding faces of the bad blue

vertices to merge-list. All dual edges outgoing from (or incoming to) a vertex in the scc to

(or from) a vertex outside the scc are redirected as edges outgoing from (or incoming to) r�.

3. merge-tree(v�, r�). This procedure is used to merge a tree vertex v� to r�. All edges between

v� and r� are deleted. Each time a dual edge is deleted, detect-bad-blue-vertex procedure is

called to �nd more bad blue vertices and to add the dual vertices of the surrounding faces of

the bad blue vertices to merge-list. All dual edges outgoing from (or incoming to) v� are also

redirected as in 2.

4. merge-dis(v�, r�). This procedure is used to merge a discrete vertex v� to r� and is designed

to keep the property of the maximal divergent tree while merging. All edges between v� and

r� are deleted. Each time a dual edge is deleted, detect-bad-blue-vertex procedure is called

to �nd more bad blue vertices and to add the dual vertices of the surrounding faces of the

bad blue vertices to merge-list. We redirect edges incoming to v� as edges incoming to r�

in this procedure. Problems could occur when there is an edge outgoing from v� to another

discrete vertex w� since after merging v� to r�, r� would have an edge incoming to the discrete

vertex w� which destroys the property of the maximum divergent tree. What we do in this

2Here we do not construct G from G
� by �nding the dual of G� since the dual of G� is in general not the same as

G.



5 DETAILED DESCRIPTION OF THE ALGORITHM FOR COMPACT DIGRAPHS 12

4. delete the bad blue vertices that are the tails of the link edges deleted in step 3;

5. repeatedly delete the bad blue vertices that have an outgoing edge to a deleted bad blue

vertex;

6. �nd all link edges in the reduced graph G

od

These steps can be simulated on the dual digraph G� of G. The corresponding steps are as

follows:

10. �nd the nontrivial scc in G�;

20. do there exists a nontrivial scc in G� �!
30. condense the nontrivial scc in G�;

40. �nd the bad blue vertices in G that are the tails of the primal edges of the edges deleted

in step 30;

50. repeatedly �nd the bad blue vertices in G that have outgoing edges to a bad blue vertex

found so far and merge together in G� the dual vertices of the surrounding faces of each

such bad blue vertex;

60. �nd the nontrivial scc in the reduced dual graph G�

od

To implement step 10, we construct a maximal divergent tree T rooted at r� (which is the dual

vertex of the external face r of G) in G� and check if there is an incoming edge to r�. We show in

the next section that steps 30; 40 and 50 can be implemented in time that is linear in the number of

vertices and edges of the input graph over all iterations of the do loop. In order to perform step 60

e�ciently, our algorithm maintains the property that T is always a maximal divergent tree during

the execution of the algorithm. Since the tree T we construct in step 10 is a maximal divergent tree,

T has this property initially. T preserves this property throughout the algorithm we present in the

next section for compact digraphs since whenever a nontree edge from a vertex in T to a discrete

vertex is produced, the discrete vertex is forced to become a vertex in T so that the nontree edge

becomes a tree edge.

5 Detailed Description of the Algorithm for Compact Digraphs

First we give an informal description of the algorithm for a compact digraph G. We construct the

dual digraph G� where the dual vertex of the external face r of G is labeled r�. Then we form a

maximal divergent tree T rooted at r� and label the vertices of G� that are not in T as discrete

vertices. By Corollary 1, G� has a nontrivial scc if and only if there is an internal nontree edge

incoming to r�. We apply a procedure called condense-scc to condense the scc of G� to r� (which

corresponds to deleting all link edges in G by Corollary 2) and to record the dual vertices of the



4 HIGH LEVEL DESCRIPTION OF THE ALGORITHM FOR COMPACT DIGRAPHS 11

Deleting all link edges in G makes all faces adjacent to the link edges in G to become one external

face, which is equivalent to merging all vertices in the scc to r�. []

Lemma 6 Let T be a maximal divergent tree in the dual digraph G� of a plane digraph G. Then

a discrete vertex in G� with respect to T cannot be on any directed cycle of G� that contains a tree

vertex.

