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Abstract

We derive an expression of the form clnn + o(lnn) for the diameter of a sparse random
graph with a specified degree sequence. The result holds a.a.s., assuming certain convergence
and supercriticality conditions are met. The proof is constructive and yields a method for
computing the constant c¢. For the random graph G, , with np = ©(1) + 1, we solve for ¢ in
closed form.
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1 Introduction

The diameter of a random graph is the maximum distance between two connected vertices. For
the diameter of a sparse random graph with a specified degree sequence we derive an expression of
the form

clnn £ o(lnn). (1)

Our result holds a.a.s. for degree sequences satisfying certain natural convergence conditions. We
determine the value of the constant c for all degree distributions which are super-critical, meaning
that a giant connected component is a.a.s. present, and for which the average degree is constant.
This includes G, , and G, ,, when the expected degree is a constant and power-law graphs. For
sparse random graphs diameter results of such precision were known earlier only for regular graphs
of constant degree [4]. Weaker results (to within a constant factor) were known for diameter of
sparse Gy, [5] and random ‘expected-degree’ power law graphs [10].

Our results have several applications. We make it possible derive the explicit value of the
constant ¢ in equation (1) for many natural random graphs. For the random graph G, , with
d =n-p > 1, we derive a closed-form expression for ¢ as a function of d. This function can be
characterized asymptotically by ¢ = ?’Tn—og) asd — 1 and ¢ = ﬁ + % +0 (hd‘—;i) as d — 00; a
bound of ﬁ (14 0(1)) - Inn for the diameter of G, ;, in this range was conjectured in [5]. We also
show that, for d > 1, the diameter of G, , is a.a.s. equal to the diameter of the giant component,
as conjectured in [5]. Our results show that almost all pairs of vertices in the giant component
have the same shortest path length to within an arbitrarily small constant factor, and also that

simple path finding algorithms will find a shortest path between a given pair of vertices a.a.s. in
O(y/nlogn) time.

*This work was supported in part by NSF grant CCR-9988160.




Among the tools and techniques we use and develop are the following. We give a formulation
of asymptotic degree sequences via metrics and convergence of probability distributions. We use
couplings to apply well-known results for sums of i.i.d. random variables in situations where a clean
i.i.d. condition does not hold; in particular, we achieve bounds on large deviations for neighborhood
sizes of a breadth-first search in a random graph. Our actual result on diameter uses our earlier
results [7, 8] on k-core (especially 2-core) to develop a method of identifying and bounding the
worst-case distance between two connected vertices. For instance, in a random graph that has a
constant fraction of vertices of degree 1, such a path will consist of essentially a longest path (from
each of two vertices of degree 1) to just past the 2-core, followed by a typical path across the 2-core.
We also make extensive use of probability generating functions (p.g.f.); using the p.g.f., we relate
key properties of the degree distribution of the 2-core of a random graph to the degree distribution
with the giant component removed.

Organization of this paper. In section 2 we present background material on random variables
and random graphs. In section 3 we describe the CM (or configuration model) algorithm for
generating a random graph with a fixed degree sequence as well the CM k-core algorithm from
[7, 8] (other results are known for the k-core problem [14, 6], but our results depend mainly on
the treatment in [8]). In this section, we also introduce an important tool in our analysis, the CM
breadth-first search algorithm, and analyze its key properties in terms of neighborhood expansion. In
section 4 we state and prove our diameter result. In section 5 we briefly describe some applications
of our main result.

2 Preliminaries.

2.1 Random Variables and Probability.

In this section we present some basic probabilistic definitions and notation. We adopt the con-
vention that random variables and other random structures are typeset in boldface, and we write
probabilities and expectations using the script symbols P and &, respectively.

We shall be dealing exclusively with discrete probabilities, and as such nothing in this paper re-
quires more than basic familiarity with elementary probabilistic concepts such as random variables,
probability distributions, etc. Specifically, for any random element a drawn from a set A, we assume
that there exists a subset A’ C A such that Pla=a'] > 0foralla’ € A', and Pla € A’] = 1. Hence,
we can safely discard all sets of measure zero, and use the terms “always” and “with probability
1” interchangeably.

2.1.1 Random variables, moments, and generating functions

Most of the random variables we discuss will be defined on a particular discrete set, namely, the
set Z* ={0,1,2,...} of non-negative integers. In particular, we have the following assumption.

Assumption 2.1 Any probability distribution discussed in this paper is assumed to be a distribution
on the set Z* unless otherwise specified.

We let ® denote the set of all discrete probability distributions on Z*, and we refer to an element
of ® as simply a distribution.
Given a Z*-valued random variable X, the distribution of X is defined by

Dx(i) = PIX = ] (2)



for all ¢ € Z*. Conversely, for a distribution y, we let X, denote a random variable with distribution
Dx, = p. For Z*-valued random variables X, Y, we write

K]

XZY (3)

if Ox = Dy.
Next, we introduce two standard tools used to describe a random variable X, [9].

Definition 2.1 The k’th factorial moment of X, is

o0

My(p) = E[(Xpw)k] = D _ (0 - p(i), (4)

i=0
where (i) =i(i —1)--- (i —k +1).
Definition 2.2 The probability generating function (p.g.f.) of X, is the function

Yu(z) = EE] =) 2 (i) (5)

1=0

for z € [0,1].

In general, all generic random variables are assumed to be independent unless certain depen-
dencies are made explicit. For any integer n > 0 and any distribution u, we let

Y X, (6)

denote the sum of n independent random variables distributed according to u. For any 0 <p <1,
we let 1, denote a Bernoulli random variable with P[1, = 1] =p and P[1, =0] =1 —p.

2.1.2 Conditional and random distributions

Given Z*-valued random variables X, Y, for any i with P[Y = i] > 0, we define the distribution of
X conditional on Y =1 by
Dxjy=i(7) =PX =j|Y =i (7)

for all j € Z*. We note that the conditional distribution Dx|y—; is not well defined if P[Y = i] = 0.
Therefore, any statement which specifies a property of the conditional distribution D x|y—; “for
all 7”7 should be understood as meaning “for all ¢ such that P[Y = (i)] > 0.”

A random probability distribution on Z* (or simply a random distribution) p is a random element
drawn from the set ® of discrete probability distributions on Z*. Random distributions arise when
we consider the behavior of a random variable X conditional on Y without specificying a particular
event of the form Y = i. Specifically, the random distribution

Dixjy=g Y =0
®X|Y = Q[X|Y:1] ifY=1 (8)

is the the distribution of X conditional on Y.



Assumption 2.1 states that all probability distributions explicitly referenced will be defined on
the set Z* of non-negative integers; the same is true of random distributions. Hence, can offer
an alternate characterization of a random distributions. Specifically, we can consider a random
distribution p to be a set of R-valued random variables pu(7) for i = 0,1,2,. .., with the restriction
that 0 < p(i) < 1 for all i and 37, (i) = 1.

In addition to the u(i), a random distribution g also induces random variables Mj,(p) and ¢, (2)
for each z € [0,1] (definitions 2.1 and 2.2). In general, these random variables will be R-valued
rather than Z*-valued, so the definitions given in section 2.1.1 for Z*-valued random variables will
not be applicable.

2.1.3 Discrete random processes

For any set A, an A-valued random process is a sequence (ay,...,a,) of random elements drawn
from A. The set A is the state space of the random process. Intuitively, a random process can be
considered as a single random element whose value changes over time, so a; denotes the state of
the process at time ¢. In situations where the time parameter ¢ is clear from the context, we simply
write a as an abbreviation for ay.

The history of a random process at time ¢ is the subsequence (ay,...,a;). A Markov chain is
a random process satisfying

P[at+1 =a | (ao, e at) = (ao, e at)] = P[at+1 =a | ar = at] (9)

for any sequence (ag ...as) and any element a. For any set A’ C A, the hitting time of the event
a € A’ is the random time defined by

Tlaca = inf{t :a; € A'}.
2.1.4 Dominated distributions and couplings
Definition 2.3 Let u,v be distributions. We say p dominates v and write p > v if, for all i,
PIX, > i] > P[X, > i] (10)
For random variables XY, analogous to our usage of X Ly if Dx = Dy (as in equation 3), we
d
write X > Y if Ox > Dy and say X dominates Y in distribution.

Definition 2.4 Let X and Y be random wvariables. A coupling of X and Y is a pair of random

variables (X', Y') defined on a common probability space such that X' 2X andY' LY (as defined
in equation (3)).

Dominated distribution can also be understood in terms of couplings as follows.

d
Proposition 2.1 Let X,Y be random variables. Then X >Y if and only if there exists a coupling
(X" Y') of X and Y such that P[X' >Y'] = 1.



2.2 Random Graphs

In this section, we define the random graph model which will be used throughout the paper. A
graph is a pair G = (V, E), where V is a set of vertices and E is a set of edges. We shall treat
graphs as generic combinatorial structures, and accordingly, we make the following assumption.

Assumption 2.2 All n-vertex graphs discussed in this paper are drawn on the same canonical
vertezr set V,, = {v1,...,vn}.

This assumption will also hold for any other structures introduced in this section which involve a
set of vertices.

2.2.1 Configurations and Graphs.
Definition 2.5 An endpoint arrangement (or simply an arrangement) is a pair (V,S) where
e V is a set of vertices.

e S is a set of endpoints; each endpoint belongs to exactly one vertex.

As discussed above, we shall work with a canonical n-vertex set V;,. Accordingly, we may simplify
our notation by dropping the reference to the vertex set, and simply refer to the set S itself as an
endpoint arrangement. When using this abbreviation, we let n(.S) denote the number of vertices
corresponding to the arrangement S.!

Given an endpoint arrangement S:

e S(v) denotes the set of endpoints which belong to vertex v € V,,.
e v(s) denotes the vertex to which the endpoint s € S belongs.

Definition 2.6 A configuration is a triple (V, S, E) where (V,S) forms an endpoint arrangement
and E is a set of edges such that each edge e € E is a pair of endpoints {s1,s2}, and E forms a
perfect matching of S.

Given a configuration and an endpoint s € S, we denote by E(s) the endpoint matched to s.

A graph is naturally associated with a configuration by associating an edge (v(s1),v(s2)) with
each pair of matched endpoints (s1, $2). In this context, a graph can be considered an equivalence
class of configurations modulo permutation of endpoints assigned to the same vertex.

In general, we shall analyze configurations directly rather than graphs. For expository purposes,
though, we prefer the simple and traditional term graph. Accordingly, if the context is clear, we
may abuse our terminology slightly and refer to a configuration as a “graph.”

We adopt the convention that the variable n will denote the number of vertices |V| in an
arrangement, and m will denote the number of endpoints |S|. Note that this differs from the
traditional convention by which m denotes the number of edges, which would be half the number
of endpoints.

The degree of a vertex v in an endpoint arrangement S is |S(v)|, the number of endpoints
assigned to v. The degree of a vertex is denoted by dg(v), or simply d(v), if the set of endpoints S
is clear from the context. For an endpoint s, we also abbreviate

ds(s) = ds(v(s))

!Note that it is not (necessarily) the case that n(S) can be determined by counting the number of vertices which
contain endpoints in S; there may be vertices which contain no endpoints but are still included as part of the endpoint
arrangement.




and refer to this value as the degree of the endpoint s. The degree sequence of an arrangement S
is the sequence of degrees Dg = (dg(v1),...,ds(vy)).

