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Abstract

We derive an expression of the form c lnn � o(lnn) for the diameter of a sparse random
graph with a speci�ed degree sequence. The result holds a.a.s., assuming certain convergence
and supercriticality conditions are met. The proof is constructive and yields a method for
computing the constant c. For the random graph Gn;p with np = �(1) + 1, we solve for c in
closed form.
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1 Introduction

The diameter of a random graph is the maximum distance between two connected vertices. For
the diameter of a sparse random graph with a speci�ed degree sequence we derive an expression of
the form

c lnn� o(lnn): (1)

Our result holds a.a.s. for degree sequences satisfying certain natural convergence conditions. We
determine the value of the constant c for all degree distributions which are super-critical, meaning
that a giant connected component is a.a.s. present, and for which the average degree is constant.
This includes Gn;p and Gn;m when the expected degree is a constant and power-law graphs. For
sparse random graphs diameter results of such precision were known earlier only for regular graphs
of constant degree [4]. Weaker results (to within a constant factor) were known for diameter of
sparse Gn;p [5] and random `expected-degree' power law graphs [10].

Our results have several applications. We make it possible derive the explicit value of the
constant c in equation (1) for many natural random graphs. For the random graph Gn;p with
d = n � p > 1, we derive a closed-form expression for c as a function of d. This function can be
characterized asymptotically by c = 3�o(1)

ln d as d ! 1 and c = 1
ln d +

2
d + O

�
ln d
d2

�
as d ! 1; a

bound of 1
ln d � (1 + o(1)) � lnn for the diameter of Gn;p in this range was conjectured in [5]. We also

show that, for d > 1, the diameter of Gn;p is a.a.s. equal to the diameter of the giant component,
as conjectured in [5]. Our results show that almost all pairs of vertices in the giant component
have the same shortest path length to within an arbitrarily small constant factor, and also that
simple path �nding algorithms will �nd a shortest path between a given pair of vertices a.a.s. in
O(
p
n logn) time.

�This work was supported in part by NSF grant CCR-9988160.
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Among the tools and techniques we use and develop are the following. We give a formulation
of asymptotic degree sequences via metrics and convergence of probability distributions. We use
couplings to apply well-known results for sums of i.i.d. random variables in situations where a clean
i.i.d. condition does not hold; in particular, we achieve bounds on large deviations for neighborhood
sizes of a breadth-�rst search in a random graph. Our actual result on diameter uses our earlier
results [7, 8] on �-core (especially 2-core) to develop a method of identifying and bounding the
worst-case distance between two connected vertices. For instance, in a random graph that has a
constant fraction of vertices of degree 1, such a path will consist of essentially a longest path (from
each of two vertices of degree 1) to just past the 2-core, followed by a typical path across the 2-core.
We also make extensive use of probability generating functions (p.g.f.); using the p.g.f., we relate
key properties of the degree distribution of the 2-core of a random graph to the degree distribution
with the giant component removed.

Organization of this paper. In section 2 we present background material on random variables
and random graphs. In section 3 we describe the CM (or con�guration model) algorithm for
generating a random graph with a �xed degree sequence as well the CM �-core algorithm from
[7, 8] (other results are known for the �-core problem [14, 6], but our results depend mainly on
the treatment in [8]). In this section, we also introduce an important tool in our analysis, the CM
breadth-�rst search algorithm, and analyze its key properties in terms of neighborhood expansion. In
section 4 we state and prove our diameter result. In section 5 we brie
y describe some applications
of our main result.

2 Preliminaries.

2.1 Random Variables and Probability.

In this section we present some basic probabilistic de�nitions and notation. We adopt the con-
vention that random variables and other random structures are typeset in boldface, and we write
probabilities and expectations using the script symbols P and E , respectively.

We shall be dealing exclusively with discrete probabilities, and as such nothing in this paper re-
quires more than basic familiarity with elementary probabilistic concepts such as random variables,
probability distributions, etc. Speci�cally, for any random element a drawn from a set A, we assume
that there exists a subset A0 � A such that P[a = a0] > 0 for all a0 2 A0, and P[a 2 A0] = 1. Hence,
we can safely discard all sets of measure zero, and use the terms \always" and \with probability
1" interchangeably.

2.1.1 Random variables, moments, and generating functions

Most of the random variables we discuss will be de�ned on a particular discrete set, namely, the
set Z� = f0; 1; 2; : : :g of non-negative integers. In particular, we have the following assumption.

Assumption 2.1 Any probability distribution discussed in this paper is assumed to be a distribution

on the set Z� unless otherwise speci�ed.

We let � denote the set of all discrete probability distributions on Z�, and we refer to an element
of � as simply a distribution.

Given a Z�-valued random variable X, the distribution of X is de�ned by

DX(i) = P[X = i] (2)

2



for all i 2 Z�. Conversely, for a distribution �, we letX� denote a random variable with distribution
DX� = �. For Z�-valued random variables X;Y, we write

X
d
= Y (3)

if DX = DY.
Next, we introduce two standard tools used to describe a random variable X� [9].

De�nition 2.1 The k'th factorial moment of X� is

Mk(�) = E [(X�)k] =

1X
i=0

(i)k � �(i); (4)

where (i)k = i(i� 1) � � � (i� k + 1).

De�nition 2.2 The probability generating function (p.g.f.) of X� is the function

 �(z) = E [zX� ] =

1X
i=0

zi�(i) (5)

for z 2 [0; 1].

In general, all generic random variables are assumed to be independent unless certain depen-
dencies are made explicit. For any integer n � 0 and any distribution �, we letXn

X� (6)

denote the sum of n independent random variables distributed according to �. For any 0 � p � 1,
we let 1p denote a Bernoulli random variable with P[1p = 1] = p and P[1p = 0] = 1� p.

2.1.2 Conditional and random distributions

Given Z�-valued random variables X;Y, for any i with P[Y = i] > 0, we de�ne the distribution of
X conditional on Y = i by

D[XjY=i](j) = P[X = j j Y = i] (7)

for all j 2 Z+. We note that the conditional distributionD[XjY=i] is not well de�ned if P[Y = i] = 0.
Therefore, any statement which speci�es a property of the conditional distribution D[XjY=i] \for
all i" should be understood as meaning \for all i such that P[Y = (i)] > 0."

A random probability distribution on Z� (or simply a random distribution) � is a random element
drawn from the set � of discrete probability distributions on Z�. Random distributions arise when
we consider the behavior of a random variable X conditional on Y without speci�cying a particular
event of the form Y = i. Speci�cally, the random distribution

DXjY =

8>><
>>:
D[XjY=0] if Y = 0

D[XjY=1] if Y = 1
...

(8)

is the the distribution of X conditional on Y.
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Assumption 2.1 states that all probability distributions explicitly referenced will be de�ned on
the set Z� of non-negative integers; the same is true of random distributions. Hence, can o�er
an alternate characterization of a random distributions. Speci�cally, we can consider a random
distribution � to be a set of R-valued random variables �(i) for i = 0; 1; 2; : : :, with the restriction
that 0 � �(i) � 1 for all i and

P
i�(i) = 1.

In addition to the �(i), a random distribution� also induces random variablesMk(�) and  �(z)
for each z 2 [0; 1] (de�nitions 2.1 and 2.2). In general, these random variables will be R-valued
rather than Z�-valued, so the de�nitions given in section 2.1.1 for Z�-valued random variables will
not be applicable.

2.1.3 Discrete random processes

For any set A, an A-valued random process is a sequence (a0; : : : ;an) of random elements drawn
from A. The set A is the state space of the random process. Intuitively, a random process can be
considered as a single random element whose value changes over time, so at denotes the state of
the process at time t. In situations where the time parameter t is clear from the context, we simply
write a as an abbreviation for at.

The history of a random process at time t is the subsequence (a0; : : : ;at). A Markov chain is
a random process satisfying

P[at+1 = a j (a0; : : : at) = (a0; : : : at)] = P[at+1 = a j at = at] (9)

for any sequence (a0 : : : at) and any element a. For any set A0 � A, the hitting time of the event
a 2 A0 is the random time de�ned by

� [a2A0] = infft : at 2 A0g:

2.1.4 Dominated distributions and couplings

De�nition 2.3 Let �; � be distributions. We say � dominates � and write �B � if, for all i,

P[X� � i] � P[X� � i]: (10)

For random variables X;Y, analogous to our usage of X
d
= Y if DX = DY (as in equation 3), we

write X
d
B Y if DX BDY and say X dominates Y in distribution.

De�nition 2.4 Let X and Y be random variables. A coupling of X and Y is a pair of random

variables (X0;Y0) de�ned on a common probability space such that X0 d
= X and Y0 d

= Y (as de�ned

in equation (3)).

Dominated distribution can also be understood in terms of couplings as follows.

Proposition 2.1 Let X;Y be random variables. Then X
d
BY if and only if there exists a coupling

(X0;Y0) of X and Y such that P[X0 � Y0] = 1.
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2.2 Random Graphs

In this section, we de�ne the random graph model which will be used throughout the paper. A
graph is a pair G = (V;E), where V is a set of vertices and E is a set of edges. We shall treat
graphs as generic combinatorial structures, and accordingly, we make the following assumption.

Assumption 2.2 All n-vertex graphs discussed in this paper are drawn on the same canonical

vertex set Vn = fv1; : : : ; vng.
This assumption will also hold for any other structures introduced in this section which involve a
set of vertices.

2.2.1 Con�gurations and Graphs.

De�nition 2.5 An endpoint arrangement (or simply an arrangement) is a pair (V; S) where

� V is a set of vertices.

� S is a set of endpoints; each endpoint belongs to exactly one vertex.

As discussed above, we shall work with a canonical n-vertex set Vn. Accordingly, we may simplify
our notation by dropping the reference to the vertex set, and simply refer to the set S itself as an
endpoint arrangement. When using this abbreviation, we let n(S) denote the number of vertices
corresponding to the arrangement S.1

Given an endpoint arrangement S:

� S(v) denotes the set of endpoints which belong to vertex v 2 Vn.
� v(s) denotes the vertex to which the endpoint s 2 S belongs.

De�nition 2.6 A con�guration is a triple (V; S;E) where (V; S) forms an endpoint arrangement

and E is a set of edges such that each edge e 2 E is a pair of endpoints fs1; s2g, and E forms a

perfect matching of S.

Given a con�guration and an endpoint s 2 S, we denote by E(s) the endpoint matched to s.
A graph is naturally associated with a con�guration by associating an edge (v(s1); v(s2)) with

each pair of matched endpoints (s1; s2). In this context, a graph can be considered an equivalence
class of con�gurations modulo permutation of endpoints assigned to the same vertex.

In general, we shall analyze con�gurations directly rather than graphs. For expository purposes,
though, we prefer the simple and traditional term graph. Accordingly, if the context is clear, we
may abuse our terminology slightly and refer to a con�guration as a \graph."

We adopt the convention that the variable n will denote the number of vertices jV j in an
arrangement, and m will denote the number of endpoints jSj. Note that this di�ers from the
traditional convention by which m denotes the number of edges, which would be half the number
of endpoints.

The degree of a vertex v in an endpoint arrangement S is jS(v)j, the number of endpoints
assigned to v. The degree of a vertex is denoted by dS(v), or simply d(v), if the set of endpoints S
is clear from the context. For an endpoint s, we also abbreviate

dS(s) = dS(v(s))

1Note that it is not (necessarily) the case that n(S) can be determined by counting the number of vertices which
contain endpoints in S; there may be vertices which contain no endpoints but are still included as part of the endpoint
arrangement.
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and refer to this value as the degree of the endpoint s. The degree sequence of an arrangement S
is the sequence of degrees DS = (dS(v1); : : : ; dS(vn)).