Proof: Since T is maximal, there is no external nontree edge outgoing from a vertex in T to a

discrete vertex, a discrete vertex cannot be reachable from any tree vertex. Therefore the lemma

holds. []

Lemma 7 Let G be a plane digraph with external face r and let G� be its dual digraph with r�

being the dual vertex of r. Let T be the maximal divergent tree in G� rooted at r�. Then a vertex

in G� is a discrete vertex with respect to T if and only if its primal face in G is inside a clockwise

cycle.

Proof: By the de�nition of the dual digraph G� (see section 2), the dual edges of the edges on a

clockwise cycle are directed from the faces internal to the cycle to the faces external to the cycle.

Therefore the dual vertices of the faces inside the clockwise cycle are not reachable from r� in the

dual graph G�. Therefore the dual vertices of the faces that are inside a clockwise cycle are discrete

vertices.

Conversely, let v� be a discrete vertex in G� and let f be its primal face in G. Let C be the

boundary of f . If all the edges on C are clockwise with respect to f , then f is inside a clockwise

boundary. Otherwise, let e be a boundary edge of f that is counterclockwise with respect to f

and let f1 be the other face that is adjacent to e. Replace e in C by the boundary of f1 except e.

Then there is a directed edge from the dual vertex of f1 to the dual vertex of f . We keep replacing

each counterclockwise edge in C in this manner and stop when either C is a clockwise cycle or C

contains an edge on the boundary of the external face r. In the latter case, C must be a clockwise

cycle since otherwise, there would be a directed path from r� to v� which contradicts the fact that

v� is a discrete vertex. []

4 High Level Description of the Algorithm for Compact Di-

graphs

We now outline the basic steps in our algorithm to solve the closed partition problem in a compact

digraph G. The algorithmic notation here is from [10].

1. �nd all link edges in G;

2. do there exists a link edge �!
3. delete all link edges;



3 MAIN LEMMAS 10

Proof: If there is no link edge in G, then by Lemma 4, there is no nontrivial scc in G� and we are

done. Otherwise, let e = (u; v) be a link edge in G. By Lemma 4, its dual edge is in an scc S� of

G�.

Let G0 be the graph obtained from G after removing all link edges from G. Then by applying

Lemma 4 and Observation 1 to each link edge in G, G0�, the dual graph G0, can be obtained from

G� by condensing all the sccs in G� (see section 2 for the de�nition of condensing). Let S� be

condensed to a vertex s� in G0�. We now prove by contradiction that r� is in S�.

Suppose r� is not in S�. Then r� must be condensed into another vertex, say r0�, in G0�, where

s� 6= r0�. Let the primal face of s� be f in G0.

We establish the following facts.

1. The primal face f is in the internal region of an scc H in G0.

Proof of fact 1: The primal face f is di�erent from the external face r in G0. Since G0 contains

no link edges, any face in G0 except r is in the internal region of some scc.

2. The two end vertices of e, u and v, are on the boundary of f in G0.

Proof of fact 2: Since e was a link edge in G and does not exist in G0, the primal faces in G

that were adjacent to e become part of face f in G0. Therefore u and v are on the boundary

of f in G0.

3. The two vertices u and v are in two di�erent sccs in G0.

Proof of fact 3: This follows from the fact that e = (u; v) is a link edge in G.

From fact 1 and fact 2, u and v are either in the internal region of of the scc H or on the outer

boundary of H in G0. From fact 3, either u or v is in an scc other than H . We assume without

loss of generality that u is in another scc H 0. Then u must be in the internal region of H since

otherwise, u would be on the outer boundary of H and hence in H . It follows that H 0 is enclosed

in H by the planarity of G0. Therefore the compactness of G0 is violated (even if H 0 is a trivial scc

that contains a single vertex). Hence by Lemma 1 the compactness of G is violated.

We conclude that the dual edge of any link edge in G is in an scc in G� that contains r�. Hence

G� has at most one nontrivial scc and if it has one, the nontrivial scc includes r�. []

Corollary 1 Let G be a compact digraph with external face r and let G� be its dual digraph with

r� being the dual vertex of r. Let T be the maximal divergent tree rooted at r� in G�. Then G� has

a nontrivial scc if and only if there is an internal nontree edge of T incoming to r�. []

Corollary 2 Let G be a compact digraph with external face r and let G� be its dual digraph with

r� being the dual vertex of r. Suppose G� has a nontrivial scc. Then condensing the nontrivial scc

to r� in G� corresponds to deleting all link edges in G.