2.2.2 Random configurations

In this subsection, we describe the configuration model [3] for generating a random graph with a
specified degree sequence. For an endpoint arrangement S = (V, S), we let Eg denote a uniformly
random matching of the endpoints in .S, and we define an associated random configuration by

GS = (Va Sa ES)

For a sequence D = (dy, ..., d,) of non-negative integers, we let Sp denote an endpoint arrangement
with degree sequence D, and, with slight abuse of notation, we define

Gp =Ggs, = (V,5p,Esp).

We say Gp is a random configuration with degree sequence D. We note that Gp is only well-defined
if the sum of the degrees in D is odd. Accordingly, we define a degree sequence to be a sequence D
where ) . d; is even.

Since each simple graph with degree sequence D occurs with the same probability under the
configuration model, then conditioning on simplicity produces a uniformly random simple graph
with degree sequence D. The following fact follows from a result of McKay and Wormald [11]

Fact 2.1 If the mazimum degree of a degree sequence is o(n'/?) and the average degree is ©(1),
then a random configuration produces a simple graph with constant probability.

If a degree sequence D satisfies the conditions in fact 2.1, then for any graph property A,
P[GD satisfies A ‘ Gp is simple] =0 (P[GD satisfies A]) .

In general, we shall ignore the simplicity requirement and just study the random configuration Gp,
noting that asymptotic results derived using the configuration model are also applicable to random
simple graphs if the maximum and average degree requirements is met.

2.3 Asymptotics.

In the previous section, we defined the random graph Gp for any degree sequence D. We seek to
study such random graphs asymptotically. Several authors, including Molloy and Reed [12, 13],
and Aiello, Chung, and Lu [1], have accomplished this by creating infinite sequences D1, Dy, ... of
degree sequences, and examining limits as in

lim P[Gp, satisfies A].

n—00
(Here D,, is a degree sequence on n vertices.) This involves a considerable amount of overhead,
since an entire sequence D, must be specified for each value of n. We specify asymptotic degree
sequences similar to the smooth sequences defined by Molloy and Reed [12, 13], but we make no
explicit references to sequences of degree sequences. Instead, we embed the set of degree sequences
in a topological space, and deal with convergence in the topological sense.

We review some notation and terminology involving limits and convergence in topological spaces.

Let X* be a topological space and consider a subset X C X* and an element x* € X*. For any



property P defined on the set X, we say P holds asymptotically as x — x* if there exists a
neighborhood Ny« of x* in X™* such that P holds for all z € N« N X.
Consider a mapping = — y, from X to a topological space Y. For any element y € Y, we say

Ys > yasz —

if, for any neighborhood N, of y in Y, the property that y, € N, holds asymptotically as  — z*.
Consider mappings = — 2, and = — 2}, from X to R, and assume 2, > 0 and 2}, > 0 for z — z*.
We recall the standard “big O” notation:

o 2, = O(z,) as © — «* if there exists a constant C' > 0 such that 2 < C holds asymptotically
as x — o ’

!
x

e 2, =0(z,) asx — z* ifz—z—>0as:v—>:c*;

e (), ©, and w are defined accordingly.

Finally, as a convention, we will often write asymptotic statements as follows:
Assume z — z*. Then y, — y.

This statement is equivalent to y, — y as © — x*.

2.3.1 Asymptotics and probability
In this subsection we discuss asymptotic statements involving probabilities and random variables.
Definition 2.7 For each x € X, let H, denote an event in some probability space.

1. We say H, occurs asymptotically almost surely (a.a.s.) as x — z* if P[H;| — 1 as v — z*.

2. For a mapping © — ng from X to Z™, we say H, occurs with exponentially high probability
Q(1
(w.eh.p.) inng as ¢ — z* if P[Hy| =1 — e as @ - 2.

Next, we deal with probabilistic convergence.
Definition 2.8 For each x € X, let y, denote a random element in a topological space Y .

1. We say y, — y a.a.s. as x — x* if, for every neighborhood Ny of y inY, the event y, € Ny
occurs a.a.s. as r — x*.

2. We say y, — y w.e.h.p. in ny as x — z* if, for every neighborhood Ny of y in'Y, the event
Yo € Ny occurs w.e.h.p. in ng as x — *.

Using definitions 2.7 and 2.8, we can link together a.a.s. and w.e.h.p. statements, as demon-
strated in the following lemma for a.a.s.

Lemma 2.2 Let X*,Y* be topological spaces, let X C X* and Y C Y™, and let z* € X* and
y* € Y*. For each v € X, let y, be a random element in Y, and for each y € Y, let H, be an
event in some probability space. Assume that y, — y* a.a.s. as x — x* and that H, occurs a.a.s.
as y — y*.

For each x € X, define an event Hy, such that

P[Hyz |yz =yl = P[Hy]-

Then Hy, occurs a.a.s. as T — x*.



Proof. For any € > 0, there exists a neighborhood Ny« of y* in Y* such that if y € Ny« NY then
P[Hy] > 1 — ¢, and there exists a neighborhood N« of z* in X* such that if £ € Ny« N X then
Plys € Ny-] > 1 —e. It follows that

P[Hy, ] >1—2¢
for © € N+, and since € is arbitrary, the proof is complete. |}

We note that this lemma can be generalized in several ways to deal with w.e.h.p. convergence
and various other conditions.

2.3.2 Degree distributions

The topologies we use to asymptotically specify degree sequences will be defined implicitly via
mappings from the set of degree sequences to various topological parameter spaces. The main
parameter will be the degree distribution, defined as follows.

Definition 2.9 For any degree sequence D = (dy,...,d,), the degree distribution A\p is defined by

_Hiidi=a)

n

Ap(7) (11)
The degree distribution can be understood intuitively as follows. Given an arrangement S with
degree sequence D, if we choose a vertex v uniformly at random from V,,, we have

Das(v) = Ap-

Note that, from definition 2.1, M;(Ap) gives the expected degree of a vertex chosen uniformly at
random (i.e. the average degree).
For any distribution A with 0 < M;(\) < oo, we define an associated residual distribution by

(i + DA(i + 1)

My (M) (12)

pa(t) =
for all i. If M7(\) = 0 we define p)(0) = 1 and py(i) =0 for ¢ > 1. For any degree sequence D, we
abbreviate p1p = pa, and refer to up as the residual degree distribution of D. Since Mi(Ap) < oo
for any degree sequence D (or any sequence of integers), up is well defined. Intuitively, if we choose
an endpoint s uniformly at random from S, we have

Dds(s)—1 = KD-

The term residual reflects the fact that dg(s) — 1 counts the number of endpoints which belong to
v(s) other than s itself.

Our asymptotic specifications will rely mainly on the degree distribution Ap of a degree sequence
D. However, the residual distribution pp is often more useful than Ap in analyzing the CM
algorithm. Therefore, we shall be mindful of how our definitions affect the behavior of the residual
distribution as well as the degree distribution.

We now define a family of metrics on the set ® of probability distributions on Z*.

Definition 2.10 The variation distance between distributions u,v € ® is given by

o0

go(,v) = 5 (i) — w(i)]. (13)

=0



It is clear that the variation distance defines a metric on ®. The variation distance is often defined
equivalently by

ge(p,v) =Y max(u(i) —v(i),0) = Y max(v(i) — u(i),0). (14)
i=0 i=0

This alternate definition accounts for the topologically irrelevant factor of % in equation (13).
For any k > 1, we define a metric which takes into account the k’th factorial moment of a
probability distribution. For distributions p, v satisfying My (u), Mg (v) < oo, we define

9o,k (1, v) = ga(p, v) + | Mi(p) — My (v)] - (15)

We refer to convergence of a probability distribution with respect to the metric gg 1 as k-

convergence, and we use the notation AE* to indicate k-convergence of A to A*. Accordingly, the
notation A — A* indicates convergence with respect to the variation distance metric gs.

Note that if My(\) < oo, the residual distribution p) given in equation (12) is well-defined.
The residual distribution is typically a more useful tool than the degree distribution in studying
random graphs, and we deal with the residual distribution much more than the degree distribution
itself. We note that the moments of the residual distribution are given by

Mi41(N)
Mk (:u)\) ]\4—1 ()\) )
and therefore A\ \* implies p) k1, JI5eE

For the rest of this paper, we shall only consider limiting degree distributions with the property
that 0 < Mj(\) < co. Hence, a degree sequence D satisfying A\p EN A, will have average degree
Mi(Ap) = ©(1). In particular, this implies that the number of endpoints m satisfies m = ©(n),
where n is the number of vertices. We note that it may be the case that the residual distribution
satisfies My (u)) = oo, even if My(A\) < oo. This occurs, for example, for a power law or Pareto
distribution A(i) = A% for values of 2 < B < 3 (here ¢(3) denotes the Riemann zeta function). In
our study of the diameter of the random graph Gp, we shall often need to consider the two cases
M;i(py) < oo and My (py) = oo separately.

2.4 Properties of the Metric Spaces (®?, g3 )-

In this section, we give some useful results about the metrics we have defined on the set ® of
distributions on Z*.
For any distribution p in Z*, we define the complementary distribution function of u by

Fy(i) =P[X, 2] =Y u(j).

j2i
Proposition 2.3 Let u* be a distribution. Then the following statements are equivalent:
1. p — p* with respect to the variation distance metric gg.
2. max; |u() — p* (i) — 0.

3. max; |F,(i) — F,e(i)] = 0.



The complementary distribution function is related to domination (definition 2.3), since p > v
if and only if F,(i) > F, (i) for all 7.

Lemma 2.4 Consider a mapping p — v from ® to ® such that v < u for all p. If there exist
distributions p* and v* such that v — v* as p — p*, then v — v* as up = p* as well.
Proof. It suffices to show that My (v) — My (v*) < co. Note that, for any distribution A,

o0

M(A) =Y (@)eX(@) =D (1) — (G — De)Er().

=0 j=1
Since (j)r —(j —1)r > 0 for all j > 1, the lemma follows from the statement of Lesbegue dominated
convergence in [9]. |}

This yields a useful corollary regarding endpoint arrangements. For any arrangement S, we write
As and pg to denote the degree distribution Apg and the residual distribution ppg, respectively.

Corollary 2.5 Let S be an arrangement such that )\gi)\. Let T C S and assume Ay — X'. Then
Ar SN
Finally, we introduce truncated distributions.

Definition 2.11 For any distribution p and any 0 < € < 1, the e-truncated distribution p[q is
specified by the complementary distribution function

Fi (i) = max{F,(0) - €,0}
fori >0, and Fu[e](i) =1 fori<0.

[e]

Informally, the distribution p() is constructed by removing a total amount € from the weights 1 (7)
for the highest values of 7, and increasing the weight ©(0) by e.

Proposition 2.6 The truncated distribution u satisfies the following properties:
1. ga(pgsp) <e
2. For any v, if ga(p,v) < € then piq < v.