2.2.2 Random con�gurations

In this subsection, we describe the con�guration model [3] for generating a random graph with a
speci�ed degree sequence. For an endpoint arrangement S = (V; S), we let ES denote a uniformly
random matching of the endpoints in S, and we de�ne an associated random con�guration by

GS = (V; S;ES):

For a sequenceD = (d1; : : : ; dn) of non-negative integers, we let SD denote an endpoint arrangement
with degree sequence D, and, with slight abuse of notation, we de�ne

GD = GSD = (V; SD;ESD):

We say GD is a random con�guration with degree sequence D. We note thatGD is only well-de�ned
if the sum of the degrees in D is odd. Accordingly, we de�ne a degree sequence to be a sequence D
where

P
i di is even.

Since each simple graph with degree sequence D occurs with the same probability under the
con�guration model, then conditioning on simplicity produces a uniformly random simple graph
with degree sequence D. The following fact follows from a result of McKay and Wormald [11]

Fact 2.1 If the maximum degree of a degree sequence is o(n1=3) and the average degree is �(1),
then a random con�guration produces a simple graph with constant probability.

If a degree sequence D satis�es the conditions in fact 2.1, then for any graph property A,

P�GD satis�es A
�� GD is simple

�
= O

�P�GD satis�es A
��
:

In general, we shall ignore the simplicity requirement and just study the random con�guration GD,
noting that asymptotic results derived using the con�guration model are also applicable to random
simple graphs if the maximum and average degree requirements is met.

2.3 Asymptotics.

In the previous section, we de�ned the random graph GD for any degree sequence D. We seek to
study such random graphs asymptotically. Several authors, including Molloy and Reed [12, 13],
and Aiello, Chung, and Lu [1], have accomplished this by creating in�nite sequences D1;D2; : : : of
degree sequences, and examining limits as in

lim
n!1P[GDn satis�es A]:

(Here Dn is a degree sequence on n vertices.) This involves a considerable amount of overhead,
since an entire sequence Dn must be speci�ed for each value of n. We specify asymptotic degree
sequences similar to the smooth sequences de�ned by Molloy and Reed [12, 13], but we make no
explicit references to sequences of degree sequences. Instead, we embed the set of degree sequences
in a topological space, and deal with convergence in the topological sense.

We review some notation and terminology involving limits and convergence in topological spaces.
Let X� be a topological space and consider a subset X � X� and an element x� 2 X�. For any
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property P de�ned on the set X, we say P holds asymptotically as x ! x� if there exists a
neighborhood Nx� of x

� in X� such that P holds for all x 2 Nx� \X.
Consider a mapping x 7! yx from X to a topological space Y . For any element y 2 Y , we say

yx ! y as x! x�

if, for any neighborhood Ny of y in Y , the property that yx 2 Ny holds asymptotically as x! x�.
Consider mappings x 7! zx and x 7! z0x from X to R, and assume zx � 0 and z0x > 0 for x! x�.

We recall the standard \big O" notation:

� zx = O(z0x) as x! x� if there exists a constant C > 0 such that zx
z0x
< C holds asymptotically

as x! x�;

� zx = o(z0x) as x! x� if zx
z0x
! 0 as x! x�;

� 
, �, and ! are de�ned accordingly.

Finally, as a convention, we will often write asymptotic statements as follows:

Assume x! x�. Then yx ! y.

This statement is equivalent to yx ! y as x! x�.

2.3.1 Asymptotics and probability

In this subsection we discuss asymptotic statements involving probabilities and random variables.

De�nition 2.7 For each x 2 X, let Hx denote an event in some probability space.

1. We say Hx occurs asymptotically almost surely (a.a.s.) as x! x� if P[Hx]! 1 as x! x�.

2. For a mapping x! nx from X to Z+, we say Hx occurs with exponentially high probability

(w.e.h.p.) in nx as x! x� if P[Hx] = 1� e�n

(1)
x as x! x�.

Next, we deal with probabilistic convergence.

De�nition 2.8 For each x 2 X, let yx denote a random element in a topological space Y .

1. We say yx ! y a.a.s. as x! x� if, for every neighborhood Ny of y in Y , the event yx 2 Ny

occurs a.a.s. as x! x�.

2. We say yx ! y w.e.h.p. in nx as x! x� if, for every neighborhood Ny of y in Y , the event
yx 2 Ny occurs w.e.h.p. in nx as x! x�.

Using de�nitions 2.7 and 2.8, we can link together a.a.s. and w.e.h.p. statements, as demon-
strated in the following lemma for a.a.s.

Lemma 2.2 Let X�; Y � be topological spaces, let X � X� and Y � Y �, and let x� 2 X� and

y� 2 Y �. For each x 2 X, let yx be a random element in Y , and for each y 2 Y , let Hy be an

event in some probability space. Assume that yx ! y� a.a.s. as x! x� and that Hy occurs a.a.s.
as y ! y�.

For each x 2 X, de�ne an event Hyx such that

P[Hyx j yx = y] = P[Hy]:

Then Hyx occurs a.a.s. as x! x�.
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Proof. For any � > 0, there exists a neighborhood Ny� of y� in Y � such that if y 2 Ny� \ Y then
P[Hy] > 1 � �, and there exists a neighborhood Nx� of x� in X� such that if x 2 Nx� \ X then
P[yx 2 Ny� ] > 1� �. It follows that

P[Hyx ] > 1� 2�

for x 2 Nx� , and since � is arbitrary, the proof is complete.

We note that this lemma can be generalized in several ways to deal with w.e.h.p. convergence
and various other conditions.

2.3.2 Degree distributions

The topologies we use to asymptotically specify degree sequences will be de�ned implicitly via
mappings from the set of degree sequences to various topological parameter spaces. The main
parameter will be the degree distribution, de�ned as follows.

De�nition 2.9 For any degree sequence D = (d1; : : : ; dn), the degree distribution �D is de�ned by

�D(i) =
jfj : dj = igj

n
: (11)

The degree distribution can be understood intuitively as follows. Given an arrangement S with
degree sequence D, if we choose a vertex v uniformly at random from Vn, we have

DdS(v) = �D:

Note that, from de�nition 2.1, M1(�D) gives the expected degree of a vertex chosen uniformly at
random (i.e. the average degree).

For any distribution � with 0 < M1(�) <1, we de�ne an associated residual distribution by

��(i) =
(i+ 1)�(i + 1)

M1(�)
(12)

for all i. If M1(�) = 0 we de�ne ��(0) = 1 and ��(i) = 0 for i > 1. For any degree sequence D, we
abbreviate �D = ��D and refer to �D as the residual degree distribution of D. Since M1(�D) <1
for any degree sequence D (or any sequence of integers), �D is well de�ned. Intuitively, if we choose
an endpoint s uniformly at random from S, we have

DdS(s)�1 = �D:

The term residual re
ects the fact that dS(s)� 1 counts the number of endpoints which belong to
v(s) other than s itself.

Our asymptotic speci�cations will rely mainly on the degree distribution �D of a degree sequence
D. However, the residual distribution �D is often more useful than �D in analyzing the CM
algorithm. Therefore, we shall be mindful of how our de�nitions a�ect the behavior of the residual
distribution as well as the degree distribution.

We now de�ne a family of metrics on the set � of probability distributions on Z�.

De�nition 2.10 The variation distance between distributions �; � 2 � is given by

g�(�; �) =
1

2

1X
i=0

j�(i)� �(i)j : (13)
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It is clear that the variation distance de�nes a metric on �. The variation distance is often de�ned
equivalently by

g�(�; �) =

1X
i=0

max(�(i)� �(i); 0) =

1X
i=0

max(�(i)� �(i); 0): (14)

This alternate de�nition accounts for the topologically irrelevant factor of 1
2 in equation (13).

For any k � 1, we de�ne a metric which takes into account the k'th factorial moment of a
probability distribution. For distributions �; � satisfying Mk(�);Mk(�) <1, we de�ne

g�;k(�; �) = g�(�; �) + jMk(�)�Mk(�)j : (15)

We refer to convergence of a probability distribution with respect to the metric g�;k as k-

convergence, and we use the notation �
k�!�� to indicate k-convergence of � to ��. Accordingly, the

notation �! �� indicates convergence with respect to the variation distance metric g�.
Note that if Mk(�) < 1, the residual distribution �� given in equation (12) is well-de�ned.

The residual distribution is typically a more useful tool than the degree distribution in studying
random graphs, and we deal with the residual distribution much more than the degree distribution
itself. We note that the moments of the residual distribution are given by

Mk(��) =
Mk+1(�)

M1(�)
;

and therefore �
k�!�� implies ��

k�1��! ��� .
For the rest of this paper, we shall only consider limiting degree distributions with the property

that 0 < M1(�) < 1. Hence, a degree sequence D satisfying �D
1�! �, will have average degree

M1(�D) = �(1). In particular, this implies that the number of endpoints m satis�es m = �(n),
where n is the number of vertices. We note that it may be the case that the residual distribution
satis�es M1(��) = 1, even if M1(�) < 1. This occurs, for example, for a power law or Pareto

distribution �(i) = i��

�(�) for values of 2 < � � 3 (here �(�) denotes the Riemann zeta function). In
our study of the diameter of the random graph GD, we shall often need to consider the two cases
M1(��) <1 and M1(��) =1 separately.

2.4 Properties of the Metric Spaces (�; g�;k).

In this section, we give some useful results about the metrics we have de�ned on the set � of
distributions on Z�.

For any distribution � in Z�, we de�ne the complementary distribution function of � by

F�(i) = P[X� � i] =
X
j�i

�(j):

Proposition 2.3 Let �� be a distribution. Then the following statements are equivalent:

1. �! �� with respect to the variation distance metric g�.

2. maxi j�(i)� ��(i)j ! 0.

3. maxi jF�(i)� F��(i)j ! 0.
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The complementary distribution function is related to domination (de�nition 2.3), since �B �
if and only if F�(i) � F�(i) for all i.

Lemma 2.4 Consider a mapping � 7! � from � to � such that � C � for all �. If there exist

distributions �� and �� such that � ! �� as �
k�! ��, then � k�! �� as �

k�! �� as well.

Proof. It suÆces to show that Mk(�)!Mk(�
�) <1. Note that, for any distribution �,

Mk(�) =

1X
i=0

(i)k�(i) =

1X
j=1

((j)k � (j � 1)k)F�(j):

Since (j)k�(j�1)k � 0 for all j � 1, the lemma follows from the statement of Lesbegue dominated
convergence in [9].

This yields a useful corollary regarding endpoint arrangements. For any arrangement S, we write
�S and �S to denote the degree distribution �DS

and the residual distribution �DS
, respectively.

Corollary 2.5 Let S be an arrangement such that �S
k�!�. Let T � S and assume �T ! �0. Then

�T
k�!�0.

Finally, we introduce truncated distributions.

De�nition 2.11 For any distribution � and any 0 < � � 1, the �-truncated distribution �[�] is
speci�ed by the complementary distribution function

F�[�](i) = maxfF�(i)� �; 0g
for i > 0, and F�[�](i) = 1 for i � 0.

Informally, the distribution �[�] is constructed by removing a total amount � from the weights �(i)
for the highest values of i, and increasing the weight �(0) by �.

Proposition 2.6 The truncated distribution �[�] satis�es the following properties:

1. g�(�[�]; �) � �.

2. For any �, if g�(�; �) � � then �[�] C �.

3 The Con�guration Model Algorithm.

As de�ned in section 2.2, a random con�guration is generated from an endpoint arrangement (V; S)
by choosing a random matching of the set S of endpoints. The con�guration model (CM) algorithm

is a procedure which generates this matching one edge at a time. The CM algorithm is customizable,
in the sense that we have some 
exibility regarding the order in which the edges of the matching
are revealed.