Proof: By Lemma 4, an edge in a plane digraph G is a link edge if and only if its dual edge in G�

is in a nontrivial scc. By Lemma 5, the dual edges of all link edges are in the scc that contains r�.



3 MAIN LEMMAS 9

f3

f i

f
2 f

1

s
r r*

s*

f*

f *2

1

f *3

f *i

e
1

ee

ei

e*0

e*1

e*
2

23

e*
3

e*
i

rs

s*

r *

G

G

G*

G1 1
*

e
0

a b

c
d

g h

g h

a b

c
d

g
h

*
*

a*

d*

i

i *
b*

c*

i

g

h

i

*

*

*

a*

b*
c*

d*

Figure 4: Figures for the proof of Lemma 4.



3 MAIN LEMMAS 8

that is adjacent to link edge e0.

If e2 is on the boundary of face f0, then stop; else let f3 be the other face that is adjacent

to e2 and let e3 be a link edge on the boundary of f3 that has the opposite direction of e2

with respect to f3. We keep �nding link edges in this manner until we have a list of link

edges e0; e1; : : : ; ei such that ej and ej+1 (0 � j < i) are link edges of opposite directions on

the boundary of face fj+1 and ei is also on the boundary of face fh for some h, 0 � h < i.

Assume without loss of generality that h = 0. We identify face f0 as the external face r of G.

Let G1 be G� fej j0 � j � ig and let G�

1 be its dual graph. Let x
� be the dual of x for each

edge or vertex x. By induction hypothesis, an edge in G1 is a link edge if and only if its dual

edge is in an scc in G�

1. By Observation 1, G� can be obtained by expanding vertex r� in G�

1

to a cycle < r�; f�1 ; : : : ; r
� >; the edges on this cycle are e�0; e

�

1; : : : ; e
�

i . The edges a
�

1; a
�

2; : : : ; a
�

k

in G�

1 that are connected to r� are connected to vertices r�; f�1 ; : : : ; f
�

i in G� in the way that

an edge a�l (1 � l � k) is connected to v� (v� 2 fr�; f�1 ; : : : ; r�g) if and only if the primal edge

al is adjacent to the primal face v (see Figure 4).

We now show that the edges that are in sccs in G�

1 are still in sccs in G� and the edges that

are not in sccs in G�

1 are still not in sccs in G�. This is seen as follows.

{ If an edge b� is in an scc in G�

1, then b� is in a cycle C in G�

1.

� If C does not contain r�, then C remains unchanged in G�.

� If C contains r�, then after r� is expanded into cycle < r�; f�1 ; : : : ; r
� > in G�, C is

also expanded into a larger cycle in G� containing part of the cycle < r�; f�1 ; : : : ; r
� >.

Therefore b� is in a cycle in G�.

{ If an edge b� is not in an scc in G�

1, then suppose b� is in a cycle C in G�.

� If C does not contain any vertex in < r�; f�1 ; : : : ; r
� >, then C remains unchanged

in G�

1.

� If C contains at least one vertex in < r�; f�1 ; : : : ; r
� >, then after deleting edges in C

that are in cycle < r�; f�1 ; : : : ; r
� > and identifying together, the vertices in C that

are in cycle < r�; f�1 ; : : : ; r
� >, the resulting C is still a cycle in G�

1.

Both cases contradict the fact that b� is not in an scc in G�

1. Therefore b
� is not in any

scc in G�.

Furthermore, the dual edges of ej (0 � j � i) are in an scc in G� since they are in the cycle

< r�; f�1 ; : : : ; r
� >. Therefore, the statement holds when G has k link edges.

Hence Lemma 4 holds for any plane digraph G. []

Lemma 5 If G is a compact digraph with external face r, then there is at most one nontrivial scc

in its dual graph G�. If G� contains a nontrivial scc, the scc must include r�, the dual vertex of r.



