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Abstract

This paper presents algorithms and lower bounds for several fundamental problems on the
Exclusive Read, Concurrent Write Parallel Random Access Machine (ERCW PRAM) and some
results for unbounded fan-in, bounded fan-out (or ‘BFO’) circuits. Our results for these two models
are of importance because of the close relationship of the ERCW model to the OCPC model, a
model of parallel computing based on dynamically reconfigurable optical networks, and of BFO
circuits to the OCPC model with limited dynamic reconfiguration ability.

Topics: Parallel Algorithms, Theory of Parallel and Distributed Computing.

1 Introduction

In this paper we develop algorithms and lower bounds for fundamental problems on the Exclusive-
Read Concurrent-Write (ERCW) Parallel Random-Access Machine (PRAM) model. The ERCW
PRAM model has not received much attention, due in part to a general belief that concurrent
writing does not add much power to a model without concurrent reading. We show that this is not
always the case by presenting algorithms that solve problems on the ERCW PRAM much faster
than they could be solved on the EREW PRAM. (See [41] for more details on the different PRAM

models.)

We further motivate the ERCW PRAM by its relation to massively parallel computers with
dynamically-reconfigurable optical networks. Specifically, we show that the ERCW PRAM (using
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the “Tolerant’ protocol for resolving write conflicts) with n global memory cells and unlimited local
memory is computationally equivalent to the OCPC (Optical Communication Parallel Computer)
model [3, 28, 29, 31, 50] on n processors. (This is in contrast to the statement given in [3] that the
OCPC model is equivalent to an EREW PRAM with n global memory cells.) In previous work,
it was shown that the EREW PRAM could be simulated on the OCPC with some overhead per
step [44, 18]. This overhead was a result of trying to simulate accesses to an arbitrary number
of memory cells. We achieve better simulation results (and in fact, computational equivalence
of models) by limiting the number of memory cells of the ERCW PRAM. The following example
illustrates the benefit of our approach. Computing the global OR of n bits using the approach in [44]
would require simulating the ©(logn) step EREW PRAM algorithm using an expected overhead
of O(loglogn) time per step, resulting in a total expected time of ©(lognloglogn). However, in
our direct approach, we simulate the constant time ERCW PRAM algorithm for global OR with
only constant overhead, resulting in a constant time algorithm. (Note that since there is no ‘queue’
delay in optical communication networks, the ERCW PRAM is a better model for parallel machines
with such networks than the recently proposed QRQW (or ERQW) model [30].)

Many results for the ERCW PRAM follow directly from results for the EREW PRAM or CRCW
PRAM. For instance, the global OR of n bits can be found in constant time on an n processor
ERCW PRAM, as on a CRCW PRAM, but broadcasting 1 bit to n processors requires ©(logn)
steps, as on an EREW PRAM. The result for broadcasting implies that computing the prefix sums
of n inputs and merging two lists of size n both require G(logn) time also. However, some results
obtained directly from EREW PRAM and CRCW PRAM results do not give tight bounds. For
instance, the problem of computing the parity of n bits on the ERCW PRAM has a lower bound of
Q(log n/loglogn) from the result for the CRCW PRAM, and an upper bound of O(logn) from the
EREW PRAM. Tight bounds are not known for the ERCW PRAM. Furthermore, tight bounds
are not known for many other problems, including the problems of compaction and finding the
maximum. In this paper, however, we make significant progress towards developing tighter bounds
for these and other problems.

Here is a summary of our results for the ERCW PRAM. Many of these results depend on the
write collision resolution protocol used, which we ignore here; these results are stated more precisely
in the sections that follow. In the following, n is the size of the input, and all algorithms perform
linear work except as noted. We present a k-compaction algorithm that runs in O(loglogn + log k)
time; a randomized algorithm for k-compaction that runs in O(logk) expected time; a randomized
algorithm for approximate k-compaction that runs in O(loglog k) time, with failure probability 1/k;
an algorithm for finding the maximum of inputs in the range [1, n] that runs in O(loglogn) time; an
algorithm for chaining that runs in O(loglog n) time; an algorithm for integer chain-sorting (linear-
size integers) that runs in O(loglogn) time; and an algorithm for integer sorting (polynomial-size
integers) that runs in O(logn) using almost linear work.

We present two lower bounds results for the ERCW PRAM: a lower bound of Q(+/loglog n)
time for solving compaction, and a lower bound of (v/logn) for finding the maximum of general
inputs. (The former result, along with a similar result for the OCPC discovered independently
by Goldberg and Jerrum, led to the Q(y/loglogn) lower bound on h-relation routing in Goldberg,
Jerrum and MacKenzie [32].)

Finally, we consider unbounded fan-in, bounded fan-out (BFO) circuits. The computations on
such circuits can be mapped optimally onto an ERCW PRAM as oblivious algorithms. This could
be important if the ERCW PRAM is implemented using an optical network that has only limited



reconfiguration abilities. In an oblivious algorithm the communication patterns are fixed before the
algorithm is run. Thus, each processor may have only a small set of other processors with which
it needs to communicate, and this set is fixed before the algorithm is run. By designing oblivious
algorithms, we may avoid some of the costs of reconfiguration.

We show that any BFO circuit for adding two n-bit integers, merging a bit into an n bit sorted
sequence, sorting n bits, or computing the prefix sums or parity of n bits requires Q(logn) depth.
Let THy, , denote the threshold function which outputs 1 if and only if at least £ of the inputs
are equal to 1. We show that T'Hj, ,, can be computed by a linear size, O(loglogn + log k) depth
circuit, and that any BFO circuit which computes T'Hy, ,, requires Q(loglogn + log k) depth.

The current interest in the OCPC model, the close relation between the OCPC model and the
ERCW PRAM model, and the richness of results obtained so far on the OCPC, the ERCW PRAM,

and the BFO circuit model, all indicate that these are important models of parallel computation

which should be studied further.

The rest of this paper is organized as follows. In Section 2, we define the ERCW PRAM and
discuss different write conflict protocols. Section 3, we describe the relationship of the ERCW
PRAM to the OCPC model. Section 4 gives lower and upper bounds for compaction problems,
and Section 5 gives lower and upper bounds for computing the maximum. In Section 6, we give
algorithms for chaining and integer sorting. Section 7 gives lower and upper bounds for computing
certain functions on unbounded fan-in, bounded fan-out circuits. Finally, in Section 8 we give

relations between the different ERCW PRAM models.

2 Preliminaries

An Exclusive Read, Concurrent Write (ERCW) PRAM consists of a collection of processors, each
with infinite local memory, which operate synchronously and communicate through a global mem-
ory. FEach read or write to global memory takes one time step. Only one processor can read from
any memory cell at any time step, but multiple processors may write to a memory cell in a sin-
gle time step. Write conflicts are handled according to one of the following collision resolution
protocols:

Priority The lowest numbered processor succeeds and writes its value to the cell;
Arbitrary An arbitrary processor succeeds and writes its value to the cell;
Common All processors must be writing the same value, which is written to the cell;
Collision A special collision symbol is written to the cell;

Tolerant The cell remains unchanged.

Nice Robust Either the cell remains unchanged, or an arbitrary processor succeeds and writes
its value to the cell.