The intuition is as follows. For any endpoint s 2 S, a uniformly random matching E of s
will choose E(s) uniformly at random from the set S � fsg. Also, the remaining endpoints in
S�fs;E(s)g will be matched uniformly at random. Hence, a random matching can be constructed
by successively choosing an unmatched endpoint and choosing its match uniformly at random.

This section proceeds as follows. In section 3.1, we give a formal description of the CM algorithm
as a discrete random process. Since as described above, the CM algorithm can be customized, we
then describe two particular variants of the CM algorithm. The �rst is the �-core CM algorithm,
which we studied in [7, 8]. The second is the CM BFS algorithm, which performs a standard
breadth-�rst-search while generating a random con�guration, and which will be used extensively
in this paper.
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3.1 The CM Process

In this section we introduce the notation which we shall use to describe the discrete random process
associated with the execution of the CM algorithm. All endpoint arrangements, con�gurations, etc.
are de�ned with respect to the canonical vertex set Vn. The CM algorithm generates a random
matching of an initial arrangement U containing m = jU j endpoints.
De�nition 3.1 A CM process of an endpoint arrangement U is a random permutation (s1; : : : ; sm)
of U such that for any endpoint s and any even time t,

P[st = s j s1; : : : ; st�1] =
(

1
m�t+1 if s =2 fs1; : : : ; st�1g
0 otherwise.

We associate a random matching E of the endpoints in U with a CM process by setting E(st) =
st+1 for all odd values t = 1; 3; : : : ;m� 1. It is easy to verify that the CM algorithm does in fact
produce a random matching of the endpoints.

At time t, we say the endpoints s1; : : : ; st are exposed, so the set Ut contains all unexposed
endpoints. The set Ut plays a central role in the CM algorithm. Accordingly, we de�ne:

� The unexposed degree a vertex v is dt(v) = dUt(v).

� The unexposed degree distribution is �t = �Ut .

� The unexposed residual distribution is �t = �Ut .

We refer to the value dt(s) � 1 as the residual unexposed degree of the endpoint s at time t.
Note that the endpoint st becomes exposed at time t, hence

dt(st) = dt�1(st)� 1: (16)

In other words, the residual unexposed degree of st at time t � 1 becomes the total unexposed
degree of st at time t. Recall that, if t is even, then the endpoint st is chosen uniformly at random
from Ut�1. This yields the following fundamental property of the residual unexposed degree of an
endpoint chosen at an even time step.

Proposition 3.1 For any even time step t of the CM algorithm,

Ddt(st)js1;:::;st�1
= �t�1: (17)

De�nition 3.1 speci�es that the endpoint st must be chosen uniformly at random from Ut�1 for
even values of t. However, the behavior for odd values is unspeci�ed; hence, di�erent strategies for
choosing endpoints at odd times can be formulated to study various aspects of the resulting graph.
Informally, we de�ne a specialization of the CM algorithm to be a method for choosing st for odd
values of t.

In this paper, we will de�ne several specializations of the CM algorithm, which we will piece
together to study the diameter of the random graphGD. A halted CM process is a CM process along
with a random halting time � . Using halted CM processes, we can de�ne a single specialization of
the CM algorithm which uses di�erent strategies for choosing endpoints at di�erent times.

Recall that, as de�ned in section 2.3.2, the notation �U
k�!� indicates k-convergence of the degree

distribution �D to the distribution �. Typically, we will study CM processes for which the initial

arrangement U satis�es �U
k�!� for either k = 1 or k = 2. The following proposition states that if

we only look at o(m) steps, then the residual distribution will not change signi�cantly during this
time.

11



Proposition 3.2 Assume �U
k�!� for some distribution � and jU j ! 1. Then, for any CM process

with initial arrangement U , and any time t = o(jU j),
�t

k�1��! �� (18)

holds asymptotically always. In particular, M1(�t) ! M1(��) holds asymptotically always for

k � 2.

3.2 The CM �-core Algorithm.

The �-core of a graph is the maximal induced subgraph of minimum degree k. The CM �-core
algorithm [7, 8] is a specialization of the CM algorithm which chooses an endpoint st of minimum
unexposed degree at each odd time step t. Formally, a CM �-core process is a CM process satisfying

dt�1(st) = minfdt�1(s) : s 2 Ut�1g (19)

always for all odd values t < m. We note that since there may be several endpoints of minimum
degree, the CM �-core algorithm can be further specialized if necessary. The �-core algorithm �nds
the �-cores of a random graph by exposing all endpoints which are not part of the �-core and
leaving the �-core unexposed.

For our purposes, we are only concerned with the 2-core phase of the CM �-core algorithm. We
shall further specialize the 2-core algorithm, by introducing a set of vertices W , called the protected
set.

De�nition 3.2 Given an initial arrangement U and a protected set W , a protected 2-core CM
process is a halted CM process satisfying dt�1(st) = 1 and v(st) =2 W for all odd time steps t < � ,
and halting at the hitting time � of the event

d(v) 6= 1 for v =2W:

Hence, the protected 2-core algorithm chooses endpoints of unexposed degree 1 outside of W and
halts when no such endpoints remain.

The state of the CM process at the halting time � of the CM 2-core algorithm can be determined
w.e.h.p. from the results in [8] as described brie
y below. For details, see appendix A. Recall that
the probability generating function (p.g.f.) of a distribution � is de�ned by  �(z) = E [zX� ] for
z 2 [0; 1] (see equation 5). Accordingly, for any distribution �, we let z� denote the lowest �xed
point in  �, so

z� = minfz 2 [0; 1] :  �(z) = zg; (20)

and we de�ne the distribution �� by specifying the p.g.f.

 ��(z) =
 �((1 � z�)z + z�)� z�

1� z�
: (21)

The following lemma is an implication of [8] (see Theorem A.2 in appendix A).

Lemma 3.3 Let U be an initial arrangement satisfying �U
k�! �, where � has residual distribution

� = ��. Let W be a protected set and assume jW j = o(n). Then

1. The stopping time of the protected 2-core algorithm satis�es �

m ! 1�(1�z�)2 w.e.h.p., where
z� is de�ned in (20).

2. The residual distribution at time � satis�es ��
k�1��! �� w.e.h.p., where �� is de�ned in (21)

We note that the second condition is as strong as possible, since k-convergence of the distribution
� corresponds to (k � 1)-convergence of the residual distribution ��.

12



3.3 The CM BFS Algorithm.

Here we consider a breadth-�rst-search (BFS) specialization of the �-core algorithm. Beginning
with a set of vertices W , the CM BFS algorithm performs a standard breadth-�rst search and
exposes endpoints accordingly. Typically, BFS involves a queue of vertices; our implementation
di�ers slightly in that the queue will contain endpoints rather than vertices. We �rst de�ne a single
BFS iteration.

De�nition 3.3 Let U be an initial arrangement and let W be a vertex set with endpoint set R =
U(W ). A CM BFS iteration process is a halted CM process where st 2 R for all odd time steps

t � � , and halting at the hitting time � of the event R \U = ;.

For the CM BFS iteration process, we expand the state of the BFS algorithm as follows.

� R = R \U denotes the remaining unexposed endpoints in R.

� Q = R [ fs 2 U : d(s) < dU (s)g. We call Q the endpoint queue; accordingly, the initial

endpoint queue is the set Q0 = R. This de�nition speci�es that any endpoint s whose
current unexposed degree d(s) di�ers from its initial degree dU (s) belongs to Q, as well as
any remaining unexposed endpoints in R.

� T = U �Q contains all unexposed endpoints not in the queue. Endpoints in T are called
unexplored. The set U 0 = U �R is the initial set of unexplored endpoints.

We note that, in the context of BFS, the set T of unexplored endpoints is typically more relevant
than U, since the set Q contains endpoints which are already connected to a vertex in the set W .
Hence we denote the residual distribution with respect to the set of unexplored endpoints T by

�t = �Tt ; (22)

and refer to �t as the unexplored distribution at time t.
Note that, at each odd time step, the endpoint st must be chosen from R and hence from Qt�1,

so jQtj = jQt�1j � 1 always for odd t. However, at each even time step, two qualitative outcomes
are possible regarding the matched endpoint st. If st =2 Qt�1, then jQtj � jQt�1j, with equality
if dUt(st) = 0. Otherwise, st 2 Qt�1 so jQtj < jQt�1j, and a cross-edge has occurred. We also
distinguish two di�erent kinds of cross edges.

� A horizontal edge occurs if st 2 Rt�1.

� A diagonal edge occurs if st 2 Qt�1 �Rt�1.

We de�ne the BFS neighborhood of a CM BFS iteration to be the set of endpoints N = Q� in
the endpoint queue when the BFS iteration ends.

De�nition 3.4 An extended CM BFS process (or just CM BFS process) is a sequence of CM BFS

iterations, where the BFS neighborhood N of each iteration is used as the initial endpoint queue R
for next iteration.

For an extended CM BFS process we de�ne:

� The i'th BFS neighborhood Ni is the BFS neighborhood of the i'th CM BFS iteration. For
consistency, we let N0 = R, the initial endpoint queue.

13



� The i'th halting time � i is halting time of the i'th CM BFS iteration.

In the following subsections, we will give probabilistic bounds on the sizes of the BFS neigh-
borhoods. Our strategy will be to show that the random variable jNij is distributed \similarly" to
the sum of jNi�1j independent random variables distributed according to the residual unexplored
distribution �. Speci�cally, we will show that jNij is dominated in distribution from below by the
truncated distribution � [�] for arbitrary � > 0.

Our proof will involve a coupling of the CM BFS process with a random process which does gen-
erate a random variable which is distributed identically the sum of independent random variables.
First, we derive some results for coupled random processes.

3.3.1 Coupled Random Processes.

We begin by recalling some notation from section 2.
From section 2.4, recall that for a distribution �, �[�] denotes the �-truncated distribution, which

satis�es g�(�[�]; �) � � and �[�]C� for all � with g�(�; �) < �. From section 2.1.1, recall that
PnX�

denotes the sum of n independent random variables distributed according to � and 1p denotes a
Bernoulli random variable with parameter p. For a de�nition of coupled random variables, see
section 2.1.4.

Lemma 3.4 For all � > 0, all � 2 �, and all r > 0,

Xr
X�[�]

d
C

XPr1(1��)
X�:

Proof. Write XPr1(1��)
X� =

rX
i=1

Yi;

where the Yi are independent and distributed identically to Y
d
= 1(1��) �X�; and note that

g�(DY; �) � �:

Lemma 3.5 For any values n > 0 and 0 � p � 1,

2 �
Xn

1p
d
C

X2n
1pp: (23)

Proof. The result follows immediately from the following coupling:

X2n
1pp

d
=

2nX
i=1

Xi; where the Xi are independent and Xi
d
= 1pp,

Xn
1p

d
=

nX
j=1

Yj ; where Yj = X2j�1 �X2j
d
= 1p:

Clearly, for any k, if
P
Yj = k, then

P
Xi � 2k.

Next, we give some simple results regarding couplings and random processes. We begin with a
lemma about couplings and dependent random variables.

Lemma 3.6 Let X1;X2 and Y1;Y2 be (not necessarily independent) random variables, and sup-

pose:
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1. X1
d
BY1, and

2. for every i � j,
D[X2jX1=i] BD[Y2jY1=j]: (24)

Then X2
d
BY2.

