
Efficient Fetch-and-Increment�

Faith Ellen1, Vijaya Ramachandran2, and Philipp Woelfel3

1 University of Toronto
faith@cs.toronto.edu

2 University of Texas at Austin
vlr@cs.utexas.edu

3 University of Calgary
woelfel@ucalgary.ca

Abstract. A Fetch&Inc object stores a non-negative integer and sup-
ports a single operation, fi, that returns the value of the object and in-
crements it. Such objects are used in many asynchronous shared memory
algorithms, such as renaming, mutual exclusion, and barrier synchroniza-
tion. We present an efficient implementation of a wait-free Fetch&Inc
object from registers and load-linked/store-conditional (ll/sc) objects.
In a system with p processes, every fi operation finishes in O(log2 p)
steps, and only a polynomial number of registers and O(log p)-bit ll/sc
objects are needed. The maximum number of fi operations that can be
supported is limited only by the maximum integer that can be stored
in a shared register. This is the first wait-free implementation of a
Fetch&Inc object that achieves both poly-logarithmic step complexity
and polynomial space complexity, but does not require unrealistically
large ll/sc objects or registers.

1 Introduction

A Fetch&Inc object stores a non-negative integer and supports a single oper-
ation, fi, that returns the value of the object and increments it. Such objects
are fundamental synchronization primitives which have applications in many
asynchronous shared memory algorithms. For example, a one-shot Fetch&Inc
object, which allows at most one fi operation per process, can be used to solve
the one-shot renaming problem: assign unique names from a small name space
to participating processes. Each participating process performs fi and uses the
result as its name. Thus, if k processes participate, they get unique names in
the optimal range {0, . . . , k − 1}. Fetch&Inc objects have also been used in
algorithms for mutual exclusion [5], barrier synchronization [10], work queues
[11], and producer/consumer buffers [12,6].

We consider wait-free, linearizable implementations of Fetch&Inc objects in
the standard asynchronous shared memory system with p processes with unique

� This research was supported in part by the Natural Sciences and Engineering Re-
search Council of Canada (NSERC) and by Grant CCF-0830737 of the US National
Science Foundation (NSF).

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 16–30, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Efficient Fetch-and-Increment 17

identifiers, 1, . . . , p. Wait-freedom means that each Fetch&Inc operation fin-
ishes within a finite number of (its own) steps. Linearizability imposes the con-
dition that when some instance op of fi returns the value v, the total number of
completed fi operations (including op) is at most v + 1, and the total number
of completed and pending fi operations is at least v + 1.

Fetch&Inc objects have consensus number two, which means that they
can be used to solve wait-free consensus for two processes, but not three. It
is not possible to implement Fetch&Inc objects just from registers. This is
in contrast to weak counter objects, which support two separate operations, in-
crement and read, where increment increases the value of the counter by
one but does not return anything, and read returns the counter value. Unlike
Fetch&Inc objects, weak counters have wait-free implementations from reg-
isters. Our Fetch&Inc implementation also supports a read operation that
returns the object value and, thus, is strictly stronger than a weak counter.

To implement Fetch&Inc objects, the system needs to provide primitives
of consensus number at least two. Implementations from Test&Set and Swap
objects exist [2], but are inefficient. In fact, a lower bound by Jayanti, Tan, and
Toueg [17] implies that for any weak counter implementation from resettable con-
sensus and arbitrary history-less objects (and thus from Test&Set and Swap
objects), some operations may require Ω(p) shared memory accesses. However,
non-linearizable counters, such as those obtained from counting networks [6], can
be more efficient. But a linear lower bound on the depth of linearizable count-
ing networks [15] shows that such networks cannot be used to obtain efficient
linearizable Fetch&Inc implementations.

We consider implementations of Fetch&Inc from load-linked/store-
conditional (ll/sc) objects. An ll/sc object O provides three operations:
ll, vl, and sc. ll(O) returns the value of objectO. vl(O) returns true or false
and, like ll(O), does not change the value of the object. sc(O, x) either sets the
value of object O to x and returns true or does not change the value of O and
returns false. A vl(O) or sc(O, x) operation by process p returns true (in which
case, we say that it is successful) if and only if p previously executed ll(O) and no
other process has executed a successful sc on objectO since p’s last ll(O).

ll/sc objects allow implementations of any properly specified object using
universal constructions. However, such generic universal constructions are not
efficient. For example, Herlihy’s standard universal constructions [13,14] require
Ω(p) steps per implemented operation. As pointed out by Jayanti [16], the uni-
versal construction by Afek, Dauber and Touitou [1] can be modified so that
each implemented operation takes only O(log p) steps, which is optimal. But
this requires that registers can hold enough information to describe p opera-
tions. Since the description of an operation includes the identifier of the process
that is executing the operation, Ω(p log p)-bit registers are necessary. Thus, this
construction is impractical for systems with many processes. There are also ef-
ficient randomized Fetch&Inc implementations (e.g., Alistarh etal. presented
one based on repeated randomized renaming [3]), but there seems to be no ob-
vious way to derandomize them.