3 The Configuration Model Algorithm.

As defined in section 2.2, a random configuration is generated from an endpoint arrangement (V, S)
by choosing a random matching of the set S of endpoints. The configuration model (CM) algorithm
is a procedure which generates this matching one edge at a time. The CM algorithm is customizable,
in the sense that we have some flexibility regarding the order in which the edges of the matching
are revealed.

The intuition is as follows. For any endpoint s € S, a uniformly random matching E of s
will choose E(s) uniformly at random from the set S — {s}. Also, the remaining endpoints in
S —{s,E(s)} will be matched uniformly at random. Hence, a random matching can be constructed
by successively choosing an unmatched endpoint and choosing its match uniformly at random.

This section proceeds as follows. In section 3.1, we give a formal description of the CM algorithm
as a discrete random process. Since as described above, the CM algorithm can be customized, we
then describe two particular variants of the CM algorithm. The first is the k-core CM algorithm,
which we studied in [7, 8]. The second is the CM BFS algorithm, which performs a standard
breadth-first-search while generating a random configuration, and which will be used extensively
in this paper.

10



3.1 The CM Process

In this section we introduce the notation which we shall use to describe the discrete random process
associated with the execution of the CM algorithm. All endpoint arrangements, configurations, etc.
are defined with respect to the canonical vertex set V;,. The CM algorithm generates a random
matching of an initial arrangement U containing m = |U| endpoints.

Definition 3.1 A CM process of an endpoint arrangement U is a random permutation (si,...,Sm)
of U such that for any endpoint s and any even time t,

m+t+1 Z.fsg{S]_,...,St,]_}

0 otherwise.

P[St=5|51,---,5t1]:{

We associate a random matching E of the endpoints in U with a CM process by setting E(s;) =
s¢+1 for all odd values t = 1,3,...,m — 1. It is easy to verify that the CM algorithm does in fact
produce a random matching of the endpoints.

At time t, we say the endpoints si,...,8; are exposed, so the set U; contains all unexposed
endpoints. The set U; plays a central role in the CM algorithm. Accordingly, we define:

e The unexposed degree a vertex v is d¢(v) = dy,(v).
e The unexposed degree distribution is Ay = Ay,.

e The unexposed residual distribution is p, = pu,.

We refer to the value d¢(s) — 1 as the residual unexposed degree of the endpoint s at time t¢.
Note that the endpoint s; becomes exposed at time ¢, hence

de(se) = dy_1(s¢) — 1. (16)

In other words, the residual unexposed degree of s; at time ¢t — 1 becomes the total unexposed
degree of s; at time ¢. Recall that, if ¢ is even, then the endpoint s; is chosen uniformly at random
from U;_y. This yields the following fundamental property of the residual unexposed degree of an
endpoint chosen at an even time step.

Proposition 3.1 For any even time step t of the CM algorithm,

ng(st)\sl,...,st,1 = My_1- (]‘7>

Definition 3.1 specifies that the endpoint s; must be chosen uniformly at random from U, ; for
even values of t. However, the behavior for odd values is unspecified; hence, different strategies for
choosing endpoints at odd times can be formulated to study various aspects of the resulting graph.
Informally, we define a specialization of the CM algorithm to be a method for choosing s; for odd
values of ¢.

In this paper, we will define several specializations of the CM algorithm, which we will piece
together to study the diameter of the random graph Gp. A halted CM process is a CM process along
with a random halting time 7. Using halted CM processes, we can define a single specialization of
the CM algorithm which uses different strategies for choosing endpoints at different times.

Recall that, as defined in section 2.3.2, the notation Ay % X indicates k-convergence of the degree
distribution Ap to the distribution A. Typically, we will study CM processes for which the initial
arrangement U satisfies )\UEM for either K = 1 or k = 2. The following proposition states that if
we only look at o(m) steps, then the residual distribution will not change significantly during this
time.

11



Proposition 3.2 Assume )\Ug)\ for some distribution X and |U| — co. Then, for any CM process
with initial arrangement U, and any time t = o(|U|),

k-1
My — (18)
holds asymptotically always. In particular, Mq(ps) — Mi(uy) holds asymptotically always for
kE>2.

3.2 The CM k-core Algorithm.

The k-core of a graph is the maximal induced subgraph of minimum degree k. The CM k-core
algorithm [7, 8] is a specialization of the CM algorithm which chooses an endpoint s; of minimum
unexposed degree at each odd time step ¢t. Formally, a CM k-core process is a CM process satisfying

d: 1(s¢t) = min{d; 1(s) : s € U1} (19)

always for all odd values t < m. We note that since there may be several endpoints of minimum
degree, the CM k-core algorithm can be further specialized if necessary. The k-core algorithm finds
the k-cores of a random graph by exposing all endpoints which are not part of the x-core and
leaving the k-core unexposed.

For our purposes, we are only concerned with the 2-core phase of the CM k-core algorithm. We
shall further specialize the 2-core algorithm, by introducing a set of vertices W, called the protected
set.

Definition 3.2 Given an initial arrangement U and a protected set W, a protected 2-core CM
process is a halted CM process satisfying di—1(s¢) = 1 and v(s¢) ¢ W for all odd time steps t < T,
and halting at the hitting time T of the event

d(v) #1 forv¢W.

Hence, the protected 2-core algorithm chooses endpoints of unexposed degree 1 outside of W and
halts when no such endpoints remain.

The state of the CM process at the halting time 7 of the CM 2-core algorithm can be determined
w.e.h.p. from the results in [8] as described briefly below. For details, see appendix A. Recall that
the probability generating function (p.g.f.) of a distribution p is defined by 1,(2) = £[zX#] for
z € [0,1] (see equation 5). Accordingly, for any distribution p, we let z, denote the lowest fixed
point in ), so

z, = min{z € [0,1] : ¢,(2) = 2}, (20)

and we define the distribution p, by specifying the p.g.f.

_ Yul(l = 2)z +24) — 2
1—2z, '

b (2) (21)

The following lemma is an implication of [8] (see Theorem A.2 in appendix A).

Lemma 3.3 Let U be an initial arrangement satisfying \y LA A, where A has residual distribution
= px. Let W be a protected set and assume |W| = o(n). Then
1. The stopping time of the protected 2-core algorithm satisfies =~ — 1— (1 —zﬂ)2 w.e.h.p., where
zy, 1s defined in (20).
2. The residual distribution at time T satisfies p, LN pu w.e.h.p., where p, is defined in (21)

We note that the second condition is as strong as possible, since k-convergence of the distribution
A corresponds to (k — 1)-convergence of the residual distribution p).
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3.3 The CM BFS Algorithm.

Here we consider a breadth-first-search (BFS) specialization of the k-core algorithm. Beginning
with a set of vertices W, the CM BFS algorithm performs a standard breadth-first search and
exposes endpoints accordingly. Typically, BFS involves a queue of vertices; our implementation
differs slightly in that the queue will contain endpoints rather than vertices. We first define a single
BFS iteration.

Definition 3.3 Let U be an initial arrangement and let W be a vertex set with endpoint set R =
U(W). A CM BFS iteration process is a halted CM process where sy € R for all odd time steps
t < 7, and halting at the hitting time T of the event RN'U = ().

For the CM BFS iteration process, we expand the state of the BFS algorithm as follows.
¢ R = RN U denotes the remaining unexposed endpoints in R.

e Q=RU{s € U:d(s) <dy(s)}. We call Q the endpoint queue; accordingly, the initial
endpoint queue is the set Qo = R. This definition specifies that any endpoint s whose
current unexposed degree d(s) differs from its initial degree dis(s) belongs to Q, as well as
any remaining unexposed endpoints in R.

e T = U — Q contains all unexposed endpoints not in the queue. Endpoints in T are called
unexplored. The set U' = U — R is the initial set of unexplored endpoints.

We note that, in the context of BFS, the set T of unexplored endpoints is typically more relevant
than U, since the set QQ contains endpoints which are already connected to a vertex in the set W.
Hence we denote the residual distribution with respect to the set of unexplored endpoints T by

Vi = [Ty, (22)

and refer to v; as the unexplored distribution at time t.

Note that, at each odd time step, the endpoint s; must be chosen from R and hence from Q; 1,
so |Q¢| = |Q¢—1] — 1 always for odd ¢t. However, at each even time step, two qualitative outcomes
are possible regarding the matched endpoint s;. If s; ¢ Q;_1, then |Q:| > |Q:_1], with equality
if dy,(s¢) = 0. Otherwise, s; € Q¢—1 so |Q¢| < |Q¢-1], and a cross-edge has occurred. We also
distinguish two different kinds of cross edges.

e A horizontal edge occurs if s; € Ry_1.
e A diagonal edge occurs if s; € Qs—1 — Ry_1.

We define the BFS neighborhood of a CM BFS iteration to be the set of endpoints N = Q+ in
the endpoint queue when the BFS iteration ends.

Definition 3.4 An extended CM BFS process (or just CM BFS process) is a sequence of CM BFS
iterations, where the BF'S neighborhood N of each iteration is used as the initial endpoint queue R
for next iteration.

For an extended CM BFS process we define:

e The ¢’th BFS neighborhood IN; is the BFS neighborhood of the ¢’th CM BFS iteration. For
consistency, we let Ny = R, the initial endpoint queue.

13



e The i’th halting time T; is halting time of the ’th CM BFS iteration.

In the following subsections, we will give probabilistic bounds on the sizes of the BFS neigh-
borhoods. Our strategy will be to show that the random variable |N;| is distributed “similarly” to
the sum of |N;_| independent random variables distributed according to the residual unexplored
distribution v. Specifically, we will show that |N;| is dominated in distribution from below by the
truncated distribution v for arbitrary e > 0.

Our proof will involve a coupling of the CM BFS process with a random process which does gen-
erate a random variable which is distributed identically the sum of independent random variables.
First, we derive some results for coupled random processes.

3.3.1 Coupled Random Processes.

We begin by recalling some notation from section 2.

From section 2.4, recall that for a distribution y, p[¢ denotes the e-truncated distribution, which
satisfies ga ()¢, 1) < € and puq <v for all v with ga (v, u) < e. From section 2.1.1, recall that ) "X,
denotes the sum of n independent random variables distributed according to p and 1, denotes a
Bernoulli random variable with parameter p. For a definition of coupled random variables, see
section 2.1.4.

Lemma 3.4 For alle >0, all p € ®, and all r > 0,

r d X" 1(1-¢)
> Xy <) Xp-
Proof. Write

OIS Yo -
T X =30
i=1
where the Y; are independent and distributed identically to Y 4 1(1_¢) - Xy, and note that

ge(Dv,p) <e |1

Lemma 3.5 For any valuesn >0 and 0 <p < 1,

2.3, 4 22"1\/,—,. (23)

Proof. The result follows immediately from the following coupling:

2n d o . d
Z 1= Z X, where the X; are independent and X; =1 3,
i=1

n
anp 4 ZY]-, where Y; = Xa;_1 - Xa; 4 1,
=1
Clearly, for any k, if > Y, =k, then > X; >2k. |}

Next, we give some simple results regarding couplings and random processes. We begin with a
lemma about couplings and dependent random variables.