3 MAIN LEMMAS 7

f fe2 1

Figure 3: Diagram for the claim in the proof of Lemma 4.

Lemma 4 An edge in a plane digraph G is a link edge if and only if its dual edge is in a nontrivial

scc in the dual digraph G�.

Proof: First we claim that if a link edge e is adjacent to two faces f1; f2 in G, then there is a link

edge that is of the opposite direction of e on the boundary of f1 and there is a link edge that is of

the opposite direction of e on the boundary of f2 (see Figure 3). This is seen as follows.

Without loss of generality, assume the direction of e is clockwise with respect to f1 (thus e is

counterclockwise with respect to f2). Then not all edges on the boundary of face f1 are clockwise

with respect to f1 (otherwise e would be in an scc that contains the clockwise cycle). Furthermore,

at least one of the counterclockwise edges on the boundary of face f1 is a link edge. Otherwise

each of the counterclockwise edges could be replaced by a clockwise simple path (since each edge

is in some scc) and e would be on a clockwise cycle. Similarly, there is a clockwise link edge with

respect to f2 on the boundary of face f2.

We now prove this lemma by induction on the number of link edges in G.

Base: G has one link edge e. Let G1 be G�feg. Then G1 has one more connected component than

G has. By Lemma 3, its dual graph G�

1 is acyclic. Since e is the only link edge of G, e must be a

single face boundary edge (otherwise, by the above claim, G would have at least two link edges).

By Observation 1, the dual edge e� of e is a sel
oop and G� is G�

1 [ fe�g. Therefore the sel
oop e�

is the only scc in G�.

Induction step: Suppose the statement holds for the case when G has < k link edges. Consider the

case when G has k link edges.

� If there is a link edge e in G that is a single face boundary edge, then the dual edge e� is a

sel
oop. Let G1 be G�feg and let G�

1 be the dual graph of G1. By induction hypothesis, an

edge in G1 is a link edge if and only if its dual edge is in an scc in G�

1. Since G
� is G�

1 [ fe�g
(by Observation 1), the statement is true for the case when G has k link edges.

� If all link edges in G are adjacent to two faces, then let e1 be a link edge in G that is adjacent

to two faces f1 and f2. Assume without loss of generality that e1 is clockwise with respect to

f1 (see Figure 4). By the above claim, there is a counterclockwise (with respect to f1) link

edge e0 on the boundary of face f1 and a clockwise (with respect to f2) link edge e2 on the

boundary of face f2 (since e1 is counterclockwise with respect to f2). Let f0 be the other face



3 MAIN LEMMAS 6

S1 S2 w

v

p

q

x

y

Figure 2: An example for the proof of Lemma 1.

Suppose G� is acyclic but at least one connected component G0 in G is not strongly connected.

Let G0� be the dual of G0. By Lemma 2, G0� has a directed cycle. Since G0� is a subgraph of G�

(G� can be obtained by adding dual edges and vertices that correspond to the edges and faces of

other connected components in G), G� has a directed cycle. This contradicts the assumption that

G� is acyclic. Hence every connected component in G is strongly connected.

We now prove the only if part of Lemma 3 by induction on the number of connected components

in G.

Base: By Lemma 2, if G has only one connected component and it is strongly connected, then

G� is acyclic.

Induction step: Let the statement be true for any plane digraph with k � 1 connected compo-

nents. Let G be a plane digraph with k connected components each of which is strongly connected.

Let S be a compact scc in G, i.e., S does not enclose any other scc in G. Since there is no link edge

in G, a region between two sccs of G is exactly a face. Let f be the face in G that immediately

encloses S. We remove the vertices and edges of S from G and call the resulting graph G0. Let G0�

be the dual graph of G0 and let f� be the dual vertex of face f . Let S� be the dual graph of S (by

taking f as the external face of S). Then G� is obtained from G0� and S� by identifying f� and the

dual vertex of the external face of S in S�. By induction hypothesis, both G0� and S0� are acyclic.

Furthermore, there is no edge in G� outgoing from a vertex in G0� to a vertex in S� (except f�)

and there is no edge in G� outgoing from a vertex in s� to a vertex in G0� (except f�). Hence G�

is acyclic. []

Observation 1 Let G be a plane digraph and let G� be its dual graph. Let e be an edge in G and

let e� be its dual edge in G�.