Robust An arbitrary value is written to the cell.

(Since the standard OCPC model uses the Tolerant protocol, we will be most concerned with
developing ERCW PRAM algorithms using the Tolerant protocol. We define the OCPC model in
Section 3.)



The ERCW(ack) PRAM is an ERCW PRAM with the added feature that a processor which
successfully writes to a cell receives an acknowledgement. To retain the spirit of the Common model,
we assume no processor receives an acknowledgement in the Common model. To retain the spirit
of the Robust model, we assume that false “successful” writes could cause bogus acknowledgements
to be sent.

Often we would like to separate the issues of using the global memory as storage for inputs
and outputs, and using the global memory for communication. In these cases, we will assume that
inputs and outputs are spread evenly among the local memories of the processors. For instance,
given p processors and n inputs, we will assume each processor contains n/p inputs in its local
memory. With this assumption, we will be free to design algorithms which use less than n cells of
global memory.

In our algorithms we do not require that all processors learn the output of an algorithm, for
this would force a trivial Q2(logn) time lower bound on all our algorithms.

Lemma 2.1 An n processor ERCW(ack) PRAM with m global memory cells can be simulated on
a max{n, m} processor ERCW PRAM with 2m+n global memory cells with the same write conflict
protocol (except Robust).

Proof: On the Common model, the ERCW(ack) PRAM and ERCW PRAM are the same, so
the simulation is trivial. Otherwise, let Ey be the ERCW (ack) PRAM and let Ey be the ERCW
PRAM. The first m cells of Fy will correspond to the m cells of Fy, the second m cells of Fy will
be used for finding the processor that succeeds in writing to the corresponding cell of Fy, and the
last n cells will be used for writing acknowledgements to the successfully writing processors. We
simulate a read of cell j by processor ¢ of 'y, by having processor ¢ read cell j of F5. We simulate
a write step as follows. First, every processor j (0 < j < m — 1) writes n to cell m + j, and then
every processor ¢ (0 < ¢ < n — 1) writes 0 to cell 2m + ¢. For any processor ¢ of F; that writes
some value v; to any cell ¢;, processor 7 of Ey writes ¢ to cell m+ ¢;. Then processor j (1 < j < m)
reads cell m + j, and if the value read, say v, is not n or “collision”, processor j writes 1 to cell
2m 4+ v. Now, for each processor 7 of Fy writing to some cell ¢;, processor ¢ of Fs reads cell 2m + 4.
If it reads a 1, then it writes v; to cell ¢; (with no contention). Note that we require 3 to have the
same write conflict protocol as Fy, so that the processor that succeeds in writing to cell m 4 j in
FE5 (for some j) is the same as the processor that succeeds in writing to cell j in £;. (Note: The
simulation for the Collision model is slightly different. We omit the details.) O

The following lemma will be useful in designing Robust ERCW PRAM algorithms.

Lemma 2.2 An n processor Nice Robust ERCW(ack) PRAM with m global memory cells can be
stmulated on a max{n, m} processor Robust FRCW PRAM with m(n + 2) global memory cells.

Proof: Let E; be the ERCW (ack) PRAM and let 5 be the ERCW PRAM. For each cell of Ff,
we associate 1 extra cell to test for the processor which is successful, and n extra cells to be used for
writing acknowledgements. We simulate a read of cell j by processor ¢ of Fy, by having processor
i read cell j of Ey. We simulate a write step as follows. First, every processor j (0 < j < m — 1)
writes n to cell m 4+ 7. Then for any processor ¢ of F; that writes some value v; to any cell ¢;,
processor ¢ of Fy writes ¢ to cell m + ¢;, and writes 0 to cell m(2 4+ 7) + ¢;. Then processor j
(1 <j < m) reads cell m + j, and if the value read, say v, is such that 0 < v < n — 1, processor j



writes 1 to cell m(2+v)+ j. Now, for each processor ¢ of E; writing to some cell ¢;, processor 7 of
FEy reads cell m(2+14) 4 ¢;. If it reads a 1, then it writes v; to cell ¢; (with no contention). O

3 Optical Communication and ERCW PRAMS

Here we describe the technology for optical communication, the OCPC model which is derived from
this technology, and its relation to the ERCW PRAM.

3.1 Optical Communication Technology

There are two basic types of optical interconnection networks, fiber optic networks, and free-space
optic networks. Research on routing in general fiber optic networks can be found in [1]. In this
paper, however, we are only concerned with a specific type of fiber optic network, namely the
Passive optical star coupler network [6, 7, 20, 35], which allows unit time communication between
any pairs of processors. In this network all processors are connected via optical fibers to a passive
optical star coupler, which broadcasts messages sent from one processor to all other processors.
To allow more flexible communication, time division multiplexing (TDM) or wavelength division
multiplexing (WDM) is used. For unit time communication, we must use WDM. For dynamic
reconfiguration ability, we must have tunable transmitters and/or receivers. Currently, tunable
transmitters and receivers are too slow to be practical.

The other type of optical interconnection network is a free-space optic network. In this network,
we do not use wires, but instead use the directional property of light to send messages to the correct
destination. Free-space optics has the potential to reduce space requirements and to alleviate many
topological difficulties associated with more conventional routing. There are two types of free-space
optic networks which achieve unit time communication, the beam spreading/masking network, and
the beam steering network. The beam spreading/masking network [39, 48] (also called the crossbar
or matrix multiplication network) uses an n X n array of switching elements with each row assigned
to a transmitting processor and each column assigned to a receiving processor. A transmitting
processor spreads its light encoded message out to the row of optical switches, and those switches
either block the message or send it on to the designated receiving processor. This network has
the disadvantages of having n? switches, 1/n total power transfer, and slow switching time. A
beam steering network can either be made up of reconfigurable holograms [33, 5] or acousto-optic
deflectors [39]. The typical reconfigurable hologram method assumes the processors are sitting
on a board, and there is some holographic material above the board. To transmit a message, a
reflecting hologram is written into the holographic substrate and the processor transmits a light
encoded message to that hologram, which then steers it to the correct receiving processor. In the
acousto-optic deflector method, it is assumed that each processor is connected to a two-dimensional
deflector which can be programmed to steer a light encoded message to any other processor. In
terms of speed of reconfiguration, the acousto-optic deflector seems to be the fastest, although it
is still not as fast as an electronic switch.



3.2 OCPC model

One abstraction of the beam steering model (which could also be considered an abstraction of the
passive optical star coupler with tunable transmitters) was first considered by Anderson and Miller
[3], and has since been studied in [18, 22, 28, 29, 31, 32, 44, 50]. Various names for this model have
been proposed, including Local Memory PRAM, S*PRAM, OMC, OCP, and OCPC. We will use
the term OCPC, denoting Optical Communication Parallel Computer.

An OCPC consists of a collection of processors, each with infinite local memory, which operate
synchronously and communicate by transmitting messages to each other. At any step, a processor
can transmit at most one message to another processor. The message will succeed in reaching
the processor if it is the only message being sent to that processor at that step. Concurrent
transmissions to the same processor will be handled according to one of the following standard
collision resolution protocols: Priority, Arbitrary, Common, Collision, Tolerant and Robust [38].
(Note that the standard OCPC model uses the Tolerant protocol.)