Lemma 3.6 Let X;1,Xs and Y1,Ys be (not necessarily independent) random variables, and sup-
pose:

14



d
1. X1 > Yy, and
2. for everyi > j,
D1x,|X1=i] > D1¥a|v1=j]- (24)

d
Then Xo > Yo.

d
Proof. Since X; > Yy, we can create a coupling (X}, Y]) such that P[X| > Y]] = 1. Similarly,
by the second hypothesis, for any ¢ > j, we can define a coupling (X'(z j)’YEi j)) of the conditional
random variables [X3|X; = i] and [Y2|Y; = j] such that

! ! .
PXig) = Yl =1
Finally, we define a pair of random variables (X%, Y5) by
I~
Xo = Xixq,v))
I~
Y2 = Yix, vy
We easily verify that for any value k,
PXy =k =Y PX{,;) =k|X; =i, Y] =j]-PX] =i,Y; =]
t,J
=Y PXy=k| X1 =] P[X; =1
i
= P[Xy = k]

and therefore X/, £ X,. Similarly, Y} £ Y,. Also, since P[X} > Y!] = 1, and P[X} > Y}, | X} >
Y!] =1, it follows that P[X5 > Y5 =1. |

Recall that for any distribution g, Y."X, denotes the sum of n independent random vari-
ables distributed according to u. The following proposition follows easily by applying lemma 3.6
inductively.

Proposition 3.7 Let Xy,...,X, be random variables, and let u be a distribution such that for all
2
’P[QXZ‘|X1,...,X1'71 <] lu] = ]‘ (25)

d
Then >0 1 X; <1 >."X,,.

The next proposition deals with couplings for random processes. Again, the result follows from
a simple inductive application of lemma 3.6.

Proposition 3.8 Let Xy, Xq,...,X, be a Z*-valued random process and let Yo,Y1,...,Y, be a
d
Z*-valued Markov chain such that Xo > Yq, and such that for any i > j and any t,

P (D%, X1, X1 B Dy Yo1—j) | Xec1 = 4] = 1. (26)

d
Then Xy > Yy for all t.
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3.3.2 A single iteration of CM BFS

In this subsection we give a probabilistic lower bound for the size of the neighborhood of a single BF'S
iteration. We first relate the size of a BFS neighborhood to the sum of i.i.d. random variables. This
allows us to use standard large deviation techniques (i.e., Cramer’s theorem) to derive concentration
results for the BFS neighborhood size.

Theorem 3.9 Consider a CM BFS iteration for which the following hold.

1. The initeal arrangement U satisfies Ay EN A, and X has residual distribution p = py.
2. The initial queue R = U(W) has size r = |R| = o(m).

Then, for any € > 0, the BFS neighborhood N satisfies

d r
LIEDP (27)

To prove Theorem 3.9, we begin by pointing out the obvious fact that a BFS iteration can last
at most 2 - r steps, and therefore, for r = o(m), the residual distribution g, — p always for any
0 <t<7 <2r. Itisalso true, though less obvious, that vy — p, and therefore |Q;| = o(m), for
any 0 <t <7 < 2r. This is because, for any v ¢ W, if d¢(v) = dy7(v), then d,(v) = d¢(v) = dy(v),
and the unexposed degree can only change for at most » = o(m) vertices outside of W during the
iteration.

Now, we bound the number of endpoints in horizontal edges with the following lemma. Recall
that 1, is a Bernoulli random variable with parameter p.

Lemma 3.10 Let A C R denote the set of endpoints s € R such the endpoint E(s) matched to s
satisfies E(s) € R. Then, for any € > 0,

INE Y1

Proof. Note that the distribution of |A| depends only on r and m, since the actual degrees of
vertices do not affect the number of horizontal edges. Let qi,qo,...,q, denote the endpoints of R
in the order that they are exposed by CM BFS. Any horizontal edge must consist of two consecutive
endpoints according to this ordering. So, for 1 <i¢ < r — 1, define random variables

K. — 1 i E(a) =di,
P = .
0 otherwise,

so |A| =2-37 K.

Note that since r = o(m), the probability that an endpoint chosen uniformly at random from
Uy, lies in R is at most —'5- = O(;5) = o(1) at any time during the BFS iteration. Also, if K; =1
then K;,1 = 0, since the endpoint q;; cannot be part of more than one horizontal edge. Hence,

fori > 1,

0 ifK; =1,
PK:=1|Ky,...,.Ki] = BB (28)
O(%) if Ki,1 =0.

This observation allows us to consider the K; in pairs. So, for 1 <i < |r/2], we define

L; = Kgi—1 + Ky,
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and note that |A| =2 Zgi/lzj L;. Also, L; < 1 always for all ¢, and
PlL; =1]|Ly,...,Li1] = P[L; = 1| L;—1] < 20(;;) = O(;;)
always, and since the L; are Bernoulli random variables, then
’P[QLi‘LlwwLi—l < 10(%)] =1

Hence, we conclude by proposition 3.7 that

[r/2]
Al<a2-> T,

m

Finally, by lemma 3.5, it follows that that

d r
A9 To(/zy
and therefore J
r
Al<Q) 1.
for any e > 0. ||

Now, note that the set of endpoints R — A will all match to the set U’ = U — R. In particular,
conditional on |A|, exactly r — |A| endpoints chosen uniformly at random from U’ will become
exposed during the BFS iteration.

Lemma 3.11 For any r' <r, and for any € > 0, the size of the BFS neighborhood |N| satisfies

d r'

conditional on r — |A| =r'.

Proof. As noted above, conditional on r — |A| = 7/, exactly r’ endpoints chosen uniformly at
random from U’ become exposed during the BFS iteration. Without loss of generality, we may
assume that the endpoints in A become exposed first, so after |A| steps, we have Qa =Rja =
R — A, and that the next r’ endpoints exposed at even time steps are drawn from U’. Then, for
any 0 < t' <r', we define Ky = ‘Q\AH—%’ , SO

LT
K, =[Q| = |N|.

The random process Ky, ..., K,/ thus keeps track of the number of “new” endpoints in the BFS
queue which are not part of the original queue R. Now, the value of K drops by exactly 1 if a
cross-edge occurs. Hence,

PKy =Ky 1—1|Ky,..., Ko 1] = 0 (F42). (29)

m

Otherwise, when a cross-edge does not occur, K will increase by the value of the unexplored degree
of the endpoint sa|{2y chosen at time |A| + 2t'. So, for any i > 0,

PIKy =Ko 1+i| Ky, Ko 1] = vjaeon(i) — 0 (F52) = (i) £ 0(1), (30)
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= o(1) and t' = o(m); here v|5 | 9p denotes the unexplored residual distribution (equa-
(31)

K,

since — -
tion 22) at time |A| + 2¢'.
d =t

Ky > Xy,

We wish to show that
for arbitrary € > 0. However, since, as described above, the value of Ky can change in two different

ways, it is difficult to relate Ky to the sum if i.i.d. random variables directly. Instead, we construct

, Z, and show that

an auxilliary Z*-valued Markov chain Zq, .
d d t
Ky>Zy>)» Xy

The Markov chain Zy must be “easy” to compare to both the random process Ky and the
sum of i.i.d. random variables S Xy Intuitively, it is useful to think of the Markov chain Zy as

counting the number of elements in some set Hy, so
Ztl = |Htl| .

The contents of the set Hy change over time in a way that resembles a CM BFS iteration, but
exhibits enough independence that the process Zy can be easily compared to a sequence of i.i.d.

random variables.
Let us define such a process. At time 0, we set Hy = () and therefore Zy = |Hy| = 0. Then, at
each time step t', the contents of the set H change as follows.
1. A random number of new elements is added to Hy; the number of new elements is distributed
according to pi.,) where €; > 0 is arbitrary.
2. Each element in Hy_; is removed independently with probability £}, where e; > 0 is arbitrary.

Formally, then, Zy is a Markov chain defined by Zy = 0, and, if we let Ly denote the random

)

variable Zy conditional on Zy _q, then
d Zy_y
Ly = X”[q] + Z 1(1*?

We also give an alternate description of the process Zy. For 1 <i <7'and 0 < j <7’ —1i, let
Y ; j) denote the number of elements that remain in the set H at time ¢ + j among those that were

added at time i. As described above, we have
d
Y(i,(]) = Xu[fl].

d Yi-1)
Y=Y, Li-g)

and

for j > 0. It follows by definition that
t’
Ztl == Z Y(i,t’—i)'
=1

_ %)Zt’—l)

d
We now show that Zy < Ky. Note that Zy < Zy_; — 1 occurs if (but not only if) Yy o) =0

7"

and at least one element in Hy_; is removed at time ¢'. Hence
Zy_1] > e (1—(1
€22y )

P[Ztl <Zy_1-—1 | Z,.
> €1 <1 —e
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We claim that

Zy_
PlZy <Zy_, -1 |Z1,...,Zt:1]:w( :nl> (32)

for Zy 1 = o(m). For Zy 1 = Q(r"), we have

DY
€1+ <1—e_ = 1) = 0(1),

so (32) follows immediately, and for Ezzrt,'*l sufficiently small, (32) follows from the power series

2
w2 €122y 1 € [€ly 4
€1 - 1_6 ol :7,__' 7, +
r 2! r

Now, for any ¢ > 0, we have

P[Zt’ Z Zt’fl +7’ | Zl) ey Zt’*l] S ’P[XH[EI] Z 7’] (33)

d
Hence, we conclude from (29), (30), (32), and (33) and from proposition 3.8 that Zy < Ky for all
1<t <0,
Next, we claim that

d r'
Zy > Z Xt (34)

where € > 0 depends on €; and €3 and can be made arbitrarily small. Note that, for j > 0,

d Y j-1) d Y0
Y(ij) = Z 1(1—%) - Z 1(1_6—%)1

r

SO

Note that, for any h € Z*,

It follows by proposition 2.3 that, for arbitrary € > 0, we can choose €; > 0 and €5 > 0 such that

,@ < )
g<I> (l”’ (Ex”[fl]l(lez))> ¢

d X d
Y > 10 ) > Xy

and therefore

Hence J J ,
r
IN| =K > Zp > Z X/t[e]’ (35)
where € > 0 is arbitrarily small. [}

Proof of Theorem 3.9. Choose arbitrary €1, e3 > 0 such that €; + €2 < €, and, combining the
two previous lemmas with lemma 3.4, we deduce

d r—|A] d D1 ey d r
|N| > Z X”[fﬂ > Z X“[El] > Z X“[Eﬁ'fz]' I

This theorem allow us to derive a large deviation inequality regarding the growth rate of BFS
neighborhoods. The proof is adapted from the upper bound proof of Cramer’s Theorem in [9].
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Lemma 3.12 Let U be an endpoint arrangement satisfying Ay L\ and m = |U| — oo, where
A has residual distribution p = puy. Let R C U be the initial endpoint queue for an iteration of
CM BFS and assume r = |R| = o(m). Then, for any € > 0, there exists a value C¢ such that the
following statements hold asymptotically:

1. If M1(p) < oo then the size of the BFS neighborhood N satisfies

P B < Mip) - ] <eCr, (36)

2. If Mi(u) = oo then the size of the BFS neighborhood N satisfies

PB <1/e] <O (37)

Proof. For any distribution y, define
Au(2) = InEle™%n). (38)
Note that if v — p then A,(z) — A,(2) for all z > 0, and since

g[e—zzrx,,] — g[e—zxu]r — erA,,(z)

)

then by Chebyshev’s Inequality,
InP [ZTX,, < r:r] < r(Ay(s) +as) = r(Au(s) + xs) (39)

for all z.
Now, by Theorem 3.9, we have

d r
|N| > Z X“[tﬂ’

for arbitrary 6 > 0. If M;(u) < oo, then for any € > 0, we can choose z and ¢ appropriately such
that —Ay; (2)/2 > (Mi(p) — €) and set Ce accordingly. If Mi(u) = oo, then for any 1/e, there
exists values 2,6 such that —A,; (2)/z > 1/¢, and again we set Ce accordingly. [

3.4 Halted CM BFS

We define a halted CM BF'S process to be a CM BFS process which halts upon termination of the
iteration in progress after a given number of CM steps. For halted BFS:

e o denotes the number of BFS iterations that were completed. Hence the halting time of
halted CM BFS is 7.

e We define the i’th halted BFS neighborhood by

N} =

N; ifi<o,
0 ifi>o.