Proof. Since X1
d
BY1, we can create a coupling (X0

1;Y
0
1) such that P[X0

1 � Y0
1] = 1. Similarly,

by the second hypothesis, for any i � j, we can de�ne a coupling (X0
(i;j);Y

0
(i;j)) of the conditional

random variables [X2jX1 = i] and [Y2jY1 = j] such that

P[X0
(i;j) � Y0

(i;j)] = 1:

Finally, we de�ne a pair of random variables (X0
2;Y

0
2) by

X0
2 = X0

(X0

1;Y
0

1)

Y0
2 = Y0

(X0

1;Y
0

1)
:

We easily verify that for any value k,

P[X0
2 = k] =

X
i;j

P[X0
(i;j) = k j X0

1 = i;Y0
1 = j] � P[X0

1 = i;Y0
1 = j]

=
X
i

P[X2 = k j X1 = i] � P[X1 = i]

= P[X2 = k]

and therefore X0
2

d
= X2. Similarly, Y0

2
d
= Y2. Also, since P[X0

1 � Y0
1] = 1, and P[X0

2 � Y0
2 j X0

1 �
Y0

1] = 1, it follows that P[X0
2 � Y0

2] = 1.

Recall that for any distribution �,
PnX� denotes the sum of n independent random vari-

ables distributed according to �. The following proposition follows easily by applying lemma 3.6
inductively.

Proposition 3.7 Let X1; : : : ;Xn be random variables, and let � be a distribution such that for all

i,
P[DXijX1;:::;Xi�1

C �] = 1: (25)

Then
Pn

i=1Xi
d
C

PnX�.

The next proposition deals with couplings for random processes. Again, the result follows from
a simple inductive application of lemma 3.6.

Proposition 3.8 Let X0;X1; : : : ;Xr be a Z�-valued random process and let Y0;Y1; : : : ;Yr be a

Z
�-valued Markov chain such that X0

d
BY0, and such that for any i � j and any t,

P �DXtjX1;:::;Xt�1
BD[YtjYt�1=j] j Xt�1 = i

�
= 1: (26)

Then Xt
d
BYt for all t.
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3.3.2 A single iteration of CM BFS

In this subsection we give a probabilistic lower bound for the size of the neighborhood of a single BFS
iteration. We �rst relate the size of a BFS neighborhood to the sum of i.i.d. random variables. This
allows us to use standard large deviation techniques (i.e., Cramer's theorem) to derive concentration
results for the BFS neighborhood size.

Theorem 3.9 Consider a CM BFS iteration for which the following hold.

1. The initial arrangement U satis�es �U
1�! �, and � has residual distribution � = ��.

2. The initial queue R = U(W ) has size r = jRj = o(m).

Then, for any � > 0, the BFS neighborhood N satis�es

jNj dB
Xr

X�[�] : (27)

To prove Theorem 3.9, we begin by pointing out the obvious fact that a BFS iteration can last
at most 2 � r steps, and therefore, for r = o(m), the residual distribution �t ! � always for any
0 � t � � � 2r. It is also true, though less obvious, that �t ! �, and therefore jQtj = o(m), for
any 0 � t � � � 2r. This is because, for any v =2W , if dt(v) = dU (v), then dTt(v) = dt(v) = dU (v),
and the unexposed degree can only change for at most r = o(m) vertices outside of W during the
iteration.

Now, we bound the number of endpoints in horizontal edges with the following lemma. Recall
that 1p is a Bernoulli random variable with parameter p.

Lemma 3.10 Let A � R denote the set of endpoints s 2 R such the endpoint E(s) matched to s
satis�es E(s) 2 R. Then, for any � > 0,

jAj dC
Xr

1�:

Proof. Note that the distribution of jAj depends only on r and m, since the actual degrees of
vertices do not a�ect the number of horizontal edges. Let q1;q2; : : : ;qr denote the endpoints of R
in the order that they are exposed by CM BFS. Any horizontal edge must consist of two consecutive
endpoints according to this ordering. So, for 1 � i � r � 1, de�ne random variables

Ki =

(
1 if E(qi) = qi+1;

0 otherwise,

so jAj = 2 �Pr�1
i=1 Ki.

Note that since r = o(m), the probability that an endpoint chosen uniformly at random from
Ut lies in R is at most r

m�2r = O( rm) = o(1) at any time during the BFS iteration. Also, if Ki = 1
then Ki+1 = 0, since the endpoint qi+1 cannot be part of more than one horizontal edge. Hence,
for i > 1,

P[Ki = 1 j K1; : : : ;Ki�1] =

(
0 if Ki�1 = 1;

O( rm) if Ki�1 = 0.
(28)

This observation allows us to consider the Ki in pairs. So, for 1 � i � br=2c, we de�ne

Li =K2i�1 +K2i;
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and note that jAj = 2
Pbr=2c

i=1 Li. Also, Li � 1 always for all i, and

P[Li = 1 j L1; : : : ;Li�1] = P[Li = 1 j Li�1] � 2O( rm ) = O( rm)

always, and since the Li are Bernoulli random variables, then

P[DLijL1;:::;Li�1
C 1

O(
r
m )

] = 1:

Hence, we conclude by proposition 3.7 that

jAjC 2 �
Xbr=2c

1O( rm ):

Finally, by lemma 3.5, it follows that that

jAj dC
Xr

1O(
p

r
m)
;

and therefore

jAj dC
Xr

1�

for any � > 0.

Now, note that the set of endpoints R�A will all match to the set U 0 = U �R. In particular,
conditional on jAj, exactly r � jAj endpoints chosen uniformly at random from U 0 will become
exposed during the BFS iteration.

Lemma 3.11 For any r0 � r, and for any � > 0, the size of the BFS neighborhood jNj satis�es

jNj dB
Xr0

X�[�]

conditional on r � jAj = r0.

Proof. As noted above, conditional on r � jAj = r0, exactly r0 endpoints chosen uniformly at
random from U 0 become exposed during the BFS iteration. Without loss of generality, we may
assume that the endpoints in A become exposed �rst, so after jAj steps, we have QjAj = RjAj =
R �A, and that the next r0 endpoints exposed at even time steps are drawn from U 0. Then, for
any 0 � t0 � r0, we de�ne Kt0 =

��QjAj+2t0
��� ��RjAj+2t0

��, so
Kr0 = jQ� j = jNj :

The random process K0; : : : ;Kr0 thus keeps track of the number of \new" endpoints in the BFS
queue which are not part of the original queue R. Now, the value of K drops by exactly 1 if a
cross-edge occurs. Hence,

P[Kt0 = Kt0�1 � 1 j K1; : : : ;Kt0�1] = O
�
Kt0�1

m

�
: (29)

Otherwise, when a cross-edge does not occur, K will increase by the value of the unexplored degree
of the endpoint sjAj+2t0 chosen at time jAj+ 2t0. So, for any i � 0,

P[Kt0 = Kt0�1 + i j K1; : : : ;Kt0�1] = � jAj+2t0(i)�O
�
Kt0�1

m

�
= �(i)� o(1); (30)
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since
Kt0�1

m = o(1) and t0 = o(m); here � jAj+2t0 denotes the unexplored residual distribution (equa-
tion 22) at time jAj+ 2t0.

We wish to show that

Kt0
d
B

Xt0

X�[�] (31)

for arbitrary � > 0. However, since, as described above, the value of Kt0 can change in two di�erent
ways, it is diÆcult to relate Kt0 to the sum if i.i.d. random variables directly. Instead, we construct
an auxilliary Z�-valued Markov chain Z1; : : : ;Zr0 and show that

Kt0
d
B Zt0

d
B

Xt0

X�[�] :

The Markov chain Zt0 must be \easy" to compare to both the random process Kt0 and the
sum of i.i.d. random variables

Pt0X�[�] . Intuitively, it is useful to think of the Markov chain Zt0 as
counting the number of elements in some set Ht0 , so

Zt0 = jHt0 j :
The contents of the set Ht0 change over time in a way that resembles a CM BFS iteration, but
exhibits enough independence that the process Zt0 can be easily compared to a sequence of i.i.d.
random variables.

Let us de�ne such a process. At time 0, we set H0 = ; and therefore Z0 = jH0j = 0. Then, at
each time step t0, the contents of the set H change as follows.

1. A random number of new elements is added to Ht0 ; the number of new elements is distributed
according to �[�1] where �1 > 0 is arbitrary.

2. Each element inHt0�1 is removed independently with probability �2
r0 , where �2 > 0 is arbitrary.

Formally, then, Zt0 is a Markov chain de�ned by Z0 = 0, and, if we let Lt0 denote the random
variable Zt0 conditional on Zt0�1, then

Lt0
d
= X�[�1]

+
XZt0�1

1(1� �2
r0
):

We also give an alternate description of the process Zt0 . For 1 � i � r0 and 0 � j � r0 � i, let
Y(i;j) denote the number of elements that remain in the set H at time i+ j among those that were
added at time i. As described above, we have

Y(i;0)
d
= X�[�1]

:

and

Y(i;j)
d
=
XY(i;j�1)

1(1� �2
r0
)

for j > 0. It follows by de�nition that

Zt0 =

t0X
i=1

Y(i;t0�i):

We now show that Zt0
d
CKt0 . Note that Zt0 � Zt0�1 � 1 occurs if (but not only if) Y(t0;0) = 0

and at least one element in Ht0�1 is removed at time t0. Hence

P[Zt0 � Zt0�1 � 1 j Z1; : : : ;Zt0�1] � �1 �
�
1� (1� �2

r0 )
Zt0�1

�
� �1 �

�
1� e�

�2Zt0�1
r0

�
:
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We claim that

P[Zt0 � Zt0�1 � 1 j Z1; : : : ;Zt0�1] = !

�
Zt0�1
m

�
(32)

for Zt0�1 = o(m). For Zt0�1 = 
(r0), we have

�1 �
�
1� e�

�2Zt0�1
r0

�
= �(1);

so (32) follows immediately, and for
�2Zt0�1

r0 suÆciently small, (32) follows from the power series

�1 �
�
1� e�

�2Zt0�1
r0

�
=
�1�2Zt0�1

r0
� �1

2!

�
�2Zt0�1
r0

�2

+ � � � :

Now, for any i � 0, we have

P[Zt0 � Zt0�1 + i j Z1; : : : ;Zt0�1] � P[X�[�1]
� i]: (33)

Hence, we conclude from (29), (30), (32), and (33) and from proposition 3.8 that Zt0
d
CKt0 for all

1 � t0 � r0.
Next, we claim that

Zr0
d
B

Xr0

X�[�] ; (34)

where � > 0 depends on �1 and �2 and can be made arbitrarily small. Note that, for j > 0,

Y(i;j)
d
=
XY(i;j�1)

1
(1� �2

r0 )

d
=
XY(i;0)

1
(1� �2

r0 )
j

d
B

XX�[�1]1(1�j �2
r0
)

so

Y(i;r0)

d
B

XX�[�1]1(1��2):

Note that, for any h 2 Z�,

lim
�1;�2!0

P
�XX�[�1]1(1��2) = h

�
= P[X� = h] = �(h):

It follows by proposition 2.3 that, for arbitrary � > 0, we can choose �1 > 0 and �2 > 0 such that

g�

 
�;D�PX�[�1]1(1��2)

�
!
< �;

and therefore

Y(i;r0)

d
B

XX�[�1]1(1��2)
d
BX�[�] :

Hence

jNj = Kr0
d
B Zr0

d
B

Xr0

X�[�] ; (35)

where � > 0 is arbitrarily small.