The OCPC(ack) is an OCPC with the added feature that a processor which successfully trans-
mits a message to another processor receives an acknowledgement as in the ERCW (ack) PRAM
(see Section 2).

In Anderson and Miller [3] it is stated that an n processor OCPC is equivalent to an n processor
EREW PRAM with n global memory locations. However this result is incorrect and we show in
this section that an n processor OCPC is equivalent to an n processor Tolerant FRCW PRAM
with n global memory locations. We also show additional relationships between OCPC and ERCW
PRAM models, with and without acknowledgements.

Note that our simulations are not at all like those in [44, 18]. Our simulations are simple,
straightforward and efficient, causing only constant slowdown.

Lemma 3.1 A step of an n processor OCPC can be simulated in constant time on an n processor
ERCW PRAM with n global memory cells with the same write conflict protocol.

Proof: One step of the OCPC is simulated by a write and a read on the ERCW PRAM. We
simulate an attempted transmission from processor ¢ to processor j on the OCPC by processor @
writing to cell 7 and processor j reading cell j. Since the write conflict resolution protocols are the
same, processor j receives the same value on the ERCW PRAM as on the OCPC. O

Note that in the next proof, the simulation of an ERCW PRAM on an OCPC requires that
the OCPC has at least as many processors as the ERCW PRAM has global memory cells. This
is not necessarily bad, since only global memory cells are counted, and for many ERCW PRAM
algorithms, only O(n) global memory cells are required.

Lemma 3.2 A step of an n processor ERCW PRAM with m global memory cells can be simulated
in constant time on a max{n, m} processor OCPC with the same write conflict protocol.

Proof: Assign each processor of the OCPC to a memory cell and assign the first n processors also
to the n processors of the ERCW PRAM. We simulate a write from processor ¢ to cell j on the
ERCW PRAM by processor i transmitting to processor j. Because the write conflict resolution
protocols are the same, processor j receives the same value on the OCPC as is written to cell 7 on



the ERCW PRAM. Processor j stores the value transmitted to it. We simulate processor ¢ reading
cell jin the ERCW PRAM by processor ¢ transmitting a read request to processor j and processor
J transmitting the value stored there to processor ¢. Note that there can never be any transmission
conflicts when simulating the read step. O

Lemma 3.3 A step of an n processor OCPC(ack) can be simulated in constant time on an n
processor OCPC with the same write conflict protocol (except Robust).

Proof: On the Common model, the OCPC and the OCPC(ack) models are equivalent, since no
processor ever “succeeds” in a write. On the other models we simulate a transmission of a message
M from processor ¢ to processor j by the following procedure. Processor ¢ first transmits ¢ to
processor j. If processor j receives a value v, then it transmits an acknowledgement to processor
v. If processor i receives an acknowledgement, then it transmits M to processor j. This will be
guaranteed to succeed without collision. O

Lemma 3.4 A step of an n processor ERCW(ack) PRAM with m global memory cells can be
simulated in constant time on an on a max{n, m} processor OCPC with the same write conflict
protocol (except Robust).

Proof: By Lemma 3.3, it suffices to prove the theorem for the OCPC(ack) model. Assign each
processor of the OCPC(ack) to a memory cell and assign the first n processors also to the n
processors of the ERCW(ack) PRAM. A write step of the ERCW(ack) PRAM is simulated by
a transmission step of the OCPC(ack). We simulate a write from processor i to cell j on the
ERCW (ack) PRAM by processor ¢ attempting a transmission to processor j. If processor 7 is
successful in writing to the cell, then it will receive an acknowledgement. Because the OCPC(ack)
is using the same write conflict resolution protocol, processor ¢’s transmission will succeed and
processor ¢ will receive an acknowledgement. Processor j now stores the value transmitted to it. A
read step of the ERCW (ack) PRAM is simulated by two transmission steps of the OCPC(ack). We
simulate processor 7 reading cell j in the ERCW(ack) PRAM by processor ¢ transmitting a read
request to processor j and processor j transmitting the value stored there to processor . Note that
there can never be any transmission conflicts when simulating the read step. O

4 Compaction problems

In this section, we study the problems of k-compaction and approximate k-compaction on the
ERCW PRAM. The k-compaction problem takes an array of size n with k£ marked elements, and
places the marked elements into an array of size k. The approzimate k-compaction problem takes
an array of size n with k& marked elements, and places the marked elements into an array of size
O(k). Compaction and approximate compaction are important subproblems in processor realloca-
tion and load balancing. For instance, if some processors have completed their tasks and some have
not, we would like to be able to round up those tasks in a small area, so other processors can find
them and help out; this can be achieved using approximate compaction. In addition, compaction
and approximate compaction have been used as subroutines for many algorithms, including algo-
rithms for space allocation, estimation, sorting, CRCW PRAM simulation, generation of random
permutations, and computational geometry.



We will primarily deal with the k-compaction problem and our only result for approximate
k-compaction is a randomized algorithm for the Nice Robust ERCW PRAM, which is described at
the end of Section 3.2.1.

4.1 Lower Bounds

Here we will show that 2-compaction on the Robust, Nice Robust, Tolerant, Collision, or Common
ERCW PRAM requires v/(loglogn)/2—1 time; that k-compaction on the Arbitrary ERCW PRAM
requires time k for k < /(loglogn)/2 — 1; that 4%-compaction on the Priority ERCW PRAM
requires time k for k < /(loglogn)/2 — 1; and that 2k-compaction on the Priority ERCW PRAM
requires time k for £ < (logloglogn)/4 — 1. We do not place any restrictions on the number
of global memory cells, or the number of processors. (We assume that each of the first n global
memory cells contains an input.)

Without loss of generality, we assume that each input is tagged by a pair (¢,b), where ¢ is its
index (from 1 to n) and b is 0 if the input is unmarked, 1 if the input is marked. Then we will show
a lower bound on solving compaction for the simpler problem of performing compaction on the tags
which are marked with 1s. This will obviously imply a lower bound for the general compaction
problem.

Our lower bound proof will use the following definition and results.

Definition 4.1 A sunflower is a collection of sets in which any element that is contained in two
of the sets is contained in all of the sets.

Theorem 4.1 (Erdds-Rado) [21] Let r and s be positive integers and let F be a family of sets such
that every set in F has at most r elements, and the number of sets in F is greater than rl(s — 1)".
Then F contains a sunflower of size s.

Theorem 4.2 (Turan) [4] A simple graph with n vertices and m edges has an independent set of
size n?/(2m + n).

Theorem 4.3 (Dilworth) [19] Let X be a set and P be a partial ordering on X. If the largest
antichain in X has k elements, then there is a set of k chains whose union is X.

Corollary 4.1 [2] Given a sequence of n distinct integers, there is either an increasing subsequence
of size \/m, or a decreasing subsequence of size \/n. Furthermore, given k sequences of n integers

1/2%

(each sequence being a permutation of the n integers), there is a subset of size n such that in

each sequence, the subset is arranged in either increasing or decreasing order.