18 F. Ellen, V. Ramachandran, and P. Woelfel

In this paper, we present two Fetch&Inc implementations that have poly-
logarithmic (in p) step complexity and do not require unrealistically large reg-
isters or ll/sc objects. In particular, O(log p) bits suffice for each ll/sc object
and registers just need to be large enough to store the value of the Fetch&Inc
object. Our first implementation, presented in Section 2, is efficient when the
number of fi operations, n, is polynomial in the number of processes. Each fi
operation finishes in O

(
(log p)(log n)

)
steps, and a total of O

(
p+n(log p)(log n)

)

shared registers and ll/sc objects are used. Then, in Section 3, we will explain
how to extend this implementation (using a memory compression technique) to
improve the worst case step complexity to O

(
(log p)2

)
, using O(p3) shared regis-

ters and ll/sc objects. Both of our implementations support a Read operation
with constant step complexity.

2 The First Implementation

The idea of our first implementation is that processes cooperate to construct (an
implicit representation of) a sequence of process identifiers. The sequence has
one copy of i for each instance of fi that process i performs. The values returned
by these instances are the positions of i within this sequence, in increasing order.

The main data structure is a fixed balanced binary tree τ with p leaves, one
per process, and height �log p�. The representation of τ doesn’t matter. For
example, it can be stored implicitly in an array, like a binary heap. Let P (v)
denote the set of ids of processes whose leaves are in the subtree rooted at node
v. At each node, v, there is an implicit representation of a sequence, C(v), of ids
in P (v). Initially, C(v) is empty. The sequence C(v) at an internal node is an
interleaving of a prefix of the sequence C(left(v)) at its left child and a prefix
of the sequence C(right(v)) at its right child.

To perform fi, process i appends i to the sequence at process i’s leaf. Then pro-
cess i proceeds up the tree, trying to propagate information about the sequence
at the current node, v, and the sequence at its sibling to its parent, as in [1]. It
combines the current information at v and sibling(v) and then tries to change
parent(v) so that it contains this updated information. If it doesn’t succeed,
it tries again. If it doesn’t succeed a second time, it is guaranteed that some
other process has already propagated the necessary information to parent(v).
Process i determines the position of its instance in C(parent(v)), the sequence
at the parent of its current node, from the position of its instance in C(v) and
the number of elements from its sibling(v) that precede the block containing its
instance. Then process i moves to parent(v). When process i reaches the root,
it returns the position of its instance in the sequence at the root. The sequence
C(root(τ)) provides a linearization of all completed instances of fi and at most
one uncompleted instance of fi by each process.

The sequence at process i’s leaf is represented by a single-writer register, Ni,
containing the length of the sequence. Thus Ni = 0 if the sequence at this leaf
is empty. To append i to the sequence at this leaf, process i simply increments
the value of Ni.

Efficient Fetch-and-Increment 19

For any internal node, v, let N(v) denote the length of the sequence C(v)
at v, let NL(v) denote the number of elements of C(v) whose leaves are in v’s
left subtree, and NR(v) denote the number of elements of C(v) whose leaves are
in v’s right subtree. Then N(v) = NL(v) + NR(v). The sequence C(v) can be
implicitly represented by a sequence I(v) of pairs (sidej , sizej) ∈ {L,R} × Z

+.
Specifically, suppose the sequence C(v) consists of h blocks �1, . . . , �h of size
x1, . . . , xh interleaved with k blocks r1, . . . , rk of size y1, . . . , yk, where �1 · · · �h is
a prefix of the sequence C(left(v)) at the left child of v and r1 · · · rh is a prefix of
the sequence C(right(v)) at the right child of v. Then I(v) is an interleaving of
the two sequences of pairs [(L, x1), . . . , (L, xh)] and [(R, y1), . . . , (R, yk)], where
(sidej , sizej) = (L, xi), if the j’th block of C(v) is �i, and (sidej , sizej) = (R, yi)
if the j’th block of C(v) is ri. Note that NL(v) = x1 + · · · + xh and NR(v) =
y1 + · · ·+ yk. For example, if

C(left(v)) = [5, 3, 1, 2],

C(right(v)) = [9, 10, 15, 12, 15], and

I(v) = [(L, 1), (R, 3), (L, 3)] ,

then C(v) = [5, 9, 10, 15, 3, 1, 2], with h = 2, �1 = [5], x1 = 1, �2 = [3, 1, 2],
x2 = 3, k = 1, r1 = [9, 10, 15], and y1 = 3. If two consecutive blocks of I(v) have
the same side, they can be combined into one block, whose size is the sum of
the sizes of those two blocks, without changing the sequence C(v) it represents.
Thus, we may assume, without loss of generality, that the sides of the blocks in
I(v) alternate between L and R.

Each internal node v has an ll/sc object v.T containing a pointer into a
persistent data structure Tv representing versions of the sequence I(v) and, hence
implicitly, the sequence C(v). This data structure supports one update operation
and two query operations. Here t is a pointer into Tv that indicates one version
I of I(v).

APPEND(t, x, y): return a pointer to a new version of I(v) obtained from I by
appending the pairs (L, x) and (R, y) to it, as appropriate. More specifically,
if the last block of I is (L, z), update that block to (L, z + x) and, if y �= 0,
append the pair (R, y). If the last block of I is (R, z), update that block to
(R, z + y) and, if x �= 0, append the pair (L, x). When I is empty, append
(L, x), if x �= 0, and append (R, y), if y �= 0.

Note that, if I is nonempty when APPEND(t, x, y) is called, then the new
sequence either has the same length as I or length one greater. If there are two
pairs to append, the pair from the same side as the last pair in I is appended
first. Two query operations are also supported.