Proof of Theorem 3.9. Choose arbitrary �1; �2 > 0 such that �1+ �2 < �, and, combining the
two previous lemmas with lemma 3.4, we deduce

jNj dB
Xr�jAj

X�[�1]

d
B

XPr11��2
X�[�1]

d
B

Xr
X�[�1+�2]

:

This theorem allow us to derive a large deviation inequality regarding the growth rate of BFS
neighborhoods. The proof is adapted from the upper bound proof of Cramer's Theorem in [9].
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Lemma 3.12 Let U be an endpoint arrangement satisfying �U
1�! � and m = jU j ! 1, where

� has residual distribution � = ��. Let R � U be the initial endpoint queue for an iteration of

CM BFS and assume r = jRj = o(m). Then, for any � > 0, there exists a value C� such that the

following statements hold asymptotically:

1. If M1(�) <1 then the size of the BFS neighborhood N satis�es

P
h jNj

r �M1(�)� �
i
� e�C�r: (36)

2. If M1(�) =1 then the size of the BFS neighborhood N satis�es

P
h jNj

r � 1=�
i
� e�C�r: (37)

Proof. For any distribution �, de�ne

��(z) = lnE [e�zX� ]: (38)

Note that if � ! � then ��(z)! ��(z) for all z � 0, and since

E [e�z
PrX� ] = E [e�zX� ]r = er��(z);

then by Chebyshev's Inequality,

lnP
hXr

X� � rx
i
� r(��(s) + xs)! r(��(s) + xs) (39)

for all z.
Now, by Theorem 3.9, we have

jNj dB
Xr

X�[Æ] ;

for arbitrary Æ > 0. If M1(�) < 1, then for any � > 0, we can choose z and Æ appropriately such
that ���[Æ](z)=z � (M1(�) � �) and set C� accordingly. If M1(�) = 1, then for any 1=�, there
exists values z; Æ such that ���[Æ](z)=z � 1=�, and again we set C� accordingly.

3.4 Halted CM BFS

We de�ne a halted CM BFS process to be a CM BFS process which halts upon termination of the
iteration in progress after a given number of CM steps. For halted BFS:

� � denotes the number of BFS iterations that were completed. Hence the halting time of
halted CM BFS is ��.

� We de�ne the i'th halted BFS neighborhood by

N0
i =

(
Ni if i � �,

; if i > �.

The following lemma will be used to obtain the lower bound for the diameter.

20



Lemma 3.13 Consider an endpoint arrangement U such that �U
2�! �, where � has residual

distribution � = ��, let the initial endpoint queue R = U(W ) have size r = jRj = o(m), and

consider CM BFS halted after l = o(m) steps. Then, for any i and any � > 0,

E ���N0
i

��� � r �M1(�+ �)i: (40)

Proof. Note that jN1j is at most equal to the sum of the residual unexplored degrees of the
endpoints matched to each s 2 R. Hence, by linearity of expectation,

E [jN1j] � r �M1(�0);

and since jRj = o(m), then �0
1�! � holds asymptotically always.

Let us write n0i = jN0
ij. Then, for arbitrary i, if � i�1 < l then

E
h
n0i
��� n0i�1;U0

� i�1

i
� n0i�1 �M1(�� i�1

);

and if � i�1 � l then
n0i = 0:

Since l = o(m), then for any t � l,

M1(�t) < M1(�) + �

for arbitrary � > 0. Hence, we conclude that

E �n0i� � r �M1(�+ �)i

for all i and for arbitrary � > 0.

4 The Diameter of a Random Graph.

Given vertices u; v in a graph G, let Æ(u; v) denote the distance from u to v, that is, the length of
a shortest path from u to v. We set Æ(u; v) =1 if u and v are not connected. The diameter �(G)
of a graph G is the maximum distance between any connected pair of vertices in G. In this section
we compute �(GD) with asymptotic precision.

We begin by stating our main theorem regarding the diameter of a random graph. For a
distribution �, recall that z� denotes the least �xed point of the p.g.f.  � in the interval [0; 1] (see
equation 20). We are only interested in distributions for which z� < 1, or equivalently, M1(�) > 1.
For such a distribution �, a random graph GD with residual distribution �D ! � a.a.s. contains a
giant connected component and a giant 2-core (see appendix).

Assuming z� < 1, we de�ne
M�(�) =  0�(z�); (41)

the derivative of the p.g.f. at z�. The signi�cance of the value M
�(�) is discussed in the appendix.

In particular, by Theorem A.2 and statement 1 of proposition A.3, the fraction of endpoints of
residual degree 1 in the 2-core of GD converges to M�(�) w.e.h.p.

Also, let

a(�) =

8><
>:
2 if �(0) > 0

1 if �(0) = 0 and �(1) > 0

0 if �(0) = �(1) = 0;

(42)
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Theorem 4.1 Let � be a distribution satisfyingM1(�) > 1, consider a degree sequence D satisfying

�D
2�! � or �D

1�! � withM2(�) =1, where � has residual distribution �� = �. In addition, assume

that if �(0) = 0 then GD has no vertices of degree 1 (i.e. �D(0) = 0) and if �(1) = 0 then then

GD has no vertices of degree 2 (i.e. �D(1) = 0). Then,

�(GD)

lnn
! �� a.a.s. (43)

where

�� =
a(�)

� lnM�(�)
+

1

lnM1(�)
(44)

with a(�) as de�ned in equation (42).

Informally, the two terms in equation (44) correspond to two di�erent characteristics of a random
graph GD that determine its diameter. The second term measures the \average" distance across
GD, while the �rst term gives the length of the longest isolated paths or cycles which can cause
the distance between a particular pair of vertices to be signi�cantly longer than the average.

In the simplest (and possibly the most \typical") situation, we have �(0) > 0 and M1(�) <1;
for example, sparse Gn;p falls into this category. In this situation, the diameter is determined by a
longest shortest path between two vertices of degree 1 and will consist of a path from each of the
vertices to the 2-core of the graph and a path connecting across the 2-core.

The proof of Theorem 4.1 proceeds as follows. First, we prove the upper bound, which is the
more substantial portion of the proof. We show the upper bound �rst in the \typical" case described
above, and then generalize to other situations. Finally, we compute a matching lower bound.

4.1 Upper Bound Proof of Theorem 4.1

Our principal proof strategy will be to examine the rate of growth of the neighborhoods around spe-
ci�c vertices. For any vertex v in a con�guration (V; S;E), we de�ne the i'th endpoint neighborhood
Ni(v) of v by

Ni(v) = fs 2 S : Æ(v; v(s)) = i and Æ(v; v(E(s))) � ig;
so if we perform CM BFS in a random graph beginning with vertex set W = fvg, then the set
Ni(v) will correspond to the i'th BFS neighborhood Ni as de�ned in section 3.3.

For any vertex v, let


(v) =

(
minfi : jNi(v)j � 3m1=2 lnmg if this set is nonempty;
1
2 minfi : jNi(v)j = 0g otherwise.

Also, if v is a vertex in a random graph, we write we write Ni(v) and 
(v) to denote the respective
random set and random quantity.

Lemma 4.2 For a degree sequence D with �D
1�! �, the graph GD a.a.s. exhibits the property that

Æ(u; v) � 
(u) + 
(v) + 1

for all connected pairs of vertices u; v 2 V .
Proof. Given any pair of vertices u; v, we perform CM BFS, �rst starting with u and then

starting with v, until endpoint neighborhoods Nu = N
(u)(u) and Nv = N
(v)(v) are exposed.
Now, either
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1. u and v are not connected,

2. A path from u to v has been exposed, or

3. 1 and 2 do not hold, and both Nu and Nv contain at least 3m1=2 lnm unexposed endpoints.

In the �rst case, Æ(u; v) =1. In the second case, clearly Æ(u; v) � 
(u) + 
(v) + 1 Hence, we need
only consider the third case.

Suppose we now expose all of the endpoints in Nu; if any endpoint in Nu is matched to an
endpoint in Nv, then

Æ(u; v) � 
(u) + 
(v) + 1:

We claim that this occurs with probability 1� o(n2). To see this, we observe that a given endpoint
in Nu matches to Nv with probability at least

jNvj =m � m�1=2:

Now, if a particular endpoint in Nu does not match to Nv, it may match into Nu, reducing the
number of unexposed endpoints in Nu by 2. Nevertheless, if we sequentially match all of the
endpoints in Nu, there are at least jNuj =2 chances to �nd a connection to Nv.

The probability that no connection is found is therefore at most

(1�m�1=2)3m
1=2 lnm =

 �
1� 1

m1=2

�m1=2
!3 lnm

=

�
1

e� o(1)

�3 lnm

= O(m�3):

By considering all
�n
2

�
= O(m2) pairs of vertices, we conclude that this event a.a.s. occurs for no

such pair, and the lemma is proved.

Lemma 4.2 proves that in order to �nd an upper bound on the diameter of GD, it suÆces to
bound the maximum value of 
(v) for v 2 V . However, it is not necessary to consider all vertices
in V ; the next lemma we prove allows us to narrow down the set of vertices which can contribute
to the diameter of GD.

Recall that the 2-core of a graph is the maximal induced subgraph of minimum degree 2. For a
graph G = (V;E), let d2(v) denote the degree of a vertex v in the 2-core of G, that is, the number
of edges in the 2-core of G which are incident on V .

Lemma 4.3 For any graph G = (V;E), and any vertex v 2 V , if there exists a vertex v0 such that

Æ(v; v0) = �(G), then either d2(v) = d(v) or d2(v) = 0 and d(v) = 1.

Proof. If 0 < d2(v) < d(v), then for any vertex v0 connected to v, we can �nd a vertex v00 such
that any path from v0 to v00 must pass through v and therefore Æ(v0; v00) > Æ(v; v0). Hence either
d2(v) = 0 or d2(v) = d(v). Now, if d2(v) = 0 it follows that d2 is not in the 2-core, and therefore
there are no cycles in G which contain v. Therefore, if d(v) � 2 and d2(v) = 0, then once again,
for every v0 connected to v, we can �nd a vertex v00 such that any path from v0 to v00 must path
through v and so Æ(v0; v00) > Æ(v; v0).

By lemma 4.3, we only need to consider vertices which are either entirely in the 2-core or have
degree 1. Note, however, that a vertex of degree 1 may or may not be connected to the 2-core by a
path. Hence, our proof of the upper bound of Theorem 4.1 will consider the following three cases
separately:
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1. d(v) = 1 and v is connected to the 2-core;

2. d(v) = 1 and v is in a tree component;

3. the degree of v in the 2-core satis�es d2(v) = d(v) � 2. In this situation, we also distinguish
between the case when the minimum degree of the entire graph is 3 or greater, and the case
where the minimum degree is at most 2.

In most cases, the diameter of GD will occur between two vertices of type 1, that is, two vertices
of degree 1 which are connected to the 2-core.

4.1.1 Vertices of degree 1, connected to the 2-core

In this subsection, we consider the neighborhoods in GD of a vertex of degree 1 which is connected

to the 2-core of GD. We assume throughout �D
2�! � or �D

1�! � with M2(�) = 1, where �
has residual distribution � = ��. Recall that M�(�) gives the derivative of the p.g.f.  � at the
�xed point z� (equation 41). M�(�) has an alternate interpretation which we shall make use of
in this section. Recall that by Lemma 3.3, if � is the halting time of the CM 2-core algorithm,
then �� ! �� w.e.h.p., where �� is the distribution de�ned in (21). By manipulating generating
functions, it can be shown (see appendix A) that

M�(�) = ��(1):

Lemma 4.4 Choose any v 2 GD such that d(v) = 1. Then, for any � > 0,

P
�

(v)

lnn
� 1

� lnM�(�)
+

1

2 lnM1(�)
+ �

�
= o(n�1): (45)

Proof. In order to bound 
(v), we shall execute a specialization of the CM algorithm which com-
bines the CM 2-core algorithm and CM BFS breadth-�rst-search. First, we execute the protected
2-core algorithm with protected set W = fvg. Then, if the single endpoint belonging to v remains
unexposed at the halting time � , we execute CM BFS starting with the vertex v.