Let 2COMP be an algorithm for 2-compaction on the Tolerant, Collision, or Common ERCW
PRAM. For a given k, let COMP-A be an algorithm for k-compaction on the Arbitrary ERCW
PRAM; let COMP-P-4* be an algorithm for 4*-compaction on the Priority ERCW PRAM; and
let COMP-P-2k be an algorithm for 2k-compaction on the Priority ERCW PRAM. We will use an
adversary argument for our lower bound proof. A step will consist of a write followed by a read.



At each step, the adversary will designate some of the inputs as unmarked (by setting their values
to 0) or marked (by setting their values to 1). Let V; be the set of indices of inputs which have not
been designated by step t. These will be the live inputs in step t. Initially Vo = {1,...,n}.

We will say that a processor is affected by a live input ¢ in step ¢ if there exists a 0-1 assignment
to the values of the other live inputs for which the state of the processor in step ¢ is different when
the value of ¢ is 0 and the value of 7 is 1. Similarly, a cell is affected by live input ¢ in step ¢ if there
exists a 0-1 assignment to the values of the other live inputs such that the contents of the cell in
step t are different when ¢ = 0 and when ¢ = 1.

We will assume that concurrent writes on the Robust ERCW PRAM are resolved using the
Tolerant protocol. We will assume that concurrent writes on the Arbitrary ERCW PRAM are
resolved by allowing the lowest numbered processor that is not affected by any live input to write,
and if none, then simply the lowest numbered processor.

Let p; be the maximum number of processors that could be affected by a single live input in
step t. Let ¢; be the maximum number of cells that could be affected by a single live input. Let
hy = max{cs, pt}.

Lemma 4.1 We can construct an adversary such that after step t of 2C0MP, COMP-A, or
COMP-P-4%, as long as hy < |V[V/h /8, (1) by < 4'; (2) Vi 2 |Viea|V/Pe=1 /248075 (3)
each processor and cell is affected by at most one live input; (4) for COMP-A, at most t items have
been designated as marked; and (5) for COMP-P-4%, at most 4% items have been designated as
marked. Also, we can construct an adversary such that after step t of COMP-P-2k, (1) hy < 4%;
(2) V¢ > |Vt_1|1/4ht_1/124ht_1; (3) each processor and cell is affected by at most one live input;
and (4) at most 2t items have been designated as marked.

Proof: We prove this by induction. First, po = 0 < 2%, ¢g = 1 = 2°, each processor is affected by
no inputs, and each cell is affected by at most one input; hg = 1 < [Vp|/8 if n > 8.

Now assume the lemma is true up to step t. Then we show how to make it hold for step ¢ + 1.
Let ¢ = h;. By the induction hypothesis, each processor and each cell is affected by at most one
live input at the start of step t + 1. We will refer to this live input of a processor (or a cell) as its
live input. Similarly, for a live input, its processors and its cells are the processors and cells that
are affected by it. Let P be a processor that is affected by a live input at the start of step ¢ + 1.
Processor P zero-writes to a cell C' in step t + 1 if P writes to C' if its live input is unmarked.
Processor P one-writes to a cell in step t + 1 if P writes to the cell if its live input is marked.

We will use the following strategy to push through the induction for step t 4+ 1. We will describe
a strategy for the adversary to fix the values of a subset of the live inputs in step ¢t + 1 (thereby
rendering these inputs to be no longer live) so that each cell and processor is affected by only a
constant number of live inputs. To do this, the adversary fixes certain live inputs to value 0 so that
every cell is affected by at most one live input whose processor zero-writes to it. Then the adversary
does the same for one-writes — it fixes certain remaining live inputs to value 1 so that every cell
is affected by at most one live input whose processor one-writes to it. So at this point, every cell
is affected by at most 3 live inputs — its live input from step ¢, one live input for zero-writes, and
one live input for one-writes. As a result, every processor is affected by at most 7 live inputs — its
live input [ from step ¢, and 3 live inputs each from the cell it reads in step ¢ + 1 if [ = 0 and the
cell it reads in step t + 1 if [ = 1. The adversary then uses Theorem 4.2 on a graph derived from



processors, cells and live inputs to extract a large independent set in the graph that corresponds
to a subset of live inputs; all other live inputs are set to 0, and it is shown that this results in each
processor and cell being affected by at most one live input in step £t + 1. We fill in the details of
this strategy below, where we also establish that this can be accomplished by fixing the values of
a sufficiently small number of live inputs so that all four of the inductive assumptions will hold at
the end of step t + 1.

We first consider zero-writes to a cell. We say that the adversary zeros a live input if it designates
it as unmarked. Note that once an adversary zeros a live input, the input is not live anymore. We
will make the adversary zero some of the live inputs so that each cell is affected by at most one
live input whose processor zero-writes to it in this step. To do this, we describe a simple procedure
for the adversary. Until each cell has at most one live input whose processor zero-writes to it,
the adversary arbitrarily chooses a remaining live input [ and for each cell to which {’s processors
could write, the adversary zeros the other live inputs whose processors zero-write to the same cell
— up to two per cell for Tolerant, Collision, or Common (one suffices for Common), and the one
corresponding to the lowest numbered processor that zero-writes to that cell, for Arbitrary. Notice
that once we zero live inputs whose processors zero-write to a cell according to the rule specified
above, the value of the cell is fixed for this step, and no information about live inputs is written
to it. Using this procedure, the adversary sets at most 2p; live inputs for each live input [ chosen.
Thus we are left with |V;|/(2p; + 1) live inputs. Let m = |V4|/(2¢ + 1). At this point, there are at
least m live inputs, and for each cell there is at most one live input that could cause a processor to
zero-write to it.

Now we deal with one-writes. We will fix the values of some live inputs so that every cell is
affected by at most one live input during a one-write. For this, we will find a sufficiently large set
of live inputs such that if one of these inputs is one-written to a cell by a processor, then either
each other live input is also one-written to the same cell by a processor, or none are one-written to
the same cell. This is equivalent to finding a sunflower in a group of sets, where each set contains
the cells one-written to by processors which know a given live input. Thus we can apply Theorem
4.1 with r = ¢ and m as a lower bound on the number of sets. It follows that there must be a
sunflower of size (m/q!)l/q > m!'/7/¢q. We set all the live inputs that are not in the sunflower to
zero. Let m’ be the number of live inputs remaining. Then m’ > ml/q/q. At this point we have
the property that each cell is either affected by at most one live input, or is affected by all live
inputs on a one-write. We only need to consider the latter set of cells. Call this set of cells S.
On the Tolerant, Collision, and Common ERCW PRAM models, note that the cells in § are fixed
(because two of the live inputs must be marked, implying that there will be a write-conflict in each
cell) and thus the cells are not affected by any live input on a one-write. For Arbitrary we need to
do something slightly different. We mark a live input corresponding to a processor that one-writes
to a cell in §. Note that by the definition of 5, every other cell in § is one-written to by a processor
that is affected by that input. By our Arbitrary rule, all cells in § will be fixed. For Priority we
also need to do something different. Note that there are at most p; < g cells in §. Then we proceed
according to one of the following options. (Option 1 is used to obtain the bound for COMP-P-4%,
and Option 2 is used to obtain the bound for COMP-P-2k.)