The following lemma will be used to obtain the lower bound for the diameter.
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Lemma 3.13 Consider an endpoint arrangement U such that Ay 2 A, where A has residual
distribution p = py, let the initial endpoint queue R = U(W') have size r = |R| = o(m), and
consider CM BFS halted after | = o(m) steps. Then, for any i and any € > 0,

ENI|] <r- Mi(p+e). (40)

Proof. Note that |Ny| is at most equal to the sum of the residual unexplored degrees of the
endpoints matched to each s € R. Hence, by linearity of expectation,

E[N.]] < 7 - M (wo),

and since |R| = o(m), then v EN p holds asymptotically always.
Let us write n; = |N}|. Then, for arbitrary 4, if ;_; <[ then

€ [n; n;—lanri_l <mnj_;- Mi(pr,_,),

and if 7,1 > [ then
n; =0.

Since | = o(m), then for any t <,
Mi(vy) < My(p)+e€
for arbitrary € > 0. Hence, we conclude that
Enl] <r M(p+ €)’

for all ¢ and for arbitrary e > 0. |

4 The Diameter of a Random Graph.

Given vertices u, v in a graph G, let §(u,v) denote the distance from u to v, that is, the length of
a shortest path from u to v. We set §(u,v) = oo if u and v are not connected. The diameter A(G)
of a graph G is the maximum distance between any connected pair of vertices in G. In this section
we compute A(Gp) with asymptotic precision.

We begin by stating our main theorem regarding the diameter of a random graph. For a
distribution p, recall that z, denotes the least fixed point of the p.g.f. ¢, in the interval [0, 1] (see
equation 20). We are only interested in distributions for which z, < 1, or equivalently, M (u) > 1.
For such a distribution p, a random graph Gp with residual distribution up — p a.a.s. contains a
giant connected component and a giant 2-core (see appendix).

Assuming z, < 1, we define

M*(p) = ¥y (2u), (41)
the derivative of the p.g.f. at z,. The significance of the value M*(u) is discussed in the appendix.
In particular, by Theorem A.2 and statement 1 of proposition A.3, the fraction of endpoints of
residual degree 1 in the 2-core of Gp converges to M*(u) w.e.h.p.

Also, let

2 ifu(0)>0
a(p) =491 if u(0)=0and (1) >0 (42)
0 if u(0) =u(1) =0,

2
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Theorem 4.1 Let u be a distribution satisfying My (p) > 1, consider a degree sequence D satisfying

AD 3) A orAp i> A with My(\) = 0o, where A has residual distribution py = p. In addition, assume
that if u(0) = 0 then Gp has no vertices of degree 1 (i.e. up(0) = 0) and if (1) = 0 then then
Gp has no vertices of degree 2 (i.e. up(1) =0). Then,

A(G

AGp) — A, a.as. (43)

Inn

where

_a(p) 1
8= T (e TG )

with a(p) as defined in equation (42).

Informally, the two terms in equation (44) correspond to two different characteristics of a random
graph Gp that determine its diameter. The second term measures the “average” distance across
Gp, while the first term gives the length of the longest isolated paths or cycles which can cause
the distance between a particular pair of vertices to be significantly longer than the average.

In the simplest (and possibly the most “typical”) situation, we have p(0) > 0 and M;(u) < oo;
for example, sparse Gy, , falls into this category. In this situation, the diameter is determined by a
longest shortest path between two vertices of degree 1 and will consist of a path from each of the
vertices to the 2-core of the graph and a path connecting across the 2-core.

The proof of Theorem 4.1 proceeds as follows. First, we prove the upper bound, which is the
more substantial portion of the proof. We show the upper bound first in the “typical” case described
above, and then generalize to other situations. Finally, we compute a matching lower bound.

4.1 Upper Bound Proof of Theorem 4.1

Our principal proof strategy will be to examine the rate of growth of the neighborhoods around spe-
cific vertices. For any vertex v in a configuration (V, S, E), we define the i’th endpoint neighborhood
N;(v) of v by

N;(v) ={s € S:d(v,v(s)) =i and 6(v,v(E(s))) > i},
so if we perform CM BFS in a random graph beginning with vertex set W = {v}, then the set

N;(v) will correspond to the i’th BFS neighborhood N; as defined in section 3.3.
For any vertex v, let

(v) min{i : |N;(v)| > 3m!/2Inm} if this set is nonempty,
v) =
7 s min{i : [ N;(v)| = 0} otherwise.

Also, if v is a vertex in a random graph, we write we write N;(v) and «(v) to denote the respective
random set and random quantity.

Lemma 4.2 For a degree sequence D with A\p 1 A, the graph Gp a.a.s. exhibits the property that
6(u,v) < y(u) +y(v) +1
for all connected pairs of vertices u,v € V.

Proof. Given any pair of vertices u,v, we perform CM BFS, first starting with « and then
starting with v, until endpoint neighborhoods N, = N, (,)(u) and N, = N, (v) are exposed.
Now, either
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1. u and v are not connected,
2. A path from u to v has been exposed, or

3. 1 and 2 do not hold, and both N, and N, contain at least 3m*/2 Inm unexposed endpoints.

In the first case, §(u,v) = co. In the second case, clearly d(u,v) < ~(u) +~(v) + 1 Hence, we need
only consider the third case.
Suppose we now expose all of the endpoints in N; if any endpoint in N, is matched to an
endpoint in N, then
5(u,0) < v(w) + () + 1.
We claim that this occurs with probability 1 —o(n?). To see this, we observe that a given endpoint
in N,, matches to N, with probability at least

IN,| /m > m™/2,

Now, if a particular endpoint in N,, does not match to N,, it may match into N, reducing the
number of unexposed endpoints in N, by 2. Nevertheless, if we sequentially match all of the
endpoints in Ny, there are at least |N,| /2 chances to find a connection to N,.

The probability that no connection is found is therefore at most

ml/2 3lnm
(1-— m—1/2)3m1/21nm _ ((1 _ #) )
1 3lnm
- ( - o(l))

= 0(m™®).

By considering all (g) = O(m?) pairs of vertices, we conclude that this event a.a.s. occurs for no
such pair, and the lemma is proved. |

Lemma 4.2 proves that in order to find an upper bound on the diameter of Gp, it suffices to
bound the maximum value of v(v) for v € V. However, it is not necessary to consider all vertices
in V; the next lemma we prove allows us to narrow down the set of vertices which can contribute
to the diameter of Gp.

Recall that the 2-core of a graph is the maximal induced subgraph of minimum degree 2. For a
graph G = (V, E), let d2(v) denote the degree of a vertex v in the 2-core of G, that is, the number
of edges in the 2-core of G which are incident on V.

Lemma 4.3 For any graph G = (V, E), and any vertex v € V, if there exists a vertex v' such that
§(v,v") = A(G), then either da(v) = d(v) or d2(v) =0 and d(v) = 1.

Proof. If 0 < d2(v) < d(v), then for any vertex v’ connected to v, we can find a vertex v" such
that any path from v’ to v" must pass through v and therefore §(v’,v"”) > d(v,v'). Hence either
da(v) = 0 or d2(v) = d(v). Now, if da(v) = 0 it follows that ds is not in the 2-core, and therefore
there are no cycles in G which contain v. Therefore, if d(v) > 2 and dy(v) = 0, then once again,
for every v’ connected to v, we can find a vertex v” such that any path from v’ to v"” must path
through v and so (v, v") > d(v,0"). |}

By lemma 4.3, we only need to consider vertices which are either entirely in the 2-core or have
degree 1. Note, however, that a vertex of degree 1 may or may not be connected to the 2-core by a
path. Hence, our proof of the upper bound of Theorem 4.1 will consider the following three cases
separately:
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1. d(v) =1 and v is connected to the 2-core;
2. d(v) =1 and v is in a tree component;

3. the degree of v in the 2-core satisfies da(v) = d(v) > 2. In this situation, we also distinguish
between the case when the minimum degree of the entire graph is 3 or greater, and the case
where the minimum degree is at most 2.

In most cases, the diameter of Gp will occur between two vertices of type 1, that is, two vertices
of degree 1 which are connected to the 2-core.

4.1.1 Vertices of degree 1, connected to the 2-core

In this subsection, we consider the neighborhoods in Gp of a vertex of degree 1 which is connected
to the 2-core of Gp. We assume throughout Ap 3> A or A\p i> A with My(\) = oo, where A
has residual distribution g = py. Recall that M*(u) gives the derivative of the p.g.f. 1, at the
fixed point z, (equation 41). M*(u) has an alternate interpretation which we shall make use of
in this section. Recall that by Lemma 3.3, if 7 is the halting time of the CM 2-core algorithm,
then p, — p, w.e.h.p., where p, is the distribution defined in (21). By manipulating generating
functions, it can be shown (see appendix A) that

M () = py(1).
Lemma 4.4 Choose any v € Gp such that d(v) = 1. Then, for any € > 0,

v(v) 1 1
> +
Inn = —InM*(p) 2InMi(u)

+e|l =o(n™h). (45)

Proof. In order to bound «(v), we shall execute a specialization of the CM algorithm which com-
bines the CM 2-core algorithm and CM BFS breadth-first-search. First, we execute the protected
2-core algorithm with protected set W = {v}. Then, if the single endpoint belonging to v remains
unexposed at the halting time 7, we execute CM BFS starting with the vertex v.

Based on lemma 3.3, the unexposed residual distribution at the halting time satisfies p,. — p,,
w.e.h.p. Hence, we discard the exponentially small probability that this convergence fails, and
assume that p. is arbitrarily close to p,.

Also, at time 7, there are no endpoints of residual degree 1 other than v. We note that if
v’s unique endpoint has been exposed at time 7 then v is not connected to the 2-core of Gp and
belongs to a tree component; we shall deal with tree components separately.

We analyze the BFS in three phases. For this proof we let n; = |N;| denote the number of
endpoints in the BFS queue after ¢ iterations of the BFS. The phases are:

1. n; =1to n; > Inlnn;
2. n; =Inlnn to n; > In’n;
3. n; =In%n ton; > 3m!/21nn.