BLOCKSUM(t, s, j): among the first j blocks of I, return the sum of the
sizes of those blocks with first component s, i.e. BLOCKSUM(t, s, j) =∑{sizeh | sideh = s and 1 ≤ h ≤ j},

FINDBLOCK(t, s,m): return the minimum j with BLOCKSUM(t, s, j) ≥ m.

20 F. Ellen, V. Ramachandran, and P. Woelfel

Local variables:
v: a node in τ
s �= s′: elements of {L,R}
t, t′: pointers to nodes in Tv

j,m, h, k: nonnegative integers.

1 m← read(Ni) + 1
2 write Ni ← m
3 v ← process i’s leaf (in τ)
4 while v �= root(τ) do
5 if v = left(parent(v))
6 then s← L
7 s′ ← R
8 else s← R
9 s′ ← L
10 v ← parent(v)

%t is a pointer to the current root of Tv

11 t← ll(v.T)
%Check whether i’s instance of fi has reached v,
%i.e. C(v) contains at least m elements from side s

12 while read(t.Ns) < m do
%Compute the length h of C(left(v))

13 if left(v) is a leaf of τ
14 then h← read(Nj), where j is the index of this leaf
15 else t′ ← read(left(v).T)
16 h← read(t′.NL) + read(t′.NR)

%Compute the length k of C(right(v))
17 if right(v) is a leaf of τ
18 then k ← read(Nj), where j is the index of this leaf
19 else t′ ← read(right(v).T)
20 k ← read(t′.NL) + read(t′.NR)

%Compute a pointer t′ to an updated version T ′ of Tv

21 t′ ← APPEND(t, h− t.NL, k − t.NR)
%Try to update v.T to point to T ′

22 sc(v.T, t′)
23 t← ll(v.T)

end while
%Compute the position of i’s current instance in C(v)
%by finding the block j that contains the m’th element
%from side s and the sum of all previous blocks with side s′

24 j ← FINDBLOCK(t, s,m)
25 m← m+ BLOCKSUM(t, s′, j − 1)

end while
26 return m− 1

Fig. 1. Algorithm for fi performed by process i

Efficient Fetch-and-Increment 21

Initially, Ni = 0, for i = 1, . . . , p, and the sequences represented at every node
are empty. Pseudocode for fi appears in Figure 1.

A persistent augmented balanced binary tree [9,8], such as a red-black tree
or an AVL tree, is used to implement Tv. Each pair in the sequence I(v) is
represented by a node containing the side and the size of the pair. Nodes also
contain pointers to their left and right children and balance information. They do
not contain parent pointers. Each node u of Tv is augmented with the number of
nodes in its subtree, the sum u.NL of the sizes of the pairs in its subtree that have
side L, and the sum u.NR of the sizes of the pairs in its subtree that have side R.
In particular, if Tv is nonempty, then v.T is an ll/sc object that points to the
root of a tree in Tv representing the sequence I(v), root(Tv).NL stores NL(v),
and root(Tv).NR stores NR(v). Initially, v.T = nil and NL(v) = NR(v) = 0.

Processes do not change any information in nodes of Tv once they have been
added to the data structure. Instead, when performing APPEND, they create
new nodes containing the updated information. Thus, all of the ancestors of a
changed node must also be changed. Although APPEND changes Tv, it does not
affect I(v) until v.T is changed to the pointer it returns.

If t = nil, APPEND(t, x, y) creates a new tree containing (L, x), if x �= 0, and
(R, y), if y �= 0. If t �= nil, then APPEND(t, x, y) starts at the root in Tv pointed
to by t and follows the rightmost path of its tree, making a copy of each node it
encounters and pushing the copy onto a stack. If the side of the rightmost node
in the tree is L, then x is added to its size and, if y �= 0, the right child pointer
of this node is changed from NIL to a new leaf that contains the element (R, y).
Otherwise, y is added to its size and, if x �= 0, the right child pointer of this node
is changed from NIL to a new leaf that contains the element (L, x). Then, the
stack is popped to progress back up the tree. As each node is popped, its right
pointer is set to the root of the updated subtree. The information at the node,
including its balance, is updated and rotations are performed, if necessary. The
step complexity of APPEND is logarithmic in the number of nodes reachable
from the root pointed to by t.

To perform a query operation, it suffices to perform the query as one would in
the underlying augmented balanced binary tree, starting from a root. However,
since the tree reachable from this root never changes while it can be accessed,
there are no conflicts with update operations. Using an augmented, balanced
binary tree to represent each version of I(v) enables each query to be performed
in time logarithmic in the length of the version to which it is applied.

Theorem 1. A wait-free, linearizable, unbounded Fetch&Inc object shared by
p processes on which at most n fi operations are performed can be implemented
so that each fi takes O(log p logn) steps and each read takes O(1) steps.

Proof (sketch). An instance of fi is linearized when root(τ).T is first updated
during an APPEND (not necessarily performed by the same process) to point
to the root a tree that contains information about this instance. At each node
v of τ , the length of the sequence represented by any tree in Tv is at most n, so
each operation on Tv can be performed in O(log n) steps. Since the tree τ has
height Θ(log p) and a process performs only a constant number of operations at

22 F. Ellen, V. Ramachandran, and P. Woelfel

each node on the path from its leaf to the root during an instance of fi, each fi
operation takes O(log p logn) steps.