1. For each of the cells in & we mark the live input corresponding to the lowest numbered
processor that performs a one-write into that cell. Thus we fix at most ¢ live inputs, and we

fix each cell in &

2. Consider a cell v € 8, and rank each live input from 1 to m/ in the same order as the processor
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numbers of processors that one-write to v. For each other cell v' € S consider the sequence
formed by the ranks of live inputs (computed from cell v) in order of processor numbers of
processors that one-write to v'. By Corollary 4.1, we can choose a subset of live inputs of
size m/1/2'" such that for each cell’s sequence, the ranks (from the subset) are all present
in increasing or decreasing order. We zero the other live inputs, and mark the live inputs

corresponding to the lowest and highest ranks in this subset. Thus we fix each cell in &.

Let m” be the number of live 1nputs remaining. Note that m” = m/ > |Vy|'/1/4¢ —q > |Vt|1/q/8q
(using the fact that ¢ < |V;|(1/29)/8) except for COMP-P-2k, in which case m” > m'"/ f297h >
Vil /4.

At this point, each cell is affected by at most 3 live inputs — its live input from step ¢, and one
live input each for a zero-write and a one-write in the current step. Now at most ¢’ = ¢; + 2p; cells
are affected by a live input after this write step. Also, since each cell can be read by at most one
processor, after the read step at most p’ = ¢’ + p; processors will be affected by a live input, and
each processor could be affected by at most seven live inputs (its live input [ from step ¢ and 3 live
inputs each from the cell it could read in the current step if { = 0 and if [ = 1). The adversary
will zero some inputs so that each cell and processor is only affected by one live input. To do this,
we construct a graph in which the vertices are the live inputs and edges between vertices exist if
the live inputs are known to the same cell or processor. There are m’ vertices in this graph and
the degree of each vertex is at most 2¢’ + 6p’. Hence the number of edges in the graph is no more
than m” - (2¢' + 6p')/2 < m” - (4¢; + 11p;). By Turan’s Theorem (Theorem 4.2), we can find an
independent set of vertices of size

(m")2 ) (m" 4 2m" (der + 11pg)) = m" /(1 + Sci + 22p;) > m”/(30q + 1)

This is at least |V|'/9/(31¢-8q) > |V;|'/7/248¢?, except for COMP-P-2k, in which case it is at least
[Vi|'/4 /(31¢ - 4) > |V;|'/*/124¢, The inputs corresponding to vertices not in the independent set
are then zeroed by the adversary.

Now we can set pip1 = ¢; + 3py < 47 ey = ¢ +2p; < 41 Viiy to be the remaining set of
live inputs, where |Viy1| > |Vi|'/9/248¢% except for Option 2 for the Priority model, in which case
[Vig1] > |V3|1/4*/124¢. Since ¢ = hy, the lemma follows. O

Theorem 4.4 (1) Solving 2-compaction on a Robust, Common, Collision, or Tolerant FRCW

PRAM requires \/(loglogn)/2 — 1 steps; (2) for k < y/(loglogn)/2 — 1, solving k-compaction
on an Arbitrary ERCW PRAM requires at least k steps; (3) for k < /(loglogn)/2 — 1, solv-
ing 4%-compaction on an Priority ERCW PRAM requires at least k steps; and (4) for k <
(logloglogn)/4 — 1, solving 2k-compaction on a Priority ERCW PRAM requires at least k steps.

Proof: For the first three parts of the theorem, we can bound |V;| using Lemma 4.1 as follows.

Ho<z<t nH0§i§t1/4l n4_20§i9’ S ATt /2 S w2 —(t+1)?
42 (t+1)248t =  16(4000Y) =  16(4000°) = 16(4000Y) = 16(4000%)

Vil > |
provided t satisfies the constraint hy < |V;|*/(3"*) /8. We note that this condition is satisfied for all
t < /(loglogn)/2) for sufficiently large n. Thus after 7' = \/(loglogn)/2) — 1 steps, we will have

|Vr| > Q(2VIosn /16(4000V1081087/2)) Now assume k < T. For large n, |Vr| > max{5, k42, 4F42}.
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For the case of 2-compaction on the Robust, Nice Robust, Collision, Common, or Tolerant models,
there will be 3 live inputs which do not affect either of the first two global memory cells. Thus the
adversary could mark two of them so that the compaction fails.

For the case of k-compaction on the Arbitrary model, after & — 1 steps, at most k£ — 1 inputs
have been designated as marked, and there will be at least 2 live inputs that do not affect any of
the first k cells. Thus the adversary could mark (or unmark) one of them so that the compaction
fails.

For the case of 4*-compaction on the Priority model, after k£ — 1 steps, at most 14+4+4% 4. -+
4k=1 < 4% _ 1 inputs have been designated as marked, and there will be at least 2 live inputs that
do not affect any of the first 4% cells. Thus the adversary could mark (or unmark) one of them so
that the compaction fails.

For the last part of the theorem (2k-compaction on the Priority model), we can bound |V4| using
Lemma 4.1 as follows.

4t
2 t+1
/ 5—4

1
|VO|H0§zgt S
= 4

4t+1124¢t

Vil >

(500%)

Thus after T = (logloglogn)/4 — 1 steps, we will have V7| > Q(2VIoe" /4(500!08l8l08m) - Now
assume k < T. For large n, |Vr| > 2k + 2.

After k — 1 steps, at most 2(k — 1) < 2k — 1 inputs have been designated as marked, and there
will be 2 live inputs which do not affect any of the first 2k cells. Thus the adversary could mark
(or unmark) one of them so that the compaction fails. O

Since this lower bound holds for any number of processors and global memory cells, it also holds
for the ERCW (ack) PRAM, the OCPC, and the OCPC(ack) models with the same write conflict

resolution protocols.

4.2 Upper Bounds

First we note that there is a simple algorithm that consists of performing one concurrent write,
which solves k-compaction in O(k) time on an Arbitrary ERCW PRAM. However, this algorithm
will not work unless some processor can succeed in each write. For the other write conflict resolution
protocols we need a different approach.

We construct an algorithm which runs in O(loglog n+log k) time on a Tolerant ERCW PRAM.
This is an adaptation of an O(log k) time algorithm for k-compaction on the Robust CRCW PRAM
given in Fich et al. [24]. If k > n/5, we use a standard EREW prefix sums algorithm to perform
the compaction in O(log k) time. Otherwise, as in [24] we partition the input cells into groups of {
cells, where

Ue(k —1) if k< ;B2

4loglogn

o (k—1)logn . logn
= 3loglogn—1 if 4loglogn <k < log Ke and
k—1)logn
(k—=1) log

STog FT if logn < k < nl/5.