In the original graph, phase 1 corresponds to first performing BFS from v until the 2-core reached,
and then continuing the BFS in the 2-core until a neighborhood of size Inlnn is found. Intuitively,
phase 1 will include a large number of iterations if the path from v to the 2-core is very long, if
closest vertex to v in the 2-core is part of a long isolated cycle, or, more generally, if the small BFS
neighborhoods around v grow at an abnormally slow rate.
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Phase 2 transitions from a BFS neighborhood of size Inlnn to a BFS neighborhood of size In? n
in the 2-core. Typically, phase 2 will include only a small number of iterations, and phase 2 serves
mainly to transition from the “small” neighborhoods in phase 1 to the “large” neighborhoods of
phase 3. Then, in phase 3, the neighborhoods are large enough so that their growth rate is highly
predictable using the tools developed in section 3.3.

We compute the total number of BFS iterations by considering “good” and “bad” iterations
in each phase (their properties are defined below); we let G1, Go, G3, B1, By, B3 and denote the
number of good and bad iterations in each phase, respectively. Informally, a “good” iteration
occurs if the size of the BFS neighborhood grows sufficiently quickly, and a “bad” iteration occurs
otherwise.

Phase 1. In phase 1, a good iteration occurs if n;11 > n; or n;1; = 0, and a bad iteration occurs
otherwise. Now, if no cross-edges occur, then n;,; is equal to the sum of the residual degrees of the
endpoints matched to the endpoints in IN;. Recall that the unexposed residual distribution satisfies
py — py w.e.h.p., and therefore the probability that an unexposed endpoint chosen uniformly at
random has residual degree 1 is

py(1) = pu(l) = M*(u)

w.e.h.p. Also, since all vertices outside of the BFS queue have unexposed degree at least 2 (or
0), then the only way a bad iteration can occur without a cross-edge is if every endpoint in N
matches to an endpoint of residual unexposed degree 1. This probability is maximized if n; = 1, in
which case the single endpoint in N; matches to an endpoint of unexposed residual degree 1 with
probability at most p,(1) 4 o(1) = M*(u) + o(1).

Recall that, in the context of CM BFS (section 3.3), Q denotes the set of unexposed endpoints
in the BFS queue; in particular, a cross-edge occurs if and only if an endpoint in Q is chosen at
random during an even time step. Hence, the probability of encountering a cross-edge at any given
time is |Q] / |U|.

Also, at any time during any BFS iteration in phase 1, if |Q| > 31Inlnn, it is clear that, even if
all of the (at most Inlnn) remaining unexposed endpoints in the initial queue R form cross-edges,
the size of the queue at the the end of the iteration will be greater than Inlnn and therefore phase
1 will end. Hence, during phase 1, we can assume that the probability of encountering a cross-edge
at any particular step is O((Inlnn)/m). And, therefore, the probability of encountering more than
one cross edge during any of the first O(In®"!) n) steps of phase 1 is O(n~2In°M n) = O(n=2).
Here O(lno(l) n) serves simply as an upper bound to the number of CM steps which occur in phase
1, as we shall see below.

For any given BFS iteration in phase 1, barring a cross-edge, we must have n;;; > n;, and
with at most one cross-edge, we have n;1; > n; — 2. Hence, if at most one cross-edge occurs in
phase one, then G; < Inlnn+ 2, since each good iteration increases the number of endpoints in N.
Recall that the total number of iterations in phase 1 is G1 + B1. It follows that for any constant
¢, we have

P[G1 + By > clnn] = P[B; +Inlnn + 2 > clnn] + O(n™?)
= P[B;1 > (¢ —o(1))Inn] + O(n7?).

It follows that, for any constant ¢, with probability 1 — O(n=2), the event B; > clnn occurs
if and only at least clnn of the first Inlnn + 2 4 clnn iteratations in phase 1 are bad. As shown
above, the probability that any given iteration in phase 1 is a bad iteration is w.e.h.p. bounded
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above by p,(1) + o(1) = M*(p) + o(1). Thus, we compute

Inlnn+2+clnn
clnn

Pmlzdmﬂs( :yMﬂm+oUW“”+0m2)

- (1+O (hllnﬂ))cmn(M*(M)+O(1))clnn+0(n—2)

Inn

< (M*(p) +0(1))"" + O(n?). (46)
In particular, for any ¢; > 0, we let

1

©T M ()

+ €1
and compute P[B; > clnn] < o(n!). Hence, for arbitrary e; > 0, with probability 1 — o(n 1),

1
<|—— = .
B; < <—lnM*(u) + 61> Inn, and G; = O(Inlnn) (47)

We point out that it is not necessarily the case that n; ever reaches Inlnn; it is possible that
n; becomes 0 at some point, for example if 7~! = 2 and the two endpoints in N;_; are matched to
each other. This occurs with probability @(m ') = ©@(n!); however, if this event does occur, the
analysis above shows that, with probability 1—o(n 1), it occurs after at most (m + 0(1)) Inn
iterations.

Phase 2. In phase 2 we transition from endpoint sets of size Inlnn to size In? n. Unlike phase
1, we do not consider a phase 2 iteration to be good simply because n;;; > n;. Instead, we will
consider the actual rate of neighborhood growth.

Proposition A.3 in the appendix shows that M;(p,) = Mi(p). Also, by assumption of Theorem
4.1, either up EN pwor pp — p with My(pu) = oo, so it follows from lemma 3.3 that g, EN Pu
w.eh.p. or puy — p, w.eh.p. with Mi(p,) = M(u) = oo. In particular, the average residual
unexposed degree at the halting time of the protected 2-core algorithm converges to Mj(u) w.e.h.p.
Hence, in this phase, we define a bad iteration to be an iteration in which

e n;; < (Mi(p) —0)n; if Mi(u) < oo.
e n; i < (1/8)n; if My(p) = oo.

for arbitrarily small § > 0. The number of good iterations is thus bounded above by

2Inlnn
————— = O(lnlan
(M () —9) ot
in the first case and olnl
nlnn
= O(lnl
In(1/0) O(Inlnn)

in the second.
By lemma 3.12, the probability of a bad iteration is at most

e Com < (Inpn)~OM
for a constant Cs. For any €5 > 0, a routine manipulation of binomial distributions yields

P[By > e lnn] < (Inn)~0Mn7) = p—Onlnn)
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Hence, for arbitrary e > 0, with probability 1 — o(n™1),
By < e lnn, and G2 = O(Inlnn). (48)

Phase 3. In phase 3, a bad iteration defined as in phase 2; now, however, we have n; > In?n,
so the probability of a bad iteration is at most

efc,; In’n _ nfﬂ(ln n)

It follows that, with probability 1 — o(n™!), B3 = 0, and in phase 3 we need only count good
iterations. By setting § appropriately, for arbitrary ez > 0, we attain

1 .
G3 S IOng(u)7(5(3m1/2 lnn) S (m - Eg) lIlTL, if M]_(/L) < 00, (49)
and
G3 < logy s m'? < eslnn, if My(p) = oo. (50)

Finally, we set € = €1 + €2 + €3 and we add up the good and bad iterations in the three phases
as given by (47), (48), and (49) or (50) to yield equation (45). |}

4.1.2 Vertices of higher degree

In this subsection, we consider the neighborhoods vertices of degree 2 or greater in Gp. For any
vertex v, recall that d2(v) denotes the degree of v in the 2-core of Gp; hence, if 7 is the halting
time of the CM 2-core process, then dz(v) = d,(v). Also, recall that by lemma 4.3, for d(v) > 2,
we are only interested in vertices for which d2(v) = d(v), since otherwise a longest shortest path in
Gp cannot begin or end at v.

Lemma 4.5 Choose any v € Gp such that d(v) > 2. Then, for any € > 0

P ~(v) S 1 1

Inn = —2ln M*(u) + 21n My (p) Teldofv) = d(v)] =o(n™). (51)

Proof. The proof proceeds as in lemma 4.4. We execute first the CM 2-core algorithm but now
we use the protected set W = (). Once the 2-core has been found, we execute CM BFS beginning
with the vertex v. By assumption, all of v’s endpoints remain unexposed at the time that the 2-core
is found. Our analysis will employ the same three stages as in lemma 4.4. Clearly, the arguments
regarding phases 2 and 3 are identical to the case where d(v) = 1. Hence, we must deal with phase
1.

We note that, comparing equations (45) and (51), in order to attain the required bound, we
must reduce the duration of phase 1 from —1nhzlv?* M) to _zhllnM"* W In order to do so, we consider
phase 1 in slightly more detail.

Since our vertex v has degree at least 2, the CM BF'S begins with a neighborhood of size ng > 2.
Recall that a cross-edge occurs during phase 1 with probability O(n_l). Now, the probability of
experiencing a bad iteration without a cross-edge is at most (p,(1) + o(1))™ = (M*(u) + o(1))™.
Without any cross-edges, we must have n;y; > n;, which implies n; > d(v) > 2 throughout the
phase.

On the other hand, if a cross-edge does occur, then n; can decrease. If n;;; = 0 (for example, if
n; = 2 and a horizontal cross-edge matches both endpoints in n;), then phase 1 ends immediately,
as does the entire BFS. However, if n;; ;1 = 1, then a bad iteration becomes more probable. In
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order to handle this situation, we note that a cross-edge is sufficiently unlikely that, for any ¢ > 0,
the probability that a cross-edge occurs either preceded of followed by at least elnn iterations of
phase 1 is at most

O(n ") (pu(1) +o(1)"" = o(n ).
Therefore, with probability 1 —o(n 1), this does not occur, and we may assume that the neighbor-
hood size is at least 2 throughout phase 1.
Hence, a bad iteration requires that at least 2 endpoints of residual degree 1 are chosen consec-
utively, and this occurs with probability at most (M*(u) + o(1))2. Similarly to equation (46), we
now deduce that

P[By > clnn] < (M*(1) + 0(1))2)“™" + o(n 1)
< (M*(p) + o(1))*™™ + o(n ™),

and the factor of 2 in the exponent carries through the computations in 4.4 to yield equation

1. 1

4.1.3 Graphs with minimum degree at least 3

Here we consider the case where p1(0) = p(1) = 0, hence, as assumed in Theorem 4.1, Gp has no
vertices of degree 1 or 2.

Lemma 4.6 Assume u(0) = pu(l) = 0, and assume Gp has minimum degree 3. Then, for any
vertex v and any € > 0,

() o

Inn — 2In M;(p)

+e| =o(n™h). (52)

Proof. Again we use the same three phases as in the proof of lemma 4.4. However, we change
the definition of good and bad iterations during the first phase. Now, we consider a bad iteration
to be any iteration in which n;;; < 2n;. We note that since all vertices have degree at least 3
(and residual degree at least 2), a bad iteration can only occur with a cross-edge. As shown above,
with probability 1 — o(n~!) at most one cross-edge occurs during the first phase, and with a single
cross-edge, we have n; 11 > n; — 2.