To read the value of the Fetch&Inc object, a process reads root(τ).T to
get a pointer to the current root of the tree representing I(root(τ)). The read
is linearized at this step. If t is NIL, then the Fetch&Inc object has its initial
value, 0. Otherwise, its value is the sum of the persistent values t.NL and t.NR,
which is the length of C(root(τ)) at the linearization point. This takes a constant
number of steps.

Initially, this implementation uses Θ(p) space. Each fi operation adds O(log n)
nodes to the data structure Tv, for each node v on the path from some leaf of τ to
its root. Since τ has height O(log p), the total space used by this implementation
to perform n operations is O(p+ n logn log p).

For a one-shot Fetch&Inc object, n ≤ p, so O(log2 p) steps are used to
perform each instance of fi and O(p log2 p) registers and ll/sc objects are used.

3 The Second Implementation

We now present a more efficient implementation, which is obtained by com-
pressing the tree in the data structure Tv that is pointed to by each node v of
τ . Specifically, if there are � = �(v) leaves in the subtree of τ rooted at v, we
show how to ensure that the number of nodes reachable from each root of Tv

is O(�2). This results in an implementation whose worst-case step complexity is
O(log2 p).

If C(v) = [c0, . . . , ck−1], we define Q(v) = {(j, cj) | j = 0, . . . , k − 1} to be
the set of all position-id pairs. We say that a position j is old at v if there exists
i ∈ P (v) and j′ > j such that (j, i), (j′, i) ∈ Q(v), i.e., some id i occurs at
position j in C(v), but this is not the last occurrence of i. A position is current
at v, if it is not old at v.

We take advantage of the fact that once a position becomes old at v, the
identifier at that position is no longer accessed by any process. Thus, the identi-
fiers at old positions can be permuted without affecting the outcome of pending
or future fi operations. For example, if I(v) contains three consecutive blocks
(L, x), (R, y), (L, z), which represent x + y + z old positions in C(v), then we
can replace these blocks with two blocks (L, x+z), (R, y). Because the permuted
sequence has fewer blocks, it can be represented by a tree with fewer nodes. An
algorithm to compress � consecutive positions of C(v) is presented in Section
3.1. It has O(log �) step complexity.

We add a deletion structure Δ(v) at v to facilitate the identification of se-
quences of � consecutive old positions to compress. It contains an array of 2�+1
status-units, which are described in Section 3.2. Each status-unit is associated
with � consecutive positions of the sequence C(v). A persistent balanced binary
search tree, Av, enables processes to find the status-unit associated with any
current position. When a position j becomes old, the process whose id is at
position j of C(v) records that fact in the status-unit associated with position
j. The status-unit is also used to determine when all of its associated positions

Efficient Fetch-and-Increment 23

are old. A fixed deletion tree, Dv, with 2�+1 leaves, described in Section 3.4, is
used to keep track of such status units.

After all the positions associated with a status-unit have been compressed,
the status-unit is recycled. This means that it is reinitialized and associated with
a new sequence of positions. This is described in Section 3.5.

To perform fi, a process proceeds up the tree τ , as in the first implementation,
starting from its leaf. Before propagating information up to a node v from its
children, process i finds the status-unit associated with the position j in C(v)
that contains the id i added to the sequence when i last performed fi. Then it
marks position j in that status-unit, to indicate that the position is old at v. If
there is a status-unit whose associated positions are all old, process i also tries
to compress these positions in the tree in Tv rooted at v.T and recycle the status
unit. The algorithm for performing fi is described in more detail in Section 3.6.

3.1 Compression

The idea of compression is as follows: Once all positions in C(v) that correspond
to a block (s, x), s ∈ {L,R}, of I(v) are marked, the entire block can be marked
by changing its side s to s′ ∈ {L′, R′}, i.e., by replacing (L, x) with (L′, x) or
(R, x) with (R′, x). A block (s′, x) with s ∈ {L′, R′} is called a marked block. Two
adjacent marked blocks (s′, y) and (s′, z) with the same side s′ can be replaced
by a single marked block (s′, y + z). A sequence of consecutive marked blocks,
(s′j , xj), (s

′
j+1, xj+1), . . . , (s

′
k, xk), containing at least one with side L′ and one

with side R′ can be replaced by two marked blocks (L′, y) and (R′, z), where
y =

∑{xi | j ≤ i ≤ k and s′i = L′} and z =
∑{xi | j ≤ i ≤ k and s′i = R′}.

This is equivalent to permuting the elements in the corresponding locations of
C(v).

Suppose t is a pointer into Tv indicating a version I of I(v) and suppose the
� consecutive positions m, . . . ,m+ � − 1 in a status-unit are all marked. These
positions in I are compressed by updating Tv as follows: We assume m > 0; the
special case m = 0 can be handled analogously. First, FINDBLOCK(t,m) and
FINDBLOCK(t,m+ �+1) are used to find the blocks (sj , xj) and (sk, xk) that
represent positions m− 1 and m+ �, respectively.

If j = k, then (sj , xj) is partitioned into three blocks, (sj , x
′
j), (s

′
j , �), and

(sj , x
′′
j), where x′

j is the number of positions less than m represented by (sj , xj)
and x′′

j is the number of positions greater than or equal to m + � represented
by (sj , xj). Note that block (s′j , �) is now marked, and all positions represented
by that block are old. Moreover, the number of blocks in I(v) and, hence, the
number of nodes in Tv increased by 2.