We solve k-compaction within each group in O(logl) = O(logk) time using the standard EREW
algorithm.
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Let y; = j if the jth group contains a non-zero entry, and let y; = 0 otherwise. As in [24], if we
solve the k-compaction problem for y1,...,y,/;, we can solve the original k-compaction problem in
O(logl) = O(log k) more steps. To solve the k-compaction problem on yy,...,y,/, we proceed as
in [24], and reduce the problem in O(logl) (i.e., O(logk)) time on a Tolerant or Collision ERCW
PRAM to k-compaction in an array of size 2in=1/1 If k > logn/4loglogn, then 20nth=D/1 =
kM and clearly, we can solve this k-compaction problem in O(log k) time. If k <logn/4loglogn,
then in [24] the problem is solved in constant time using a CRCW technique, but on the ERCW
PRAM we will, instead, solve the problem recursively on an array of size 20ns=D/t < 21p1/2k For
k <logn/4loglogn, 21 < n'/* so we can bound the time of this recurrence by

T(n) < T(n*/9) + Oflogh) = O (%25 (log k) ) = O(loglog n).

Hence, using the fact that the Tolerant protocol is a Nice Robust protocol, and using Lemma 2.2,
we obtain the following theorem.

Theorem 4.5 Lett(n, k) = loglogn+logk. The k-compaction problem can be solved in O(t(n, k))
time on an n/t(n, k) processor Collision or Tolerant ERCW PRAM with n/t(n, k) global memory
cells, and on an n/t(n,k) processor Robust ERCW PRAM with O((n/t(n,k))?) global memory
cells. It can also be solved in O(k) time on an n/k processor Arbitrary ERCW PRAM with 1 global
memory cell.

4.2.1 Randomized

We present two results for randomized algorithms for compaction. Both results are obtained by
having processors hash into random locations in an array. We will assume the inputs are given in
the local memories of the processors.

Our first result is an O(logk) expected time randomized algorithm for compaction on the
Robust ERCW PRAM with n processors and n memory locations. If k& > n'/!® we use the
standard O(logn) = O(log k) time parallel prefix algorithm to perform the compaction. Otherwise,
let A be an array of size k*. Clear this array, and let each processor representing some marked
element write its processor number to a random location of A. We use an O(logk) time prefix
operation to check if k& processors succeeded without collision. If so, we compact them into the
first k locations in the array by computing prefix sums, and inform the marked processors of their
success. If any processor doesn’t receive notice of success, (and so, by construction no processor
receives notice of success) it simply retries the procedure. It is straightforward to see that the
probability of failure decreases geometrically with the number of attempts. Then using Lemma 2.2,
we obtain the following theorem.

Theorem 4.6 An n/logk processor Robust OCPC or an n/logk processor Robust ERCW PRAM
with no more than n/logk global memory cells can solve k-compaction in O(logk) expected time.

Proof: We only need to show that the Nice Robust ERCW (ack) PRAM procedure runs in O(log k)

expected time. The probability that there are any collisions when writing to the array of size k?* is
< k/k*. The time for writing and the prefix sums computation is clogk for some constant ¢, and
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thus the total expected time until the procedure is successful is given by

clogk + (clogk)/k® + (clogk) /k® + ... = clongk_?’i = O(logk).

=0

Now we describe an O(loglog k) algorithm for approximate compaction on an n processor Nice
Robust ERCW (ack) PRAM which works with probability 1 — 1 and uses only O(k) global memory
locations. Each processor with a marked element writes it to a random location in an array of size
8k. If a processor receives an acknowledgement, it idles. If not, the processor writes its element
into an array of size 4k. This procedure continues for a total of loglog k steps as the array size
reduces by half each time. Then we attempt for three steps to write the remaining elements into
arrays of size k.

It is not difficult to see, using a Chernoff bound, that the number of remaining elements after
step ¢ is at most max{k2~(*+=1) k1/4} with probability 1 — te=*"/*/4,

Lemma 4.2 After step t, with probability 1 — te‘k1/4/4, the number of remaining elements will be
at most max{k2~2'+1=1) /1)

Proof: By induction. The base case is trivial. For the induction step, the probability of having
more than the number left will be at most (¢ — 1)e_kl/4/4. Assume we have the required number
left. We will randomly write these to an array of size k274, The probability of a write collision
for any given processor is < k2_(2t+t_1)/l€2_t+47 so the expected number remaining after step ¢t will

be
kQ—(zf—1+(t—1)—1)(275—4—(2f—1+(t—1)—1)) < L9~ (2°41)

If k2-(2'+t) > k1/4/27 then by a Chernoff bound, the probability of having over twice this number, or
k2_(2t+t_1), is less than e=*272 *'71/4 < emK A qf g2 (2 < 161/4/27 then by a Chernoff bound,

the probability of having over k/* remaining is less than e=#*/4 Thus the total probability of
failure at step ¢ is less than te=k* 4 0

The probability of any element colliding in the last three steps is k'/*(1/k%/%)3 < 1/k?. Since
(loglog k)e_kl/4/4 < 1/k? for sufficiently large k, we can bound the total probability of not suc-
ceeding by 1/k. Then using Lemma 2.1, we obtain the following theorem.

Theorem 4.7 An n/(loglogk) processor Nice Robust OCPC or an n/(loglogk) processor Nice
Robust ERCW PRAM with n/(loglogk) global memory cells can solve approximate k-compaction
in time O(loglog k), with probability 1 — 1/k.

If we are on a model that can compute a Global OR in constant time (i.e. not the Robust
or Nice Robust model), a single fixed processor can detect a failure and inform the “successful”
processors in O(log k) time. To use this information in an algorithm that runs in Q(log k) time and
uses compaction as a subroutine, the algorithm would run in stages of O(logk) steps, and a check
for successful approximate compactions would be performed at the end of each stage. The expected
asymptotic running time of this algorithm would then not be affected by the possible failure of the
approximate compaction.
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5 Maximum

Finding the maximum of n input elements requires ©(logn) time on an EREW or CREW, even
when the values are restricted to be either 0 or 1 [17]. Finding the maximum of n inputs on a
Priority CRCW with n processors requires O(loglogn) time if the inputs come from a large range
and O(k) time if the inputs are restricted to the range [1,n*] [26]. In this section we will show that
finding the maximum over an unrestricted range requires Q(y/logn) time on an ERCW PRAM. If
input values are restricted to the range [1, s], s < n we will show that the maximum can be found
in O(loglogs) time on the Common or Tolerant ERCW PRAM, and that Q(y/loglogs) time is

required to find the maximum.

5.1 Lower Bounds

Our first lower bound will be for the case of unrestricted input range. Wlog, we will assume that all
the inputs are distinct. Let MAX be an algorithm on the Priority ERCW PRAM which finds the
maximum of n inputs stored one per processor in the first n processors. For concreteness, assume
that the output of MAX is to be stored in the first global memory cell. Consider step ¢ of MAX.
Let V; C {l,...,I,} be the set of inputs which could still be the maximum. These will be called
the live inputs. Let S; C {1,2,3,...} be the possible values for the live inputs, as restricted by the
adversary. Let Fy = {f;|I; € V}} be the adversary’s assignment of values to fixed inputs. Let k; be
the maximum number of processors or cells which are affected by any given live input.

As the computation proceeds, the adversary fixes the values of certain inputs and maintains

a set of allowed inputs, such that, after each step, each processor is affected by at most one live
input. Initially Vo = {@,..., L.}, So = {1,2,3,...} and is infinite, and Fy = 0.