Based on lemma 3:3, the unexposed residual distribution at the halting time satis�es �� ! ��
w.e.h.p. Hence, we discard the exponentially small probability that this convergence fails, and
assume that �� is arbitrarily close to ��.

Also, at time � , there are no endpoints of residual degree 1 other than v. We note that if
v's unique endpoint has been exposed at time � then v is not connected to the 2-core of GD and
belongs to a tree component; we shall deal with tree components separately.

We analyze the BFS in three phases. For this proof we let ni = jNij denote the number of
endpoints in the BFS queue after i iterations of the BFS. The phases are:

1. ni = 1 to ni � ln lnn;

2. ni = ln lnn to ni � ln2 n;

3. ni = ln2 n to ni � 3m1=2 lnn.

In the original graph, phase 1 corresponds to �rst performing BFS from v until the 2-core reached,
and then continuing the BFS in the 2-core until a neighborhood of size ln lnn is found. Intuitively,
phase 1 will include a large number of iterations if the path from v to the 2-core is very long, if
closest vertex to v in the 2-core is part of a long isolated cycle, or, more generally, if the small BFS
neighborhoods around v grow at an abnormally slow rate.
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Phase 2 transitions from a BFS neighborhood of size ln lnn to a BFS neighborhood of size ln2 n
in the 2-core. Typically, phase 2 will include only a small number of iterations, and phase 2 serves
mainly to transition from the \small" neighborhoods in phase 1 to the \large" neighborhoods of
phase 3. Then, in phase 3, the neighborhoods are large enough so that their growth rate is highly
predictable using the tools developed in section 3.3.

We compute the total number of BFS iterations by considering \good" and \bad" iterations
in each phase (their properties are de�ned below); we let G1;G2;G3, B1;B2;B3 and denote the
number of good and bad iterations in each phase, respectively. Informally, a \good" iteration
occurs if the size of the BFS neighborhood grows suÆciently quickly, and a \bad" iteration occurs
otherwise.

Phase 1. In phase 1, a good iteration occurs if ni+1 > ni or ni+1 = 0, and a bad iteration occurs
otherwise. Now, if no cross-edges occur, then ni+1 is equal to the sum of the residual degrees of the
endpoints matched to the endpoints in Ni. Recall that the unexposed residual distribution satis�es
�t ! �� w.e.h.p., and therefore the probability that an unexposed endpoint chosen uniformly at
random has residual degree 1 is

�t(1)! ��(1) =M�(�)

w.e.h.p. Also, since all vertices outside of the BFS queue have unexposed degree at least 2 (or
0), then the only way a bad iteration can occur without a cross-edge is if every endpoint in N
matches to an endpoint of residual unexposed degree 1. This probability is maximized if ni = 1, in
which case the single endpoint in Ni matches to an endpoint of unexposed residual degree 1 with
probability at most ��(1) + o(1) =M�(�) + o(1).

Recall that, in the context of CM BFS (section 3.3), Q denotes the set of unexposed endpoints
in the BFS queue; in particular, a cross-edge occurs if and only if an endpoint in Q is chosen at
random during an even time step. Hence, the probability of encountering a cross-edge at any given
time is jQj = jUj.

Also, at any time during any BFS iteration in phase 1, if jQj > 3 ln lnn, it is clear that, even if
all of the (at most ln lnn) remaining unexposed endpoints in the initial queue R form cross-edges,
the size of the queue at the the end of the iteration will be greater than ln lnn and therefore phase
1 will end. Hence, during phase 1, we can assume that the probability of encountering a cross-edge
at any particular step is O((ln lnn)=m). And, therefore, the probability of encountering more than
one cross edge during any of the �rst O(lnO(1) n) steps of phase 1 is O(n�2 lnO(1) n) = ~O(n�2).
Here O(lnO(1) n) serves simply as an upper bound to the number of CM steps which occur in phase
1, as we shall see below.

For any given BFS iteration in phase 1, barring a cross-edge, we must have ni+1 � ni, and
with at most one cross-edge, we have ni+1 � ni � 2. Hence, if at most one cross-edge occurs in
phase one, then G1 � ln lnn+2, since each good iteration increases the number of endpoints in N.
Recall that the total number of iterations in phase 1 is G1 +B1. It follows that for any constant
c, we have

P[G1 +B1 � c lnn] = P[B1 + ln lnn+ 2 � c lnn] + ~O(n�2)

= P[B1 � (c� o(1)) lnn] + ~O(n�2):

It follows that, for any constant c, with probability 1 � ~O(n�2), the event B1 � c lnn occurs
if and only at least c lnn of the �rst ln lnn+ 2 + c lnn iteratations in phase 1 are bad. As shown
above, the probability that any given iteration in phase 1 is a bad iteration is w.e.h.p. bounded
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above by ��(1) + o(1) =M�(�) + o(1). Thus, we compute

P[B1 � c lnn] �
�
ln lnn+ 2 + c lnn

c lnn

�
(M�(�) + o(1))c lnn + ~O(n�2)

�
�
1 +O

�
ln lnn

lnn

��c lnn

(M�(�) + o(1))c lnn + ~O(n�2)

� (M�(�) + o(1))c ln n + ~O(n�2): (46)

In particular, for any �1 > 0, we let

c =
1

� lnM�(�)
+ �1

and compute P[B1 � c lnn] � o(n�1): Hence, for arbitrary �1 > 0, with probability 1� o(n�1),

B1 �
�

1

� lnM�(�)
+ �1

�
lnn; and G1 = O(ln lnn): (47)

We point out that it is not necessarily the case that ni ever reaches ln lnn; it is possible that
ni becomes 0 at some point, for example if ri�1 = 2 and the two endpoints in Ni�1 are matched to
each other. This occurs with probability �(m�1) = �(n�1); however, if this event does occur, the
analysis above shows that, with probability 1�o(n�1), it occurs after at most

�
1

� lnM�(�) + o(1)
�
lnn

iterations.
Phase 2. In phase 2 we transition from endpoint sets of size ln lnn to size ln2 n. Unlike phase

1, we do not consider a phase 2 iteration to be good simply because ni+1 > ni. Instead, we will
consider the actual rate of neighborhood growth.

Proposition A.3 in the appendix shows that M1(��) =M1(�). Also, by assumption of Theorem

4.1, either �D
1�! � or �D ! � with M1(�) = 1, so it follows from lemma 3.3 that �t

1�! ��
w.e.h.p. or �t ! �� w.e.h.p. with M1(��) = M(�) = 1. In particular, the average residual
unexposed degree at the halting time of the protected 2-core algorithm converges toM1(�) w.e.h.p.
Hence, in this phase, we de�ne a bad iteration to be an iteration in which

� ni+1 � (M1(�)� Æ)ni if M1(�) <1.

� ni+1 � (1=Æ)ni if M1(�) =1.

for arbitrarily small Æ > 0. The number of good iterations is thus bounded above by

2 ln lnn

ln(M1(�)� Æ)
= O(ln lnn)

in the �rst case and
2 ln lnn

ln(1=Æ)
= O(ln lnn)

in the second.
By lemma 3.12, the probability of a bad iteration is at most

e�CÆni � (lnn)��(1)

for a constant CÆ. For any �2 > 0, a routine manipulation of binomial distributions yields

P[B2 � �2 lnn] � (lnn)��(ln n) = n��(ln ln n):
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Hence, for arbitrary �2 > 0, with probability 1� o(n�1),

B2 � �2 lnn; and G2 = O(ln lnn): (48)

Phase 3. In phase 3, a bad iteration de�ned as in phase 2; now, however, we have ni � ln2 n,
so the probability of a bad iteration is at most

e�CÆ ln
2 n = n�
(ln n):

It follows that, with probability 1 � o(n�1), B3 = 0, and in phase 3 we need only count good
iterations. By setting Æ appropriately, for arbitrary �3 > 0, we attain

G3 � logM1(�)�Æ(3m
1=2 lnn) �

�
1

2 lnM1(�)
� �3

�
lnn; if M1(�) <1; (49)

and
G3 � log1=Æm

1=2 � �3 lnn; if M1(�) =1. (50)

Finally, we set � = �1 + �2 + �3 and we add up the good and bad iterations in the three phases
as given by (47), (48), and (49) or (50) to yield equation (45).

4.1.2 Vertices of higher degree

In this subsection, we consider the neighborhoods vertices of degree 2 or greater in GD. For any
vertex v, recall that d2(v) denotes the degree of v in the 2-core of GD; hence, if � is the halting
time of the CM 2-core process, then d2(v) = d� (v). Also, recall that by lemma 4.3, for d(v) � 2,
we are only interested in vertices for which d2(v) = d(v), since otherwise a longest shortest path in
GD cannot begin or end at v.

Lemma 4.5 Choose any v 2 GD such that d(v) � 2. Then, for any � > 0

P
�

(v)

lnn
� 1

�2 lnM�(�)
+

1

2 lnM1(�)
+ �

��� d2(v) = d(v)

�
= o(n�1): (51)

Proof. The proof proceeds as in lemma 4.4. We execute �rst the CM 2-core algorithm but now
we use the protected set W = ;. Once the 2-core has been found, we execute CM BFS beginning
with the vertex v. By assumption, all of v's endpoints remain unexposed at the time that the 2-core
is found. Our analysis will employ the same three stages as in lemma 4.4. Clearly, the arguments
regarding phases 2 and 3 are identical to the case where d(v) = 1. Hence, we must deal with phase
1.

We note that, comparing equations (45) and (51), in order to attain the required bound, we
must reduce the duration of phase 1 from lnn

� lnM�(�) to
ln n

�2 lnM�(�) . In order to do so, we consider
phase 1 in slightly more detail.

Since our vertex v has degree at least 2, the CM BFS begins with a neighborhood of size n0 � 2.
Recall that a cross-edge occurs during phase 1 with probability ~O(n�1). Now, the probability of
experiencing a bad iteration without a cross-edge is at most (��(1) + o(1))ni = (M�(�) + o(1))ni .
Without any cross-edges, we must have ni+1 � ni, which implies ni � d(v) � 2 throughout the
phase.

On the other hand, if a cross-edge does occur, then ni can decrease. If ni+1 = 0 (for example, if
ni = 2 and a horizontal cross-edge matches both endpoints in ni), then phase 1 ends immediately,
as does the entire BFS. However, if ni+1 = 1, then a bad iteration becomes more probable. In

27



order to handle this situation, we note that a cross-edge is suÆciently unlikely that, for any � > 0,
the probability that a cross-edge occurs either preceded of followed by at least � lnn iterations of
phase 1 is at most

~O(n�1)(��(1) + o(1))� ln n = o(n�1):

Therefore, with probability 1� o(n�1), this does not occur, and we may assume that the neighbor-
hood size is at least 2 throughout phase 1.

Hence, a bad iteration requires that at least 2 endpoints of residual degree 1 are chosen consec-
utively, and this occurs with probability at most (M�(�) + o(1))2. Similarly to equation (46), we
now deduce that

P[B1 � c lnn] � �M�(�) + o(1))2
�c ln n

+ o(n�1)

� (M�(�) + o(1))2c lnn + o(n�1);

and the factor of 2 in the exponent carries through the computations in 4.4 to yield equation
(51).

4.1.3 Graphs with minimum degree at least 3

Here we consider the case where �(0) = �(1) = 0, hence, as assumed in Theorem 4.1, GD has no
vertices of degree 1 or 2.