Now suppose that j �= k. If j < k− 1, then all of the positions represented by
blocks (si, xi), j < i < k, are marked. These blocks are removed from the tree
rooted at t.

If m is represented by block (sj , xj), then (sj , xj) is conceptually partitioned
into two blocks (sj , x

′
j) and (s′j , x

′′
j), where x′

j is the number of positions less
than m represented by (sj , xj) and x′′

j is the number of positions greater than
or equal to m represented by (sj , xj). The block (s′j , x

′′
j) is removed. This is

24 F. Ellen, V. Ramachandran, and P. Woelfel

accomplished by changing xj to x′
j . Similarly, if m+�−1 is represented by block

(sk, xk), then (sk, xk) is conceptually partitioned into two blocks (s′k, x
′
k) and

(sk, x
′′
k) where x

′
k is the number of values less than m+ � represented by (sk, xk)

and x′′
k is the number of values greater than or equal to m + �, represented by

(sk, xk). The block (s′k, x
′
k) is also removed.

If block (sj , xj) is marked and does not represent m, then it is removed and,
if it is immediately preceded by a marked block, that block is removed, too.
Similarly, if block (sk, xk) is marked and does not represent m+ �− 1, then it is
removed, together with the next block, if it exists and is also marked. Note that,
if there is a block immediately preceding or immediately following the removed
blocks, it is unmarked.

Let x be the sum of the sizes of all the removed blocks with side = L. This
can be computed in O(log �) steps directly from the tree rooted at t in Tv as the
blocks are removed, using the augmented information at each node.

Similarly, let y be the sum of the sizes of all removed blocks with side = R.
Finally, in place of the removed blocks, add the new marked block (L′, x), if
x > 0, and the new marked block (R′, y), if y > 0. This maintains the invariant
that there is at least one unmarked block between any two marked blocks with
the same side. Since I(v) contains O(�2) unmarked blocks, I(v) contains O(�2)
blocks in total. Hence, the tree in Tv that represents I(v) has O(�2) nodes.

3.2 Status-Units

The deletion structure Δ(v) contains a collection of 2� + 1 status-units, Sv[j],
for 1 ≤ j ≤ 2�+ 1. A status-unit has three parts: a name, a flag, and a progress
tree. A name is a non-negative integer that can increase during an execution.
When its name is g, the status-unit is associated with the � consecutive positions
�g, . . . , �g+ �−1. Initially, status-unit Sv[j] has name j−1, for j = 1, . . . , 2�+1.

An ll/sc object can be used to store the name of a status unit. However, the
name of a status unit grows each time it is recycled. To avoid using large ll/sc
objects, we represent the name of a status unit using an ll/sc object namer,
which stores a process identifier in P (v), and an array, names, of � single-writer
registers, indexed by P (v). At any time, the name of the status unit is the value
of names[namer].

The flag is a single-bit ll/sc object. It is initially 0 and it is reset to 0 whenever
the status-unit changes its name. After all of its associated positions have been
marked, its flag is changed from 0 to 1. This indicates that these positions can be
compressed. After that has been done, the status-unit can be reused.

The progress tree is a fixed full binary tree on � leaves, represented implicitly
by an array progress[1..2�− 1] of �− 1 single-bit ll/sc objects and � single-bit
registers. It enables processes to determine when all the positions, �g, . . . , �g +
�− 1, represented by a status-unit with name g are old at v. Progress trees were
introduced for processes to keep track of their collective progress performing a
collection of tasks [4,7].

When a status-unit is reused, its progress tree also needs to be reused. Because
it has 2�− 1 fields, it would take too much time to reinitialize all of them to 0.

Efficient Fetch-and-Increment 25

Thus, we need an implementation of a progress tree that can be reused without
being reinitialized. This is discussed in Section 3.3.

Each node of the tree Av stores the name of one status-unit. The index of the
status-unit with that name is stored as auxiliary data. Processes make updates
to Av similarly to the way they make updates to Tv. Initially, Av stores the
initial names of all 2�+ 1 status-units (i.e., name j − 1 and auxiliary data j for
status-unit j, 1 ≤ j ≤ 2�+ 1).

2�+ 1

Dv

0

0

1
1

1

1

progress names namer flag

1 0 0 1 0 0 9 0 2 0
0 0 0 1 1 1 0 0 1 0
1 1 1 1 1 2 12 0 2 1
0 0 0 0 0 13 13 13 1 0
0 0 0 0 0 4 0 0 1 1
0 0 0 0 0 17 17 16 2 1
1 1 0 1 1 18 17 18 1 0

2�− 1

Av

1 2 9 1 13 4 18 7

4 5 17 6

12 3

�

Fig. 2. An example of a deletion structure Δ(v) for � = 3

Figure 2 presents an example of a deletion structure for a node v of τ with
� = 3 leaves in its subtree. The j’th row in the table represents the status-unit
Sv[j], for j = 1, . . . , 7 = 2� + 1. Its name is indicated in bold. The tree on the
left is Av and the tree on the right is Dv.

3.3 Reusable Progress Trees

A reusable progress tree is represented implicitly using an array of length 2�− 1
(as in a binary heap). We will use leaf(m) to denote the location of the m’th leaf
in this array and use parent(u), left(u), and right(u) to represent the locations
of the parent, left child, and right child, respectively, of node u.