Since a good iteration doubles the size of the BFS endpoint queue, then (barring multiple
cross-edges), at most O(Inlnlnn) = o(lnn) good iterations can occur during phase 1. Hence, with
probability 1 —o(n~!), both phases 1 and 2 have o(Inn) iterations and the previous result regarding
the duration of phase 3 yields equation (52). |}

4.1.4 Tree Components

The structure of a random graph with a fixed degree sequence D satisfying Ap 2 Xor AD L
with M2(X) = oo was described by Molloy and Reed [12, 13]. The results of Molloy and Reed
which are pertinent to this paper can be summarized as follows (see appendix for more details).
If the residual distribution p = p) satisfies Mj(u) > 1, then the graph Gp a.a.s. contains a
giant connected component; and, if the giant component is removed, the residual graph has the
structure of the random graph Gp: where the random degree sequence D’ satisfies Apr 2N
a.a.s. In particular, this limiting distribution \’ has residual distribution py = §,, and £, satisfies
M;(€,) = M*(u) (see proposition A.3). Also, all tree components a.a.s. lie outside of the giant
component (or, equivalently, the giant component is a.a.s. not a tree component).
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A straightforward argument shows that for

b> () lnn= (—— 1)1
~ (—1nM1(§u) +6) nne (‘th*(H) +6> n

the k’th BFS neighborhood for a vertex of degree 1 in the graph Gpr (which corresponds to Gp with
the giant component removed) has expected size o(n~!) and therefore is empty with probability
1—o(n~!). Hence, the diameter of the largest tree component is a.a.s. less than (W"(u) +e€)lnn
for arbitrary e; in particular, the diameter of the giant component is greater than the diameter of
any tree component.

4.1.5 Upper Bound

The proof of the upper bound of Theorem 4.1 follows immediately from the previous lemmas using
the first moment method. Specifically, the above lemmas show that, for any ¢ > 0, the expected
number of vertices in Gp with

y() 1 a(p) 1
Tnn =2 (—lnM*uo T M () “)

is n- o(n~!) = o(1). Hence, with probability 1 — o(1), no such vertex exists, and the upper bound
follows. |}

4.2 Lower Proof of Theorem 4.1

In order to prove the lower bound of Theorem 4.1, we shall demonstrate that for any € > 0, there
a.a.s. exist a pair of vertices u,v in Gp with distance §(u,v) > (A, — €) Inn, where

_ ap) 1
8= T () T ()

is the value computed in equation (43) in Theorem 4.1. Recall that, intuitively, the second term

o 1\/111 M) in the equation above gives the distance separating a typical pair of vertices, while the first
a(p)

term = yam describes the length of the long isolated paths or cycles which cause the diameter
to differ from the “average” distance. Accordingly, we prove the lower bound by first showing that
almost all vertices in a random graph with u(0) = 0 are separated by a shortest path of distance
at least Jl\r/}ln(u) (1 —o(1)), and then finding a pair of vertices separated by an additional distance

a(p)Inn
of W

For the following lemma, we assume x(0) = 0, but we drop the assumption that Gp must have
minimum degree 2. That is, for this lemma only, it suffices that G p have o(n) vertices of degree 1.

Lemma 4.7 Let A\p 2\ or AD L\ with Ms(\) = oo, where A has residual distribution py = p,
and assume p(0) = 0 and p(l) < 1. Let u,v be vertices in Gp such that d(u) = ©O(1) and
d(v) = ©(1). Then,

1. u and v are connected with probability 1 — o(1).
2. For any € > 0, with probability 1 — o(1),

Inn

d(u,v) > (1 — e)m
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Proof. We trace the BFS neighborhoods of « and v as in the upper bound proof. First, we execute
the CM 2-core algorithm with protected set {w,v}. Since p(0) = 0, the probability generating
function of p satisfies 1,(0) = 0. Hence, by lemma 3.3 the CM 2-core algorithm terminates after
o(m) steps w.e.h.p. Since u and v have constant degree, then with probability 1—o0(1), all endpoints
belonging to v and v remain unexposed at this time.

Then, beginning with u, we perform a CM BFS search, halted after m! €0 steps, for a value
€0 > 0 to be specified afterwards. Now, as with the upper bound proof (phases 1-3), the probability
that n; 1 < n; for any given iteration is O(m 1), hence with probability 1 —o(1), this never occurs.
Hence, by analysis similar to the upper bound proof, when the halted BFS terminates, with proba-
bility 1 — o(1), we will have found a large set of at least 3m!/2 Inn unexposed endpoints connected
to u. We then perform a similar BFS beginning with v, and conclude that with probability 1—o(1),
a path connecting « to v will be found.

For the second part of the lemma, we must show that, with probability 1 —o(1), any path from

u to v is longer than (1 — €)- }\1}[:‘(“). Note that, since the vertex v has ©(1) unexposed endpoints,

then with probability 1 —o(1), none of these endpoints become exposed during m! € = o(m) steps
of the CM algorithm. Hence, with probability 1 — o(1), the distance é(u,v) is greater than the
number of BFS iterations completed during the halted BFS. We shall prove that, for any € > 0,

Inn

with probability 1 —o(1), at least (1 — €)—2— BFS iterations will have been completed when the

In M (u)
CM BFS halts after m! € steps.
Let n] = |N!|, so n] denotes size of the i’th BFS endpoint neighborhood if the BFS has not yet
halted and 0 otherwise. Hence, by lemma 3.13, for any 7, and for any ¢; > 0

E[nj] < (M (p) + 1)

Let h = (1 —€) }\I/}I"(u) and note that by linearity of expectation,

h h
€ [Z né] <Y (My(p) + €1)' < h(My(p) + &)
i=1 i

=1

Choosing €; sufficiently small, we have

h
£ [Z n;
i=1

< 0(n*=%) (54)

for a constant C' > 0.

Now, recall that the CM BFS is halted after m!' ¢ steps, for arbitrary ¢y > 0. By definition, h
iterations of CM BFS are completed at the halting time if and only if Z?:l n, < m!=¢. We now
set eg < C, where C' is the constant in equation (54), and conclude by Chevyshev’s inequality that

h
P [Z nj > ml—m] = o(1). (55)
=1

Hence, with probability 1 — o(1), h iterations complete during the halted BFS, and no endpoints

which belong to v are encountered within distance A = (1 — €)1 ]l\r/}ln(u) of u. |

For graphs with minimum degree 3, the constant A, in Theorem 4.1 is given by
1

B = W ()

The lower bound in this case, as stated in the following corollary, is obtained by choosing any pair
of vertices u,v and invoking lemma 4.7.
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Corollary 4.8 Assume pu(0) = p(l) = 0, and assume Gp has no vertices of degree less than
3. Then, for every € > 0, with probability 1 — o(1), there exists a pair of vertices u,v such that
d(u,v) > (1 —€)A,lnn.

Next, we consider graphs for which x(0) > 0, so the minimum nonzero degree is 1.

Lemma 4.9 Assume u(0) > 0. Then, for every € > 0, with probability 1 — o(1), there exists a pair
of vertices u,v such that 6(u,v) > (1 —€)A,lnn.

Proof. Again we execute the CM 2-core algorithm, but now we choose a protected set W which
consists of ©(n’) vertices of degree 1; the constant 0 < C. < 1 will be specified further on. We
let W' denote the set of vertices w € W for which the (unique) endpoint belonging to w remains
unexposed when the protected 2-core algorithm halts. For any vertex w € W, the event w € W'
clearly occurs with probability ©(1), and it is straightforward to show that W' a.a.s. (and w.e.h.p.)
contains a constant fraction of the vertices in W.

At this point we attempt to find two vertices u,v € W' with k consecutive endpoint neighbor-

hoods of size 1, where
1
= e ]_
k (—ln ) 60> nn (56)

for an arbitrary ey > 0. We shall refer to this as the BFS probe algorithm. First, choose any vertex
w € W', and execute CM BFS until either

e [ iterations are completed, and the sizes of the first k¥ BFS neighborhoods satisfy
ng=n;=---=n;=1,
or
e for some j <k, n; # 1.

We repeat this procedure, choosing a new vertex from W' each time until all endpoints belonging
to vertices in W' have been exposed.

We note that the BFS probe will expose at most O(lnn) endpoints for each vertex in W, and
since |W| = o(m), then o(m) endpoints overall will become exposed. Hence, for any €; < 0, the
fraction of endpoints of residual degree 1 will never drop below M*(u) — €1 at any time during these
BF'S searches. Therefore, the probability that any particular w € W' produces a chain of length &
is at least

1
(M (1) — 1) = (0 () — &) (50 0) 2 _ @ =01=C:0)) 67)
The probability of failing to find such a chain in j attempts is therefore at most

(1 _ Q(nf(lfc’go)))j _ ejln(lfﬂ(n*(lfceo))) _ efﬂ(jn’(lfcso)), (58)
and since the number of attempts is j = |[W’'| = ©(n%), we choose C, > 1 — C,,. This guarantees
that at least 2 such chains are found with probability 1 — o(1). Also, if a particular vertex w
produces such a chain, with probability 1 — o(1), the unexposed endpoint at the end of the chain
will remain unexposed through the rest of the BFS probe with probability 1 — o(1). Hence, at the
end of the BFS probe, with probability 1 — o(1), at least two such chains will be remain.

Now, let u,v be the two vertices in W' which are found to have k BFS neighborhoods of size
1, and let u’ and v’ respectively denote the vertices in the k’th BFS neighborhoods of u and v. At
this point, we note that any path connecting u to v must pass through v’ and v’. Thus,

§(u,v) = 8(u',0") + 8(u, u') + §(v,0"). (59)
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Both §(u, u') and §(v,v") have length at least k as given in equation (56). A lower bound for §(u’, v')
follows from lemma 4.7. This completes the proof. |

The generalization to the case where Gp has minimum degree exactly 2 (so u(0) = 0 and
p(1) > 0) is straightforward, as shown below.

Lemma 4.10 Assume p(0) = 0 and p(l) > 0, and assume Gp has minimum degree 2. Then,
for every € > 0, with probability 1 — o(1), there exist a pair of vertices u,v such that §(u,v) >
(1-€)A,lnn.

Proof. The proof is very similar to the proof for graphs with minimum degree 1, except that the
BFS probe now searches for a chain of BFS neighborhoods containing 2 endpoints, rather than

only 1. We set
1
= _—_— l
k (QInM*(u) 60) nn (60)

so the probability that, beginning with a vertex v of degree 2, we find k£ consecutive neighborhoods
of size 2 is

((M*(N) N 61)2)k — (M*(N) o 61)(lan"(u)760) Inn = Q(n*(lfcso))_ (61)

Hence, with probability 1 — o(1), we find at least 2 vertices u,v with chains of length k.

At this point, the neighborhoods at distance & from « and v will contain 2 unexposed endpoints
each. We now consider these neighborhoods as “vertices” u',v’' of unexposed degree 2, and invoke
lemma 4.7 to derive an appropriate lower bound on §(u',v'). This completes the proof. |

The lower bound proof of Theorem 4.1 is now complete.

5 Applications

5.1 The Diameter of G,

Consider computing the diameter of the classical random graph Gy p, for p = %, where d > 1. Tt
can be shown that degree distribution of G, j, is w.e.h.p. k-convergent to the Poisson distribution

ma(t) = efgdi. Also, the Poisson distribution has the property that the residual distribution is the
same as the original distribution, so y,, = 4. Hence, let A(d) = —ln(l\?*(rd)) + ln(M:(Trd))’ so that,
by Theorem 4.1, we have %’;“ — A(d) a.a.s. for p = %.