Lemma 4.6 Assume �(0) = �(1) = 0, and assume GD has minimum degree 3. Then, for any

vertex v and any � > 0,

P
�

(v)

lnn
� 1

2 lnM1(�)
+ �

�
= o(n�1): (52)

Proof. Again we use the same three phases as in the proof of lemma 4.4. However, we change
the de�nition of good and bad iterations during the �rst phase. Now, we consider a bad iteration
to be any iteration in which ni+1 � 2ni. We note that since all vertices have degree at least 3
(and residual degree at least 2), a bad iteration can only occur with a cross-edge. As shown above,
with probability 1� o(n�1) at most one cross-edge occurs during the �rst phase, and with a single
cross-edge, we have ni+1 � ni � 2.

Since a good iteration doubles the size of the BFS endpoint queue, then (barring multiple
cross-edges), at most O(ln ln lnn) = o(lnn) good iterations can occur during phase 1. Hence, with
probability 1�o(n�1), both phases 1 and 2 have o(lnn) iterations and the previous result regarding
the duration of phase 3 yields equation (52).

4.1.4 Tree Components

The structure of a random graph with a �xed degree sequence D satisfying �D
2�! � or �D

1�! �
with M2(�) = 1 was described by Molloy and Reed [12, 13]. The results of Molloy and Reed
which are pertinent to this paper can be summarized as follows (see appendix for more details).
If the residual distribution � = �� satis�es M1(�) > 1, then the graph GD a.a.s. contains a
giant connected component; and, if the giant component is removed, the residual graph has the

structure of the random graph GD0 where the random degree sequence D0 satis�es �D0

2�! �0

a.a.s. In particular, this limiting distribution �0 has residual distribution ��0 = ��, and �� satis�es
M1(��) = M�(�) (see proposition A.3). Also, all tree components a.a.s. lie outside of the giant
component (or, equivalently, the giant component is a.a.s. not a tree component).
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A straightforward argument shows that for

k >

�
1

� lnM1(��)
+ �

�
lnn =

�
1

� lnM�(�)
+ �

�
lnn;

the k'th BFS neighborhood for a vertex of degree 1 in the graphGD0 (which corresponds toGD with
the giant component removed) has expected size o(n�1) and therefore is empty with probability
1� o(n�1). Hence, the diameter of the largest tree component is a.a.s. less than ( 1

� lnM�(�) + �) lnn
for arbitrary �; in particular, the diameter of the giant component is greater than the diameter of
any tree component.

4.1.5 Upper Bound

The proof of the upper bound of Theorem 4.1 follows immediately from the previous lemmas using
the �rst moment method. Speci�cally, the above lemmas show that, for any � > 0, the expected
number of vertices in GD with


(v)

lnn
� 1

2

�
a(�)

� lnM�(�)
+

1

lnM1(�)
+ �

�

is n � o(n�1) = o(1). Hence, with probability 1� o(1), no such vertex exists, and the upper bound
follows.

4.2 Lower Proof of Theorem 4.1

In order to prove the lower bound of Theorem 4.1, we shall demonstrate that for any � > 0, there
a.a.s. exist a pair of vertices u; v in GD with distance Æ(u; v) � (�� � �) lnn; where

�� =
a(�)

� lnM�(�)
+

1

lnM1(�)

is the value computed in equation (43) in Theorem 4.1. Recall that, intuitively, the second term
1

lnM1(�)
in the equation above gives the distance separating a typical pair of vertices, while the �rst

term a(�)
� lnM�(�) describes the length of the long isolated paths or cycles which cause the diameter

to di�er from the \average" distance. Accordingly, we prove the lower bound by �rst showing that
almost all vertices in a random graph with �(0) = 0 are separated by a shortest path of distance
at least ln n

lnM1(�)
(1 � o(1)), and then �nding a pair of vertices separated by an additional distance

of a(�) lnn
� lnM�(�) .

For the following lemma, we assume �(0) = 0, but we drop the assumption that GD must have
minimum degree 2. That is, for this lemma only, it suÆces that GD have o(n) vertices of degree 1.

Lemma 4.7 Let �D
2�! � or �D

1�! � with M2(�) =1, where � has residual distribution �� = �,
and assume �(0) = 0 and �(1) < 1. Let u; v be vertices in GD such that d(u) = �(1) and
d(v) = �(1). Then,

1. u and v are connected with probability 1� o(1).

2. For any � > 0, with probability 1� o(1),

Æ(u; v) > (1� �)
lnn

lnM1(�)
: (53)
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Proof. We trace the BFS neighborhoods of u and v as in the upper bound proof. First, we execute
the CM 2-core algorithm with protected set fu; vg. Since �(0) = 0, the probability generating
function of � satis�es  �(0) = 0. Hence, by lemma 3.3 the CM 2-core algorithm terminates after
o(m) steps w.e.h.p. Since u and v have constant degree, then with probability 1�o(1), all endpoints
belonging to u and v remain unexposed at this time.

Then, beginning with u, we perform a CM BFS search, halted after m1��0 steps, for a value
�0 > 0 to be speci�ed afterwards. Now, as with the upper bound proof (phases 1-3), the probability
that ni+1 < ni for any given iteration is O(m�1), hence with probability 1�o(1), this never occurs.
Hence, by analysis similar to the upper bound proof, when the halted BFS terminates, with proba-
bility 1� o(1), we will have found a large set of at least 3m1=2 lnn unexposed endpoints connected
to u. We then perform a similar BFS beginning with v, and conclude that with probability 1�o(1),
a path connecting u to v will be found.

For the second part of the lemma, we must show that, with probability 1� o(1), any path from
u to v is longer than (1 � �) ln n

lnM1(�)
. Note that, since the vertex v has �(1) unexposed endpoints,

then with probability 1�o(1), none of these endpoints become exposed during m1��0 = o(m) steps
of the CM algorithm. Hence, with probability 1 � o(1), the distance Æ(u; v) is greater than the
number of BFS iterations completed during the halted BFS. We shall prove that, for any � > 0,
with probability 1� o(1), at least (1� �) ln n

lnM1(�)
BFS iterations will have been completed when the

CM BFS halts after m1��0 steps.
Let n0i = jN0

ij, so n0i denotes size of the i'th BFS endpoint neighborhood if the BFS has not yet
halted and 0 otherwise. Hence, by lemma 3.13, for any i, and for any �1 > 0

E [n0i] � (M1(�) + �1)
i :

Let h = (1� �) ln n
lnM1(�)

and note that by linearity of expectation,

E
"

hX
i=1

n0i

#
�

hX
i=1

(M1(�) + �1)
i � h(M1(�) + �1)

h:

Choosing �1 suÆciently small, we have

E
"

hX
i=1

n0i

#
� O(n1�C) (54)

for a constant C > 0.
Now, recall that the CM BFS is halted after m1��0 steps, for arbitrary �0 > 0. By de�nition, h

iterations of CM BFS are completed at the halting time if and only if
Ph

i=1 n
0
i � m1��0 : We now

set �0 < C, where C is the constant in equation (54), and conclude by Chevyshev's inequality that

P
"

hX
i=1

n0h > m1��0
#
= o(1): (55)

Hence, with probability 1 � o(1), h iterations complete during the halted BFS, and no endpoints
which belong to v are encountered within distance h = (1� �) lnn

lnM1(�)
of u.

For graphs with minimum degree 3, the constant �� in Theorem 4.1 is given by

�� =
1

lnM1(�)
:

The lower bound in this case, as stated in the following corollary, is obtained by choosing any pair
of vertices u; v and invoking lemma 4.7.
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Corollary 4.8 Assume �(0) = �(1) = 0, and assume GD has no vertices of degree less than

3. Then, for every � > 0, with probability 1 � o(1), there exists a pair of vertices u; v such that

Æ(u; v) � (1� �)�� lnn.

Next, we consider graphs for which �(0) > 0, so the minimum nonzero degree is 1.

Lemma 4.9 Assume �(0) > 0. Then, for every � > 0, with probability 1� o(1), there exists a pair

of vertices u; v such that Æ(u; v) � (1� �)�� lnn.

Proof. Again we execute the CM 2-core algorithm, but now we choose a protected set W which
consists of �(nC�) vertices of degree 1; the constant 0 < C� < 1 will be speci�ed further on. We
let W 0 denote the set of vertices w 2 W for which the (unique) endpoint belonging to w remains
unexposed when the protected 2-core algorithm halts. For any vertex w 2 W , the event w 2 W 0

clearly occurs with probability �(1), and it is straightforward to show that W 0 a.a.s. (and w.e.h.p.)
contains a constant fraction of the vertices in W .

At this point we attempt to �nd two vertices u; v 2 W 0 with k consecutive endpoint neighbor-
hoods of size 1, where

k =

�
1

� lnM�(�)
� �0

�
lnn (56)

for an arbitrary �0 > 0. We shall refer to this as the BFS probe algorithm. First, choose any vertex
w 2W 0, and execute CM BFS until either

� k iterations are completed, and the sizes of the �rst k BFS neighborhoods satisfy

n0 = n1 = � � � = nk = 1;

or

� for some j � k, nj 6= 1.

We repeat this procedure, choosing a new vertex from W 0 each time until all endpoints belonging
to vertices in W 0 have been exposed.

We note that the BFS probe will expose at most O(lnn) endpoints for each vertex in W , and
since jW j = o(m), then o(m) endpoints overall will become exposed. Hence, for any �1 < 0, the
fraction of endpoints of residual degree 1 will never drop belowM�(�)��1 at any time during these
BFS searches. Therefore, the probability that any particular w 2W 0 produces a chain of length k
is at least

(M�(�)� �1)
k = (M�(�)� �1)

�
1

lnM�(�)
��0

�
ln n

= 
(n�(1�C�0 )): (57)

The probability of failing to �nd such a chain in j attempts is therefore at most

(1� 
(n�(1�C�0 )))j = ej ln(1�
(n
�(1�C�0 ))) = e�
(jn

�(1�C�0 )); (58)

and since the number of attempts is j = jW 0j = �(nC�), we choose C� > 1 � C�0 . This guarantees
that at least 2 such chains are found with probability 1 � o(1). Also, if a particular vertex w
produces such a chain, with probability 1 � o(1), the unexposed endpoint at the end of the chain
will remain unexposed through the rest of the BFS probe with probability 1� o(1). Hence, at the
end of the BFS probe, with probability 1� o(1), at least two such chains will be remain.

Now, let u; v be the two vertices in W 0 which are found to have k BFS neighborhoods of size
1, and let u0 and v0 respectively denote the vertices in the k'th BFS neighborhoods of u and v. At
this point, we note that any path connecting u to v must pass through u0 and v0. Thus,

Æ(u; v) = Æ(u0; v0) + Æ(u; u0) + Æ(v; v0): (59)
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Both Æ(u; u0) and Æ(v; v0) have length at least k as given in equation (56). A lower bound for Æ(u0; v0)
follows from lemma 4.7. This completes the proof.

The generalization to the case where GD has minimum degree exactly 2 (so �(0) = 0 and
�(1) > 0) is straightforward, as shown below.

Lemma 4.10 Assume �(0) = 0 and �(1) > 0, and assume GD has minimum degree 2. Then,

for every � > 0, with probability 1 � o(1), there exist a pair of vertices u; v such that Æ(u; v) �
(1� �)�� lnn.

Proof. The proof is very similar to the proof for graphs with minimum degree 1, except that the
BFS probe now searches for a chain of BFS neighborhoods containing 2 endpoints, rather than
only 1. We set

k =

�
1

2 lnM�(�)
� �0

�
lnn (60)

so the probability that, beginning with a vertex v of degree 2, we �nd k consecutive neighborhoods
of size 2 is �

(M�(�)� �1)
2
�k

= (M�(�)� �1)

�
1

lnM�(�)
��0

�
lnn

= 
(n�(1�C�0 )): (61)

Hence, with probability 1� o(1), we �nd at least 2 vertices u; v with chains of length k.
At this point, the neighborhoods at distance k from u and v will contain 2 unexposed endpoints

each. We now consider these neighborhoods as \vertices" u0; v0 of unexposed degree 2, and invoke
lemma 4.7 to derive an appropriate lower bound on Æ(u0; v0). This completes the proof.