Each node of the progress tree stores a single bit. When the flag of a status-
unit is 1, all bits of its progress tree are the same. Before any nodes in the
progress tree are changed, the flag is reset to 0. Only the process that received
position g� +m − 1 can change the value of leaf(m) in the progress tree of the
status-unit with name g. Say it changes this bit from 1− b to b. After doing so,
the process progresses up the tree, setting the bit at each ancestor of leaf(m) to
b, if the bits at both of the children of that ancestor are b. Thus, an internal
node of the tree is changed only after all of the leaves in its subtree have been
changed. When the bit at the root of the progress tree changes to b, all of the
bits in the tree are b and the flag can be changed from 0 to 1. After that, the
flag is not reset to 0 again until namer is changed.

A process that is progressing up the tree, but falls asleep for a long time,
should not change bits in the progress tree of a status-unit that has since
changed its name. To ensure this, each bit corresponding to a non-leaf node
of the progress tree is an ll/sc object. Before changing its leaf, the process
performs ll(namer). To change the bit at an internal node u to b, the process

26 F. Ellen, V. Ramachandran, and P. Woelfel

performs ll(u) followed by vl(namer) and only performs sc(u, b) and continues
to parent(u) if the validation indicates that namer has not been updated. If
the validation is unsuccessful, the process is done, since the bit at the root has
already been changed to b. After a process changes the bit at the root of the
progress tree to b, it performs ll(flag) and vl(namer) to verify that flag has
value 0 and namer has not changed. If successful, it then performs sc(flag, 1)
to change flag to 1.

Pseudocode is presented on lines 1–10 of Figure 3.

1 u← leaf(m)
2 b← ¬Sv [j].progress[u]
3 ll(Sv [j].namer)

%Change the mark at leaf(m)
4 Sv[j].progress[u]← b
5 while u �= root do
6 if Sv[j].progress[sibling(u)] = ¬b then return
7 u← parent(u)
8 ll(Sv[j].progress[u])
9 if ¬ vl(Sv[j].namer) then return
10 sc(Sv[j].progress[u], b)

end while
11 ll(Sv [j].flag)
12 if ¬ vl(Sv[j].namer) then return
13 if ¬ sc(Sv [j].flag, 1) then return
14 u← j’th leaf of Dv

15 while u �= root do
16 u← parent(u)
17 ll(Dv [u])
18 if ¬ vl(Sv[j].namer) then return
19 if sc(Dv [u], 1) = false
20 then if ll(Dv [u]) = 0
21 then if ¬ vl(Sv[j].namer) then return
22 sc(Dv[u], 1)

end while
23 return

Fig. 3. Algorithm to mark position �n′ +m− 1 in status-unit Sv[j] with name n′ and
add j to Dv , if necessary

3.4 Deletion Tree Dv

The deletion tree Dv is used to represent the marked status-units, i.e. whose
flags are set. Hence, the positions associated with these status-units can be com-
pressed. This data structure allows a process to efficiently find such a status-unit.
It can also be updated efficiently. It is a fixed full binary tree whose leaves are
Sv[1].f lag, . . . , Sv[2� + 1].f lag. Each non-leaf node is a single-bit ll/sc object,
which is initially 0.

When a process changes the flag of the status unit Sv[j] from 0 to 1, it adds j
to the set by walking up the tree Dv starting from the parent of this leaf, trying

Efficient Fetch-and-Increment 27

to set every ll/sc object it visits on this path to 1. Because the process may
be slow or may fall asleep for a long time, status-unit Sv[j] may be reallocated
before the process reaches the root ofDv. To prevent this from causing problems,
the process proceeds as in a reusable progress tree: For each node u that the
process visits on the path it first executes ll(Dv[u]), then vl(Sv[j].namer) and
finally performs sc(Dv[u], 1) if and only if the validation of Sv[j].namer was
successful. If the validation was successful, but the sc fails and Dv[u] is still
0 after the unsuccessful sc, the process repeats the ll and vl a second time
and, if the validation is now successful, it also performs sc a second time. If the
validations are successful, the process proceeds to parent(u). If any validation is
unsuccessful, Sv[j] has already been recycled and the process does not continue.
Pseudocode appears on lines 11–23 of Figure 3.

While a status-unit Sv[j] is being recycled, its flag gets reset to 0, and j has
to be removed from Dv. To do so, a process proceeds up the tree Dv on the
path from the i’th leaf to the root, trying to reset the bit at each node to 0
until it finds a node which has a child with value 1, indicating the presence
of a leaf with value 1 in its subtree. Specifically, at the non-leaf node u, the
process performs ll(Dv[u]) and, if 0 is returned, it proceeds to parent(u) (or is
done, if u is the root). If u was 1, then the process performs ll(Dv[left(u)]) and
ll(Dv[right(u)]). If at least one of the ll operations returns 1, the process is
done. Otherwise, it performs vl(v). If the validation is unsuccessful, the process
is done. Otherwise, it performs sc(Dv[u], 0). If Dv[u] is still 1 after the sc, the
process repeats the ll’s follows by a vl a second time and, if no child of u has
value 1 and the validation is successful, the process also performs sc a second
time. If u is 0 after either of these sc’s, the process continues to parent(u) (or
is done, if u is the root). If not, some other process adding some value j into Dv

performed ll(Dv[u]) and sc(Dv[u], 1) between the first process’s first ll(Dv[u])
and its last sc(Dv[u], 0). In this case, Sv[j].f lag is a leaf of node u and had value
1 between the ll and sc, and the first process can stop.