Lemma 5.1 We can construct an adversary such that after step t of MAX, the following properties
hold: (1) V; C Vi_y and |V4| > g/f;ll'; (2) each processor and cell is affected by at most one input
in Vi; (3) ky < 3% (4) Sy C Si_1 and S is infinite; (5) Fy_y C Fy C {1,2,3,...} — Sy; and (6) an
input in Vi affects at most ky processors and k; cells.

Proof: Define a processor’s read (write) function at step ¢ to be a function which maps the live
input this processor knows about at step ¢ to the cell which it reads(writes).

The lemma is obviously true for step 0. Now assume the lemma is true for all steps up to
t — 1. Consider step ¢t of MAX. Each processor knows at most 1 live input. Depending on this
live input, it will (possibly) write to a specific cell and (possibly) read from a specific cell. As in
[25], we use Ramsey Theoretical arguments to restrict the possible values for inputs such that (1)
each processor either writes for all values or for no values; (2) each processor either reads for all
values or for no values; (3) each processor’s read function is either constant or one-to-one; (4)
each processor’s write function is either constant or one-to-one; and (5) any two read and/or write
functions from any step ¢’ < ¢ are either identical or disjoint. Let S} C S;_1 be the set of possible
values for inputs after this restriction. The fact that S} is still infinite is shown in [25]. Now, because
we are assuming the inputs are distinct, one-to-one read (or write) functions can not be used to
by processors to gain any information. (Notice that in this case a processor will only read a cell if
the input I it knows is a certain value, and the only possible writes to that cell occur from some
processor which also only knows I, since no other input could be that value) Thus we can restrict
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our attention to constant read and write functions. In this case, since the reading and writing cells
are fixed, and since we are using the Priority model, a processor reading a location knows exactly
which processor last wrote (successfully) to that cell, and thus which single live input it will learn
about, if any.

Form a graph with the live inputs (V;_1) as vertices and an edge between two vertices if a
processor is affected by those two live inputs (one from the previous step, and one from the cell
just read). Take the largest independent set in the graph and let V; be the inputs associated with
this independent set. Fix the smallest distinct values f; from S to variables i € V;_y — V; and
remove them from S to obtain S;. Add these values to F;_; to obtain F;. By Turan’s Theorem,

[Viei|?
we can choose a set V; such that |Vi| > Ve

The degree of this graph is at most 3k;—;. (Consider a live input I;. At most ky_; processors

where e is the number of edges in the graph.

are originally affected by that live input, and possibly read a cell affected by another live input.
Also, each of the k;_; cells originally affected by I;, plus the k;_; cells written to by the processors

affected by I; could be read by other processors.) Thus the number of edges is at most M*, S0

2 2 X
|Vl > |V|t‘jt1_|ét|+1 > |V|:f1_|;,|t+1 > g/f;ll'. By the same reasoning as above, the number of cells affected

by a given live input after step ¢ is at most 2k;_; < k¢, and the number of processors affected by a
given live input after step ¢ is at most 3k;_1 < ky. O

Theorem 5.1 Finding the mazimum of n inputs on a Priority ERCW PRAM requires Q(y/logn)
communication steps.

Proof: By Lemma 5.1, one can conclude that |Vy| > n/3(+D++HE=D+42 > 4 /3(42)(41)/2 - Thep
at step T'= y/2logn/log3 —2, Vp > 2, and the first cell is affected by at most one of these inputs.
Then the adversary can simply set the other input to be higher than the value stored in the first
global memory cell. O

Theorem 5.1 only holds when the inputs are drawn from a very large range. For the case of
inputs restricted to a small range, we can prove the following lower bound.

Theorem 5.2 Finding the mazimum of n inputs drawn from the range [1,s], for s < n, requires

Q(y/loglog s) time on a Robust, Nice Robust, Tolerant, Collision, or Common ERCW PRAM.

Proof: Consider an input array of size n which consists of all zeros except for two entries at
locations ¢,j € [1,s], which contain the values i and j, respectively. If we have an algorithm to
find the maximum in this n element input, then we solve the 2-compaction problem on this array
with the same time bound, and thus the Q(y/log log s) lower bound on 2-compaction applies to the
problem of finding the maximum. O

5.2 Upper Bounds

We first show a doubly logarithmic time algorithm for Rightmost One problem, and then show an
algorithm for Maximum which is doubly logarithmic in the number of different values allowed for
the input elements (i.e., the ‘range’), up to a range of size n.
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Theorem 5.3 The rightmost one of n bits can be found on an n/loglogn processor Common,
Tolerant, or Collision ERCW PRAM in O(loglogn) time, or on an n processor Priority ERCW
PRAM in constant time.

Proof Sketch: The algorithm for the Priority model is trivial. For the other models, we divide the
array into subarrays of size v/n and recursively find the rightmost subarray which contains a 1 and
the rightmost one in each subarray. Note that on the CRCW PRAM, the recursion is unnecessary,
since n processors can find the rightmost one in an array of size \/n in constant time. O

Theorem 5.4 The mazimum of n inputs in the range [1, s] can be found on a max{n,s}/loglog s
processor Common, Tolerant, or Collision ERCW PRAM in O(loglogs) time.

Proof Sketch: We create an array of size s, place 1’s at positions in the array which correspond
to input values, and find the rightmost one in O(loglogs) time. O

Using an algorithm similar to one in [23], we obtain the following result for finding the maximum

of binary inputs (i.e., the global OR) on a Robust ERCW PRAM.

Theorem 5.5 An n/loglogn processor Robust ERCW PRAM can find the global OR of n bits in
O(loglogn) time with error probability L.

6 Chaining and Integer Sorting

Our goal is to obtain a fast ERCW PRAM algorithm to sort integers from a polynomial range. To
do this, we first develop algorithms for the Chaining problem, which takes an n-bit array as input
and finds for each 1 in the input, the position of the nearest 1 to its left.

Theorem 6.1 The Chaining problem on n bits can be solved on an n/loglogn processor Common,

Tolerant, or Collision OCPC or ERCW PRAM in O(loglogn) time.

Proof: First partition the input array into consecutive groups of log? n bits and solve the Nearest
Ones problem in these groups computing prefix sums in O(loglogn) time. Now we assign a 1 to
each group which contained a 1, and solve the Chaining problem on n/log®n bits. Once this is
done, the processor associated with the leftmost 1 bit in each group can simply read the position
of the rightmost 1 bit in the nearest group to the left which contains a 1, and write it to the output
array.

To solve the Chaining problem on n/log?n bits, notice that in O(loglogn) steps, we can
broadcast each bit to logn processors, so we have logn processors working for each bit. Imagine
a complete binary tree formed over the n/log® n bits. For each bit, associate one of its associated
processors with each of its ancestors. Now, in parallel for each node in the tree, solve the Rightmost
One and Leftmost One problems for the subarray containing the elements at the leaves of the subtree
rooted at the node. This computation can be performed in O(loglogn) time and linear work as
shown in Section 5. FEach processor assinged to a bit with value 1 will then know if its bit is
the rightmost or leftmost at that node. For each bit b with value 1, use a standard prefix sums
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computation over the processors associated with that bit to find the lowest node (closest to the
leaves) for which b is not the leftmost bit. Then the processor for b assigned to that node can look
at the left child z of that node to find the rightmost bit » with value 1 in the subarray for z. This
is the nearest one to the left of b. There will be no read conflict, because at each node there is at
most one bit in its subarray which is the leftmost bit with value 1. O

The following theorem addresses the Chaining problem in the case when there is a processor
associated with each non-zero element in the input.