If e is a boundary edge of exactly one face (we call e a single face boundary edge), then e� is a

sel
oop. Removing e from G corresponds to removing the sel
oop e� from G�.

If e is a boundary edge of two faces f and g in G (let f� and g� be the dual vertices of f and g

respectively and let e� be directed from f� to g�), then removing e from G corresponds to merging

f� to g� in G�. []



3 MAIN LEMMAS 5

de�ned as merging all the vertices of the scc to a speci�c vertex of the scc.

Let G = (V;E) be a digraph in which the vertices in a set V 0 � V are colored blue. A closed

component in G is a maximal induced subgraph S of G such that either S is a single vertex or S

is strongly connected and no blue vertex in S has an outgoing edge in G to a vertex not in S. A

closed component is nontrivial if it contains more than one vertex. Note that in general, a closed

component is a subgraph of a strongly connected component. It is easy to see that the set of closed

components is unique. The closed partition problem is to �nd the set of closed components in G.

A bad blue vertex is a blue vertex in the input digraph that is a singleton in the solution set. In the

example given in Appendix A, a compact digraph G and its closed partition are shown in Figure 5

and Figure 11 respectively.

3 Main Lemmas

In this section, we introduce some lemmas to establish the relationship between the operations in

a primal digraph and the operations in its dual digraph.

Lemma 1 Deleting all the edges connected to a vertex on the outer boundary of an scc in a compact

plane digraph G results in a digraph that is still compact.

Proof: First we notice that deleting all the edges connected to a vertex on the boundary of an scc

does not a�ect the compactness of other sccs.

Suppose after we have deleted all the edges connected to a vertex v on the outer boundary of

a compact scc S, S breaks into several sccs among which S1 encloses S2 (see Figure 2). Let w be

any vertex in S2. Since v and S2 were in the same scc S, there were two paths p and q in S such

that p is a directed path from w to v and q is a directed path from v to w. Since S1 encloses S2

and v was on the outer boundary of S, p and q must intersect S1. Let x be the �rst intersection of

p and S1 and y be the last intersection of q and S1 (note that neither x nor y could be v). Then

the part of the directed path from w to x and the part of the directed path from y to w connect

S1 and S2 together. This contradicts the assumption that S1 and S2 are two distinct sccs. Hence

the lemma holds. []

Lemma 2 [6] A connected planar embedded digraph is strongly connected if and only if its dual

digraph is acyclic. []

Lemma 3 [Extension of Lemma 2] Every connected component in a plane digraph is strongly

connected if and only if the dual digraph of the plane digraph is acyclic.

Proof: Let G be a plane digraph and let G� be its dual digraph. We to prove the if part of the

lemma by contradiction.



2 PRELIMINARIES 4

G G

r

e e

t

s

e e

e

r s
e

e

e
e

e

3

1 2

5

4

*

*

*

*

*

*

*

*

3

4

1
2

5

t *

Figure 1: An example of a maximal divergent tree in a dual graph. r� and t� are tree vertices of the

maximal divergent tree T rooted at r�. s� is a discrete vertex. e�1 is a tree edge. e�2 is an internal

nontree edge. e�3, e
�

4 and e�5 are external nontree edges.

The surrounding faces of a vertex in a plane digraph are the faces whose boundaries contain the

vertex. An edge or a vertex is adjacent to a face if it is on the boundary of the face. An edge on

the boundary of a face is clockwise with respect to the face (we will omit \with respect to the face"

if there is no confusion) if the edge is on a directed cycle and is clockwise from the point of view of

a person who is standing upright in the center of the face. We can de�ne a counterclockwise edge

on the boundary of a face similarly. Two edges on the boundary of a face are of opposite directions

if one edge is clockwise and the other is counterclockwise.

The plane digraph G we consider here is called the primal graph. The edges in G are called

primal edges. The dual digraph G� of G is constructed as follows: (i) For each face t of G, de�ne

a vertex t� in G�. (ii) A directed edge e�=(t�; s�) is in G� if the pair of corresponding faces t and

s share a boundary edge e in G and when e is rotated counterclockwise, the head of e enters face

s �rst. The edge e� is called the dual edge of the primal edge e. Note that the dual digraph of a

plane digraph is in general a multi-digraph which allows parallel directed edges.