More generally, the following invariants will be maintained:

— if a non-leaf node u of Dv is 0, then either there are no leaves with value 1
in the subtree of Dv rooted at u or there is some leaf in its subtree that has
value 1 and the process that last changed this leaf to 1 is at or below node
u, and

— if a non-leaf node u of Dv is 1, then there is a leaf in the subtree of Dv rooted
at u that either has value 1 or is being recycled by some process that is at
or below node u.

Note that multiple status-units can be added to Dv concurrently, but only one
status unit is removed from Dv at a time.

To find a marked status-unit (i.e., one whose flag is set), a process walks down
the tree from the root to a leaf, at each node reading the values of its children,
and proceeding to a child whose value is 1, if such a child exists. If the process
reaches a leaf j with value 1, this means that Sv[j].flag is set. It may happen
that the process gets stuck at a node whose children both have value 0, in which
case the process aborts its attempt to find a marked status-unit.

28 F. Ellen, V. Ramachandran, and P. Woelfel

3.5 Recycling

Status units are recycled one at a time. The node v has a field v.E that indicates
which status unit is to be recycled next. When a process recycles a status unit
Sv[j], it first tries to change its name. Process i begins by writing a proposed
new name into the single-writer register Sv[j].names[i]. Then it tries to change
Sv[j].namer to i by performing ll(Sv[j].namer) followed by sc(Sv[j].namer, i).
If the sc is successful, this changes the name of Sv[j] to the name it proposed.
To prevent a slow process from accidentally changing the name of a status-unit
that has already been recycled, process i performs a vl at v between the ll and
the sc. If the validation is unsuccessful, then the recycling of status-unit Sv[j]
has already been completed and process i does not continue trying to recycle it.

Next, process i tries to change Sv[j].f lag from 1 to 0 by executing
ll(Sv[j].f lag) and, if that returns 1, performing sc(Sv[j].f lag, 0). Again, process
i performs a vl at v between each ll and matching sc to see whether Sv[j] has
finished being recycling and, if so, does not continue to try to recycle it. Then
process i removes j from the set represented by Dv, as described in Section 3.4.

3.6 Overall Algorithm

Instead of the ll/sc object v.T , as in the first implementation, we now have
an ll/sc object with three fields, v.T , v.A, and v.E. To avoid having an ll/sc
object with multiple fields, we could use indirection and, instead, have the ll/sc
object contain a pointer to a record with three registers.

The first two fields contain (pointers to) the trees of Tv and Av, rooted at
v.T and v.A, respectively. The last field contains an element e of {0, . . . , 2�+1}.
When e �= 0, Sv[e] is a status unit that is ready to be recycled, i.e. it has been
marked, the positions associated with its current name have been compressed,
and there is no node in Av whose key is this name.

The algorithm to perform fi is a modification of the algorithm in Figure 1.
Lines 11 and 23 are replaced by (t, a, e)←ll(v.T, v.A, v.E). Since Tv and Av are
persistent data structures, the trees rooted at t and a do not change during an
iteration of the while loop beginning on line 12.

Before the body of this loop is performed, process i finds the largest name n′′

stored in the tree rooted at a. If process i has previously performed an instance
of fi, it determines the name of the status-unit that is associated with the last
position m′ of i in C(v). Then it searches in the binary search tree rooted at
a for the key with this name. Since position m′ is not yet marked, it can be
shown that a node having this name will be found. Let j′ be the index of the
status-unit, which is also stored in this node. Process i marks m′ as old in Sv[j

′]
and propagates this change up the progress tree, as described in Section 3.3.

If e �= 0, then process i tries to recycle the status-unit Sv[e] by updating its
name to n′′ + 1, changing Sv[e].f lag from 1 to 0, and deleting e from the set
represented by Dv, as described in Section 3.5.

Next, process i tries to find a status-unit whose flag is 1, using the deletion
treeDv as described in Section 3.4. If it finds such a status unit e′, then process i
compresses the positions associated with the status-unit Sv[e

′] in the tree rooted

Efficient Fetch-and-Increment 29

at t, as described in Section 3.1, and uses the root of the resulting tree in place
of t in line 21. Otherwise, e′ = 0.

If e′ = e = 0, let a′ = a. Otherwise, process i creates a new tree in Av starting
from the tree with root a by adding a node with key n′′+1 and auxiliary data e
(if e �= 0) and removing the node with key Sv[e

′].names[Sv[e
′].namer] (if e′ �= 0).

Let a′ denote the root of this tree.
Finally, line 22 in Figure 1 is replaced with sc((v.T, v.A, v.E), (t′, a′, e′)), where

t′ is the result computed on line 21. Note that unless this sc is successful, process
imakes no modifications to the trees of Tv and Av, rooted at v.T and v.A, respec-
tively. However, the changes made by each process to status-units and Dv occur
asynchronously before it attempts this sc at the end of the iteration.

At any point in time, at most 2� of the positions in {0, . . . , |C(v)| − 1} are not
marked: the current position for each process and possibly its previous position.
Since each status-unit is associated with � positions, there are O(�2) positions
represented in the uncompressed portion of the tree in Tv rooted at v.T . It
follows that this tree has O(�2) nodes. We now state our main theorem.