The p.g.f. for the Poisson distribution 74 has the simple expression ¢r,(z) = e?z=1)  The fixed

—d
point of this function is given by zr, = %, where the Lambert W -function W (z) is the
principal inverse of f(z) = ze®. This gives a closed-form expression for A(d):

2 1

Ald) = In —W (de—?) Y

(62)

From equation (62), it can be shown that A(d)Ind — 3 as d — 1 and A(d)Ind — 1 as d — oo,
and it is a simple exercise to derive increasingly accurate asymptotic characterizations of A(d), as
in

and so on.
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5.2 Finding a Shortest Path Quickly

The proof of Theorem 4.1 shows that one can quickly find a shortest path between a pair of vertices
u,v in a random graph Gp using a simple algorithm. Specifically, we perform BFS starting from
w until either

e a path connecting u and v is found;
e the BFS neighborhood is empty (so v and v are not connected);
e the BFS neighborhood reaches size 3m!/2 Inm.

Then we perform BFS from v until either a connecting path is found or the search terminates
without finding a connecting path.

An alternate algorithm (which is a better heuristic in practice for general graphs) is one that
performs the BFS search simultaneously from « and v, starting the search for each new level from
the BFS neighborhood of smaller size. Assuming an adjacency-lists representation for the graph,
the following corollary of Theorem 4.1 holds for either algorithm.

Corollary 5.1 Let D be a degree sequence satisfying Ap L X\ where M;i(uy) > 1. Then a.a.s. for
any connected pair of vertices u,v in the random graph Gp, a shortest path connecting u and v can
be found by a simple algorithm in time O(m'?Inm) = O(n'/?1nn).

5.3 The Distance Distribution

For a graph G = (V, E) let
(G) = {o(u,v) :u,v €V}

denote the multiset of distances between pairs of vertices in G, and note that |§(G)| = n?, since

there are n? pairs of vertices. The proof of Theorem 4.1 shows that almost all finite distances in
d(G) are very close to My () - Inn. We state this more precisely in the following corollary.

Corollary 5.2 Let D be a degree sequence satisfying \p 2\ or AD 5\ with My(\) = o0, and
assume Mi(py) > 1. Then, for any € > 0,

‘{5 €d(Gp) : 6 < oo and ‘% — Mi(p)| > e}

= o(n?) a.a.s.

APPENDIX

A Random Graphs and Probability Generating Functions

In this section we discuss various distributions related to random graphs which can be described
using manipulations of probability generating functions. Recall that, by definition 2.2, for a distri-
bution y, the p.g.f. 9, is given by

Yu(z) = E[z%#]

for z € [0,1]. Various characteristics of a random graph with a fixed degree sequence D satisfying
Ap — A can be understood in terms of the p.g.f. of the limiting residual distribution g = py. The
p.g.f. also plays a key role in the theory of branching processes [2].
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We begin by noting that the k’th derivative of the p.g.f. is given by
Y (2) = € | Xy (X = 1) (Xu =k +1)- ZX”_k] =& [(Xu)k : ZX”_k] ;

and therefore

k
6O _ g (63)
and
Ui (1) = M (u). (64)
Now, for any distribution u, let
z, = min{z € [0,1] : ¢,(2) = z}. (65)

denote the lowest fixed point of 9, in the interval [0, 1], and note that z, < 1 if and only if
Mi(p) > 1 (see, for example [2]). For a distribution p with My () > 1, we define distributions &,
and p,, by giving the generating functions

e () = LeE ) (66)

Zp

and

¢Pu(z) _ 77/}#(2 + (ll:j)zlt) — Zu
n

(67)

The result of Molloy and Reed [13] regarding the degree sequence of a random graph with the
giant component removed can now be expressed as follows.

Theorem A.1 ([13]) Let D be a degree sequence and assume Ap 5 X\ where L = py satisfies
M;i(u) > 1. Consider the random graph Gp, and let € denote the residual degree distribution of
the graph which results from removing the largest connected component from Gp.

Then & — &, a.a.s.

Proof. From the formula of Molloy and Reed for the limiting degree distribution of the graph with
the largest component removed (i.e. Theorem 2 of [13]), we derive

£() = p(i)z (68)
a.a.s. for all i, and by equation (66), 1, (2) = > i zizlz_l,u(i) therefore £, (i) = ,u(i)zf;l, so &, is
in fact the limiting residual distribution described in equation (68).2 |

The residual degree distribution of the 2-core of the random graph Gp, as described in [8], can
be expressed similarly.

Theorem A.2 ([8]) Let D be a degree sequence and assume ApE ) where = py satisfies Mq(p) >

1. Consider the random graph Gp, and let p denote the residual degree distribution of the 2-core
Of GD.
Then p LN pu w.e.h.p.

*We note that this result can be strengthened to achieve k-convergence and/or a w.e.h.p. guarantee, but this is
unnecessary for our purposes.
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Proof. In Lemma 1 in the appendix of [8], the expected number of vertices of degree i > 2 at time
t of the 2-core algorithm, assuming that the 2-core has not yet been found, is given as

3700 (]t p(0 o)

where p(t) = (%4)1/2, and [8] gives w.e.h.p. concentration. Also, the halting time 7 of the 2-core
algorithm is shown to satisfy -~ — 1 — (1 — z,)? or, equivalently, p(7) — 1 — z,,, with w.e.h.p.
concentration.

From these two results, we compute the limiting residual distribution at the halting time of the
CM 2-core algorithm. First, let Ay denote the limiting degree distribution of the 2-core, so

el = A0 (1)1 - 505 (69

for i > 2 (and by definition Ay(1) = 0).
Let us denote corresponding residual distribution by pe = py,, and compute, for ¢ > 1,

(i) = G DXG D _ (+1) 3 A(j)(‘ J >(1 )

Mi(A2) Mi(h2) S 7 i+ 1
_ ]\21+A12 ’;i (ht1) (h+1> )t
: %m .

h=i

In particular, note the similarity between the expression above for p2(7) and equation (69) for A2(i).
Note also that ps(0) = 0.
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We now show that 1, = 1,,, where p, is defined in equation (67). First, we compute

Yus (2) = E[ZX42] = pa(i)2’
i=0

- iuz(l)zl

= G () s

= G S wn ()t -

= 001~ % gu(h)é (3) = ziat

e e SO (CUEEAREAIEE
M)~ 2)

Since 2, is a fixed point of 1, this yields

¢uz(z) = % (¢u (2(1 - Zu) + zu) - zu)- (70)

In order to demonstrate that equations (67) and (70) are equal (and therefore v, = v,), it

suffices to show that
Mi(X)

=(1-2,)"2%
Ml()\Z)_(l H)

While this can be achieved algebraically by a computation similar to what is shown above, we give
a more intuitive, if less formal, argument. Since X\ gives the initial degree distribution and Ay gives
the degree distribution of the 2-core, then m = M;j()\) - n gives the number of endpoints in the
original graph, and M;j()2) - n gives the number of endpoints in the 2-core. It follows that the
fraction of endpoints in the 2-core is given by

Mi(X2)
Mi(N\)

As noted above, the halting time of the 2-core algorithm concentrates about m(1 — (1 —z,)?), and
since each time step exposes a single endpoint, we have

Therefore p2 = p,, and we conclude that p LN pu wehp. |

Next, we give a visual interpretation of the functions ¢, and 1,,, and their relation to the
p.g.f. ¥,. For a typical distribution p, let us examine a plot of the p.g.f. ¢, as shown below; here
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the z-axis is z and the y-axis is ¥, (2).

1

0.2 0.4 0.6 0.8 1

The value z, corresponds to the lowest fixed point in %,, as shown in the plot. If we “drag”
the point (z,,z,) to the upper-right-hand corner (1,1), and “stretch” the lower-left-hand region
of the plot to cover the entire [0,1] x [0,1] square, what results is the plot of the p.g.f. ¢¢,. On
the other hand, if we drag the point (z,,z2,) diagonally towards the origin (0,0), and stretch the
upper-right-hand region of the plot, the result is the plot of 1, .

We can verify algebraically that the “stretching” described above does not affect first derivatives,
and therefore

W (1) = ) (0) = ¥l (2,)
and
Up, (1) = ¥y (1).
Now, let us define
M*(p) =y (2), (71)

and by equations (63) and (64), we have the following proposition.

Proposition A.3 For any distribution pu satisfying My (p) > 1,

1. My(&u) = pu(l) = M*(p);
2. Mi(pu) = Mi(p).

This proposition can be interpreted intuitively as follows. Recall that, if u is the limiting residual
degree distribution of a random graph Gp, then p, gives the limiting residual distribution of the
2-core of Gp, and {, gives the limiting residual distribution of the subgraph of Gp with the giant
component removed. Hence, statement 1 of proposition A.3 shows that the fraction of endpoints
of residual degree 1 in the 2-core of Gp is asymptotically equal to the average residual degree of
the subgraph with the giant component removed. Statement 2 of proposition A.3 shows that the
average residual degree of the 2-core of Gp is asymptotically equal to the average residual degree
of Gp itself.

Finally, we note that the distributions p, and {, also arise in a certain decomposition of a
supercritical py-branching process; this decomposition, as well as a more comprehensive discussion
of probability generating functions, can be found in [2].

37



References

[1]

[10]

[11]

[12]

W. Aiello, F. Chung, and L. Lu. A random graph model for massive graphs. In Proceedings
of the ACM Symposium on Theory of Computing, pages 171-180, 2000.

K. B. Athreya and P. E. Ney. Branching Processes. Springer, 1972.

B. Bollobas. A probabilistic proof of an asymptotic formula for the number of labelled regular
graphs. European Journal of Combinatorics, 1:311-316, 1980.

B. Bollobds. Random Graphs. Academic Press, 1985.

F. Chung and L. Lu. The diameter of random sparse graphs. Advances in Applied Math.,
26:257-279, 2001.

C. Cooper. The cores of random hypergraphs with a given degree sequence. Manuscript, 2003.

D. Fernholz and V. Ramachandran. The giant k-core of a random graph with a specified degree
sequence. Manuscript, 2003.

D. PFernholz and V. Ramachandran. Cores and connectivity in sparse
random  graphs. Technical Report UTCS  TRO04-13, Department  of
Computer Sciences, University  of  Texas, Austin  TX 78712, 2004.
http://www.cs.utexas.edu/ftp/pub/techreports/INDEX/html/Index.2004.htm]l.

0. Kallenberg. Foundations of Modern Probability. Springer-Verlag, 2002.

L. Lu. The diameter of random massive graphs. In Proceedings of the ACM-SIAM Symposium
on Discrete Algorithms, pages 912-921, 2001.

B. D. McKay and N. C. Wormald. Asymptotic enumeration by degree sequence of graphs with
degrees o(n'/?). Combinatorica, 11:369-382, 1991.

M. Molloy and B. Reed. A critical point for random graphs with a given degree sequence.
Random Structures Algorithms, 6:161-179, 1995.

M. Molloy and B. Reed. The size of the giant component of a random graph with a given
degree sequence. Combin. Probab. Comput., 7:295-305, 1998.

B. Pittel, J. Spencer, and N. Wormald. Sudden emergence of a giant k-core in a random graph.
J. of Combinatorial Theory, Series B, 67:111-151, 1996.

38