A divergent tree is a rooted directed tree whose root has indegree 0 and all other vertices have

indegree 1. Given a plane digraph G, a maximal divergent tree T of G is a divergent tree rooted at a

speci�ed vertex such that it includes all vertices in G reachable from the root. The vertices of T are

called tree vertices. The vertices of G not in T are called discrete vertices. The edges of T are called

tree edges. The edges of G that are either incoming to or outgoing from a discrete vertex are called

external nontree edges. The nontree edges with both end points in T are called internal nontree

edges. Figure 1 shows a compact digraph G and its dual digraph G� with a maximal divergent tree.

We now de�ne two operations on a multi-digraph: merging and condensing. Merging a vertex

u to a vertex v in a multi-digraph is de�ned as follows: (i) Edges between u and v are deleted. (ii)

Edges that are incoming to (or outgoing from) u are redirected as edges incoming to (or outgoing

from) v. (iii) The vertex u is deleted from the digraph. Condensing an scc in a multi-digraph is



2 PRELIMINARIES 3

2 Preliminaries

We start by presenting several de�nitions that will be used in the later sections of this paper.

A (weakly) connected component in a digraph G is a connected component in the undirected

graph obtained from G by making the edges in G undirected. A digraph is strongly connected if

every two vertices in the digraph are reachable from each other. A strongly connected component

(scc for short) of a digraph is a maximal subgraph that is strongly connected. An scc which contains

only one vertex is a trivial scc. An scc which contains more than one vertex is a nontrivial scc.

The start-point u of a directed edge (u; v) is called the tail of the edge and the end-point v is

called the head of the edge. The directed edge (u; v) is said to be outgoing from u and incoming

to v. An edge is connected to a vertex if it is either incoming to or outgoing from the vertex. A

directed edge is outgoing from a subgraph if its tail is a vertex of the subgraph and its head is not.

An edge that is outgoing from an scc is called a link edge.

A graph is said to be embedded in a surface S when it is drawn on S so that no two edges

intersect. A graph is planar if it can be embedded in the plane. A plane graph is a graph that has

already been embedded in the plane. Given a plane graph G, a face of G is a maximal portion of the

plane for which any two points may be joined by a curve such that each point of the curve neither

corresponds to a vertex of G nor lies on any curve corresponding to an edge of G. Every plane

graph contains an unbounded face called the external face. For a plane graph G, the boundary of a

face f consists of all those points x corresponding to vertices and edges of G having the property

that x can be joined to a point of f by a curve, all of whose points di�erent from x belong to f 1.

The outer boundary of a plane graph is the boundary of the external face. The outer boundary

of a face in a plane digraph is the outer boundary of the subgraph induced by the boundary of

the face. The outer boundary of an scc in a plane digraph is the outer boundary of the subgraph

induced by the scc. The outer boundary of an scc divides a plane graph into two parts. The part

of the plane that contains the external face (including the vertices and the edges of the original

graph that are embedded in that face) is called the external region of the scc. The part of the plane

that does not contain the external face is called the internal region of the scc. The outer boundary

of a face also divides a plane graph into two parts. The external region of a face is the part of the

plane that contains the external face. The internal region of a face is the part of the plane within

the boundary of the face. A face encloses an scc if the scc is in the internal region of the face. A

face f1 encloses a face f2 if f2 is in the internal region of f1. A face f immediately encloses an scc

if the face encloses the scc but no other face enclosed by f encloses the scc. For two embedded sccs

S1 and S2, we say S1 encloses S2 if S2 is in the internal region of S1. S1 immediately encloses S2 if

S1 encloses S2 but no other scc enclosed by S1 encloses S2. An embedded scc is compact if it does

not enclose any other scc (including any trivial scc). A plane digraph G is compact if all sccs in G

are compact.

1By this de�nition, an isolated vertex belongs to the boundary of the face in which it lies.