Theorem 2. A wait-free, linearizable, unbounded Fetch&Inc object shared by
p processes can be implemented so that each Fetch&Inc takes O(log2 p) steps
and each READ takes O(1) steps, regardless of the number of Fetch&Inc op-
erations performed. Assuming garbage collection is performed, the number of
registers and LL/SC objects needed is O(p2).

Proof (sketch). The linearization points of fi and read are the same as in the
proof of Theorem 1. Suppose v is a node of τ with � ≤ p leaves in its subtree.
Since O(�) and O(�2) nodes are reachable from any root of a tree in Av and
Tv, respectively, searches and updates in these persistent data structures take
O(log p) steps. Likewise, Dv and the progress trees are fixed balanced trees with
2�+1 and � leaves, respectively, so operations on them also take O(log p) steps.
Since τ has height O(log p), it follows that fi has O(log2 p) step complexity. As
in the first implementation, read can be performed in a constant number of
steps.

Excluding Av, O(�2) registers and ll/sc objects are used to represent Δ(v).
There are O(�2) nodes, each consisting of a constant number of objects, reachable
from the roots of Av and Tv. Summing over all internal nodes v of τ gives a total

of O
(∑�log2 p�−1

j=0 2j(2�log2 p�−j)2
)
= O(p2) objects.

Although only a bounded number of nodes in Av and Tv are reachable from
v.A and v.T , the total number of nodes in these persistent data structures grows
with n. However, full persistence is not needed by our implementation: When a
node is no longer reachable from v or the local pointer of any process, it can be
removed to save space, since it will not be accessed from then on. At any point
in time, each process has a constant number of local pointers into persistent
structures and O(p2) nodes are reachable from each of them. Thus, the total
number of registers and ll/sc objects used by our implementation is O(p3),
assuming garbage collection is performed.

30 F. Ellen, V. Ramachandran, and P. Woelfel

4 Extensions

Our implementations of Fetch&Inc can be extended to Fetch&Add by hav-
ing each element of the sequence C(v) contain the input to each instance of fa,
together with the identifier of the process that performed the instance. Likewise,
each block of I(v) can be augmented with the sum of the inputs to all instances
occurring in or before this block and that are from the same side. Details of this
algorithm and a proof of its correctness will appear in the full version of the
paper. Ways to remove nodes from Av and Tv that are no longer reachable will
also be addressed.

References

1. Afek, Y., Dauber, D., Touitou, D.: Wait-free made fast. In: Proc. of 27th ACM
STOC, pp. 538–547 (1995)

2. Afek, Y., Weisberger, E., Weisman, H.: A completeness theorem for a class of
synchronization objects. In: Proc. of 12th PODC, pp. 159–170 (1993)

3. Alistarh, D., Aspnes, J., Censor-Hillel, K., Gilbert, S., Zadimoghaddam, M.:
Optimal-time adaptive strong renaming, with applications to counting. In: Proc.
of 30th PODC, pp. 239–248 (2011)

4. Anderson, R.J., Woll, H.: Algorithms for the certified write-all problem. SIAM J.
Comput. 26(5), 1277–1283 (1997)

5. Anderson, T.: The performance of spin lock alternatives for shared-money multi-
processors. IEEE Trans. Parallel Distrib. Syst. 1(1), 6–16 (1990)

6. Aspnes, J., Herlihy, M., Shavit, N.: Counting networks. J. of the ACM 41(5), 1020–
1048 (1994)

7. Buss, J.F., Kanellakis, P.C., Ragde, P., Shvartsman, A.A.: Parallel algorithms with
processor failures and delays. J. Algorithms 20(1), 45–86 (1996)

8. Clements, A.T., Kaashoek, M.F., Zeldovich, N.: Scalable address spaces using RCU
balanced trees. In: 17th ASPLOS, pp. 199–210 (2012)

9. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press (2001)

10. Freudenthal, E., Gottlieb, A.: Process coordination with fetch-and-increment. In:
Proc. of ASPLOS-IV, pp. 260–268 (1991)

11. Goodman, J., Vernon, M., Woest, P.: Efficent synchronization primitives for large-
scale cache-coherent multiprocessors. In: Proc. of ASPLOS-III, pp. 64–75 (1989)

12. Gottlieb, A., Lubachevsky, B., Rudolph, L.: Basic techniques for the efficient coor-
dination of very large numbers of cooperating sequential processors. ACM Trans.
Program. Lang. Syst. 5(2), 164–189 (1983)

13. Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1),
124–149 (1991)

14. Herlihy, M.: A methodology for implementing highly concurrent objects. ACM
Trans. Program. Lang. Syst. 15(5), 745–770 (1993)

15. Herlihy, M., Shavit, N., Waarts, O.: Linearizable counting networks. Distr.
Comp. 9(4), 193–203 (1996)

16. Jayanti, P.: A time complexity lower bound for randomized implementations of
some shared objects. In: Proc. of 17th PODC, pp. 201–210 (1998)

17. Jayanti, P., Tan, K., Toueg, S.: Time and space lower bounds for nonblocking
implementations. SIAM J. Comput. 30(2), 438–456 (2000)

	Efficient Fetch-and-Increment
	Introduction
	The First Implementation
	The Second Implementation
	Compression
	Status-Units
	Reusable Progress Trees
	Deletion Tree Dv
	Recycling
	Overall Algorithm

	Extensions
	References