The lower bound proof of Theorem 4.1 is now complete.

5 Applications

5.1 The Diameter of Gn;p

Consider computing the diameter of the classical random graph Gn;p, for p = d
m , where d > 1. It

can be shown that degree distribution of Gn;p is w.e.h.p. k-convergent to the Poisson distribution

�d(i) =
e�ddi

i! : Also, the Poisson distribution has the property that the residual distribution is the
same as the original distribution, so ��d = �d. Hence, let �(d) = 2

� ln(M�(�d))
+ 1

ln(M1(�d))
, so that,

by Theorem 4.1, we have
�(Gn;p)
ln n ! �(d) a.a.s. for p = d

n .

The p.g.f. for the Poisson distribution �d has the simple expression  �d(z) = ed(z�1). The �xed
point of this function is given by z�d = �W (�de�d)

d ; where the Lambert W -function W (z) is the
principal inverse of f(z) = zez . This gives a closed-form expression for �(d):

�(d) =
2

ln�W (de�d)
+

1

lnd
: (62)

From equation (62), it can be shown that �(d) ln d ! 3 as d ! 1 and �(d) ln d ! 1 as d ! 1,
and it is a simple exercise to derive increasingly accurate asymptotic characterizations of �(d), as
in

�(d) =
1

lnd
+

2

d
+O

�
lnd

d2

�
as d!1

and so on.
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5.2 Finding a Shortest Path Quickly

The proof of Theorem 4.1 shows that one can quickly �nd a shortest path between a pair of vertices
u; v in a random graph GD using a simple algorithm. Speci�cally, we perform BFS starting from
u until either

� a path connecting u and v is found;

� the BFS neighborhood is empty (so u and v are not connected);

� the BFS neighborhood reaches size 3m1=2 lnm.

Then we perform BFS from v until either a connecting path is found or the search terminates
without �nding a connecting path.

An alternate algorithm (which is a better heuristic in practice for general graphs) is one that
performs the BFS search simultaneously from u and v, starting the search for each new level from
the BFS neighborhood of smaller size. Assuming an adjacency-lists representation for the graph,
the following corollary of Theorem 4.1 holds for either algorithm.

Corollary 5.1 Let D be a degree sequence satisfying �D
1�! � where M1(��) > 1. Then a.a.s. for

any connected pair of vertices u; v in the random graph GD, a shortest path connecting u and v can

be found by a simple algorithm in time O(m1=2 lnm) = O(n1=2 lnn).

5.3 The Distance Distribution

For a graph G = (V;E) let
Æ(G) = fÆ(u; v) : u; v 2 V g

denote the multiset of distances between pairs of vertices in G, and note that jÆ(G)j = n2, since
there are n2 pairs of vertices. The proof of Theorem 4.1 shows that almost all �nite distances in
Æ(G) are very close to M1(��) � lnn. We state this more precisely in the following corollary.

Corollary 5.2 Let D be a degree sequence satisfying �D
2�! � or �D

1�! � with M2(�) = 1, and

assume M1(��) > 1. Then, for any � > 0,���nÆ 2 Æ(GD) : Æ <1 and
�� Æ
ln n �M1(��)

�� > �
o��� = o(n2) a.a.s.

APPENDIX

A Random Graphs and Probability Generating Functions

In this section we discuss various distributions related to random graphs which can be described
using manipulations of probability generating functions. Recall that, by de�nition 2.2, for a distri-
bution �, the p.g.f.  � is given by

 �(z) = E [zX� ]

for z 2 [0; 1]. Various characteristics of a random graph with a �xed degree sequence D satisfying
�D ! � can be understood in terms of the p.g.f. of the limiting residual distribution � = ��. The
p.g.f. also plays a key role in the theory of branching processes [2].
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We begin by noting that the k'th derivative of the p.g.f. is given by

 (k)� (z) = E
h
X� � (X� � 1) � � � (X� � k + 1) � zX��k

i
= E

h
(X�)k � zX��k

i
;

and therefore
 
(k)
� (0)

k!
= �(k) (63)

and
 (k)� (1) =Mk(�): (64)

Now, for any distribution �, let

z� = minfz 2 [0; 1] :  �(z) = zg: (65)

denote the lowest �xed point of  � in the interval [0; 1], and note that z� < 1 if and only if
M1(�) > 1 (see, for example [2]). For a distribution � with M1(�) > 1, we de�ne distributions ��
and ��, by giving the generating functions

 ��(z) =
 �(z � z�)

z�
(66)

and

 ��(z) =
 �(z + (1� z)z�)� z�

1� z�
(67)

The result of Molloy and Reed [13] regarding the degree sequence of a random graph with the
giant component removed can now be expressed as follows.

Theorem A.1 ([13]) Let D be a degree sequence and assume �D
1�! � where � = �� satis�es

M1(�) > 1. Consider the random graph GD, and let � denote the residual degree distribution of

the graph which results from removing the largest connected component from GD.

Then � ! �� a.a.s.

Proof. From the formula of Molloy and Reed for the limiting degree distribution of the graph with
the largest component removed (i.e. Theorem 2 of [13]), we derive

�(i)! �(i)zi�1� (68)

a.a.s. for all i, and by equation (66),  ��(z) =
P1

i=0 z
izi�1� �(i) therefore ��(i) = �(i)zi�1� , so �� is

in fact the limiting residual distribution described in equation (68).2

The residual degree distribution of the 2-core of the random graph GD, as described in [8], can
be expressed similarly.

Theorem A.2 ([8]) Let D be a degree sequence and assume �D
k�!� where � = �� satis�esM1(�) >

1. Consider the random graph GD, and let � denote the residual degree distribution of the 2-core
of GD.

Then �
k�1��! �� w.e.h.p.

2We note that this result can be strengthened to achieve k-convergence and/or a w.e.h.p. guarantee, but this is
unnecessary for our purposes.
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Proof. In Lemma 1 in the appendix of [8], the expected number of vertices of degree i � 2 at time
t of the 2-core algorithm, assuming that the 2-core has not yet been found, is given as

1X
j=i

�(j)

�
j

i

�
p(t)i(1� p(t))j�i � o(1);

where p(t) = (m�tm )1=2, and [8] gives w.e.h.p. concentration. Also, the halting time � of the 2-core
algorithm is shown to satisfy �

m ! 1 � (1 � z�)
2 or, equivalently, p(� ) ! 1 � z�, with w.e.h.p.

concentration.
From these two results, we compute the limiting residual distribution at the halting time of the

CM 2-core algorithm. First, let �2 denote the limiting degree distribution of the 2-core, so

�2(i) =

1X
j=i

�(j)

�
j

i

�
(1 � z�)

izj�i� (69)

for i � 2 (and by de�nition �2(1) = 0).
Let us denote corresponding residual distribution by �2 = ��2 , and compute, for i � 1,

�2(i) =
(i+ 1)�2(i+ 1)

M1(�2)
=

(i+ 1)

M1(�2)

1X
j=i+1

�(j)

�
j

i+ 1

�
(1� z�)

i+1zj�i�1�

=
(i+ 1)

M1(�2)

1X
h=i

�(h+ 1)

�
h+ 1

i+ 1

�
(1� z�)

i+1zh�i�

=
(i+ 1)

M1(�2)

1X
h=i

�(h+ 1)
(h+ 1)!

(h � i)!(i + 1)!
(1� z�)

i+1zh�i�

=
M1(�)(1� z�)

M1(�2)

1X
h=i

�(h)

�
h

i

�
(1� z�)

izh�i� :

In particular, note the similarity between the expression above for �2(i) and equation (69) for �2(i).
Note also that �2(0) = 0.
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We now show that  �2 =  �� , where �� is de�ned in equation (67). First, we compute

 �2(z) = E [zX�2 ] =

1X
i=0

�2(i)z
i

=

1X
i=1

�2(i)z
i

=
M1(�)(1 � z�)

M1(�2)

1X
i=1

1X
h=i

�(h)

�
h

i

�
(1� z�)

izh�i� zi

=
M1(�)(1 � z�)

M1(�2)

1X
i=1

1X
h=i

�(h)

�
h

i

�
(z(1 � z�))

izh�i�

=
M1(�)(1 � z�)

M1(�2)

1X
h=1

�(h)

hX
i=1

�
h

i

�
(z(1 � z�))

izh�i�

=
M1(�)(1 � z�)

M1(�2)

1X
h=0

�(h)
�
(z(1� z�) + z�)

h � zh�

�

=
M1(�)(1 � z�)

M1(�2)

�
 � (z(1 � z�) + z�)�  �(z�)

�
:

Since z� is a �xed point of  �, this yields

 �2(z) =
M1(�)(1 � z�)

M1(�2)

�
 � (z(1� z�) + z�)� z�

�
: (70)

In order to demonstrate that equations (67) and (70) are equal (and therefore  �� =  �2), it
suÆces to show that

M1(�)

M1(�2)
= (1� z�)

�2:

While this can be achieved algebraically by a computation similar to what is shown above, we give
a more intuitive, if less formal, argument. Since � gives the initial degree distribution and �2 gives
the degree distribution of the 2-core, then m = M1(�) � n gives the number of endpoints in the
original graph, and M1(�2) � n gives the number of endpoints in the 2-core. It follows that the
fraction of endpoints in the 2-core is given by

M1(�2)

M1(�)
:

As noted above, the halting time of the 2-core algorithm concentrates about m(1� (1� z�)2), and
since each time step exposes a single endpoint, we have

M1(�2)

M1(�)
= (1� z�)

2:

Therefore �2 = ��, and we conclude that �
k�1��! �� w.e.h.p.

Next, we give a visual interpretation of the functions  �� and  �� , and their relation to the
p.g.f.  �. For a typical distribution �, let us examine a plot of the p.g.f.  � as shown below; here
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the x-axis is z and the y-axis is  �(z).

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

The value z� corresponds to the lowest �xed point in  �, as shown in the plot. If we \drag"
the point (z�; z�) to the upper-right-hand corner (1; 1), and \stretch" the lower-left-hand region
of the plot to cover the entire [0; 1] � [0; 1] square, what results is the plot of the p.g.f.  �� . On
the other hand, if we drag the point (z�; z�) diagonally towards the origin (0; 0), and stretch the
upper-right-hand region of the plot, the result is the plot of  �� .

We can verify algebraically that the \stretching" described above does not a�ect �rst derivatives,
and therefore

 0��(1) =  0��(0) =  0�(z�)

and
 0��(1) =  0�(1):

Now, let us de�ne
M�(�) =  0�(z�); (71)

and by equations (63) and (64), we have the following proposition.

Proposition A.3 For any distribution � satisfying M1(�) > 1,

1. M1(��) = ��(1) =M�(�);

2. M1(��) =M1(�):

This proposition can be interpreted intuitively as follows. Recall that, if � is the limiting residual
degree distribution of a random graph GD, then �� gives the limiting residual distribution of the
2-core of GD, and �� gives the limiting residual distribution of the subgraph of GD with the giant
component removed. Hence, statement 1 of proposition A.3 shows that the fraction of endpoints
of residual degree 1 in the 2-core of GD is asymptotically equal to the average residual degree of
the subgraph with the giant component removed. Statement 2 of proposition A.3 shows that the
average residual degree of the 2-core of GD is asymptotically equal to the average residual degree
of GD itself.

Finally, we note that the distributions �� and �� also arise in a certain decomposition of a
supercritical �-branching process; this decomposition, as well as a more comprehensive discussion
of probability generating functions, can be found in [2].
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