1 INTRODUCTION 2

component by deleting a blue vertex with an edge outgoing from the component (if such a vertex

exists) and recomputing the strongly connected components in the resulting graph. If the input

graph has n nodes and m edges then this algorithm runs in O(mn) time. A reduction from the

monotone circuit value problem shows that the problem is P -complete and hence unlikely to have

an e�cient highly parallel algorithm.

A compact digraph is an embedding of a planar digraph in which no strongly connected com-

ponent encloses any other strongly connected component. In this paper, we present a linear time

sequential algorithm to solve the closed partition problem for compact digraphs. We then extend

this algorithm to obtain an O(n1:5) time sequential algorithm to solve the closed partition problem

for a general planar digraph where n is the number of vertices in the input digraph.

The main idea in our algorithms is to take advantage of the dual digraph of a plane digraph.

As in the sequential algorithm described above, our algorithms works with a strongly connected

subgraph of the input graph and repeatedly deletes a blue vertex that has an edge outgoing from

the subgraph until no such blue vertex can be found. In general, it is di�cult to decide, when

deleting a blue vertex from a digraph, whether a strongly connected subgraph is separated. But

the decision becomes easier when dealing with the dual of a plane digraph. We make use of the fact

that a plane digraph is strongly connected if and only if its dual digraph is acyclic (see, e.g., [6])

and an extension of this result that the edges that are not in any strongly connected component of

a plane digraph are exactly those edges whose dual edges are in the strongly connected components

of the dual digraph.

We do not know if planar graphs are likely to appear in the applications cited in ([2], [8], [12]).

However, planar digraphs form a natural subclass of directed graphs, and our algorithm can be

viewed as a �rst step towards obtaining more e�cient algorithms for the closed partition problem.

Further, our technique of moving between the primal and dual of a plane embedding in order to

obtain an e�cient algorithm is one that may have applications in other problems on planar directed

graphs.

The rest of this paper is organized as follows: Section 2 de�nes the terminology used in this

paper. Section 3 gives the main lemmas that establish the relationship between the operations in

a primal digraph and the operations in its dual digraph. Section 4 gives a high level description

of the algorithm for compact digraphs. Section 5 presents a detailed description of this algorithm

and its complexity analysis. Using the algorithm for compact digraphs, we give an algorithm to

solve the closed partition problem for a general planar digraph in section 6. We discuss some open

problems in section 7. An example is included in the appendix to illustrate how the �rst algorithm

works on a compact digraph. Figure 5 and Figure 11 in the appendix show a compact digraph G

and its closed partition, respectively.



In ALGORITHMICA, 1994. Copyright  Springer-Verlag

Finding the Closed Partition of a Planar Graph�

Vijaya Ramachandran

Honghua Yang

Department of Computer Sciences

The University of Texas at Austin

Austin, TX 78712

December 3, 1992

Abstract

We consider the problem of �nding a closed partition in a directed graph. This problem

has applications in concurrent probabilistic program veri�cation. The best sequential algorithm

known for this problem runs in O(mn) time where m is the number of directed edges and n is

the number of vertices in the given digraph. In this paper, we present a linear time sequential

algorithm to solve the closed partition problem for planar digraphs that are compact. We

then build on this algorithm to obtain an O(n1:5) time sequential algorithm to solve the closed

partition problem for a general planar digraph.

1 Introduction

In this paper, we consider the closed partition problem [13]. Let G = (V;E) be a digraph in which

the vertices in a set V 0 � V are colored blue. A closed component in G is a maximal induced

subgraph S of G such that either S is a single vertex or S is strongly connected and no blue

vertex in S has an outgoing edge in G to a vertex not in S. A closed component is nontrivial if it

contains more than one vertex. Note that in general, a closed component is a subgraph of a strongly

connected component. The closed partition problem is to �nd the collection of closed components in

G. This problem is interesting as a graph-theoretical problem and it has applications in concurrent

probabilistic program veri�cation ([2], [8], [12]).

The following results are known about the complexity of the closed partition problem [13].

The problem can be solved by the following straightforward polynomial-time algorithm: Find the

strongly connected components of the input graph, and repeatedly re�ne each strongly connected

�This work was supported in part by NSF grant CCR 89-10707.

1