Theorem 6.2 Let A[l..n] be an array of zeros and ones, with a processor associated with each
Ali] = 1 (hence the number of processors is equal to the number of ones in the input). Let the
priorities of the processors decrease with the position within A of the element to which a processor is
associated. The Chaining problem on this input can be solved in O(loglogn) time on a PRIORITY
FERCW (ack) PRAM.

Proof: The following algorithm solves the problem within the stated bounds. We create an
auxiliary array of size \/n and divide the input array A into y/n blocks of size \/n. All processors
assigned to elements in the ¢th block perform a concurrent write of their element’s position within
A into location 7 of the auxiliary array. The processors that succeed delete their entry in A and
recursively solve the problem in the auxiliary array. The remaining processors recursively solve
the problem within their blocks. The recursive solutions are then combined into a solution for the
original problem in constant time. Since all of the recursive subproblems are of size y/n, the overall
algorithm runs in O(loglogn) time. O

We can now perform a stable sort of n integers in the range [0..n — 1] in O(logn) time with
nloglogn/logn processors and O(n?) space on a PRIORITY ERCW (ack) PRAM as follows. As
in the CRCW algorithm of [36] we use an n X n array (which is assumed to be initialized to zero).
For each index ¢ in the input, if element 7 has value j then a 1 is written into position (¢, j) of the
array. We then solve the chaining problem on the n x n array (interpreted as a 1 x n? array) to
obtain the sorted elements in a linked list. This portion of the algorithm runs in O(loglogn) time
using n processors using the algorithm in the proof of Theorem 6.2. To obtain the sorted list in an
array form, we perform list ranking to find the position of each element in the output array. Since
the sort is stable this allows us to sort n integers in the range [0..n* — 1], for any constant k, within
the same processor-time bounds. It also allows us to reduce the space requirement to n'*¢, for
any constant € > 0, by viewing each value as the sum of powers of n¢. This gives us the following
theorem.

Theorem 6.3 Integer chain-sorting can be performed on n integers in the range [0..n — 1] in
O(loglogn) time with n processors on a Priority ERCW(ack) PRAM. Integer sort into an array
can be performed on n integers in the range [0..n*] in O(logn) time with nloglogn/logn processors
and n'T¢ space on a Priority ERCW(ack) PRAM.

7 TUnbounded Fan-in, Bounded Fan-out Circuits

Since fast dynamic reconfiguration between a large number of processors in optical networks does
not yet seem to be technically feasible, we would like to find ways of reducing the need for it.

18



One way is to design oblivious algorithms. An oblivious algorithm for an OCPC is an algorithm in
which, if a processor transmits a message during a step, the destination of that transmission is fixed
before the algorithm is run. An oblivious algorithm for an ERCW PRAM is an algorithm in which,
if a processor reads or writes to any cells during a step, the locations read and written to by that
processor are fixed before the algorithm is run. In oblivious algorithms the pattern of transmissions
is known prior to the start of the algorithm (i.e., it is not dependent on the inputs). Thus, each
processor may have only a small set of other processors with which it needs to communicate, and
this set is fixed before the algorithm is run. Therefore, we would be able to fix or preset the
transmission elements, and we may avoid some of the reconfiguration costs.

A Boolean circuit is a directed acyclic graph. The nodes of in-degree 0 are called the inputs.
The nodes of indegree k > 0 are called gates and are labeled with AND, OR, or NOT. (Nodes
labeled with NOT have must have indegree 1.) The fan-in of a node is its in-degree and the fan-out
of a node is its out-degree. One of the nodes is designated as the output node. The size of a circuit
is the number of gates, and the depth of a circuit is the maximum length of a directed path from
an input to the output. A Boolean formula is a Boolean circuit whose underlying graph is a tree
(all nodes except the output node have out-degree 1).

A special type of oblivious algorithm is given by a bounded fan-out Boolean circuit (BFO),
which is a Boolean circuit in which the fan-out of each node is at most two. We assume standard
definitions for circuits and formulas [10]. A BFO circuit with size s and depth d can be simulated
in a straightforward way by an s processor, d step oblivious OCPC algorithm. Just as unbounded
fan-in, unbounded fan-out circuits correspond closely to the CRCW PRAM [11], and the study
of bounded fan-in circuits often sheds light on algorithms for the CREW and EREW PRAM, we
believe that the study of BFO circuits should enhance the understanding of the ERCW PRAMSs

We now give some results on solving some fundamental problems on BFO circuits.

7.1 Lower Bounds

Our first result shows how to transform a BFO circuit into something resembling a formula, so that
we can obtain a lower bound the depth of the circuit using known lower bounds on formula size.

We will assume the size of a formula is the number of inputs in the circuit corresponding to the
formula.

Theorem 7.1 Let f be a Boolean function over n variables. If f is computed by a circuit of depth
d with fan-out at most ¢ (with one input corresponding to each variable), then there is a Boolean
formula of size at most nc® which computes f.

Proof: Let C' be a depth d circuit in which each gate has fan-out at most ¢. Let C” be the same
circuit, but with every gate with some fan-out ¢’ > 1 replaced by a gate with a single output leading
into a “fan-out” gate which fans out the output to ¢’ other gates. Then C’ has depth at most 2d.
Now consider the following percolate operation. Assume a gate g has an output which enters a
c’-fan-out gate. The percolate operation replaces this with a ¢’-fan-out gate at each input which
fans out each input into ¢ duplicates of gate g. This has the effect of percolating the gate g up in
the circuit.

We perform percolate operations on C’ until all standard gates are above all fan-out gates.
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Notice that we have not changed the result nor the depth of the circuit. Call this new circuit C”.
Notice that the standard gates of C” all have one output, and thus correspond to a formula for f.
Let F correspond to this formula, i.e., the circuit consisting of the standard gates of C"”, with the
inputs corresponding to every input into a gate which is an actual input or an output from one of
the fan-out gates. Since there are at most d levels of fan-out gates, and each of those gates has
fan-out ¢, each input can be fanned out to at most ¢? inputs of I'. Thus there are at most nc?
inputs to F. O

Corollary 7.1 Any BFO circuit which computes parity requires 2(logn) depth.

Proof: By Khrapchenko [42], any formula for parity must have size Q(n?). By the previous lemma,

ne? = Q(n?), and since ¢ is a constant, d = Q(logn). O

Let T Hy, ,, denote the threshold function which outputs 1 if and only if at least & of the inputs
are equal to 1.

Corollary 7.2 Any BFO circuit which computes T Hy, ,, requires Q(log k 4 loglog n) depth.

Proof: By Khrapchenko [42] any formula for T'Hy, ,, must have size Q(k(n—k+1)). By Krichevskii
[43] any formula for T'Hy, , must have size Q(nlogn). By the previous lemma, ne? = max{Q(k(n —
k+1)),Q2(nlogn)}, and since ¢ is a constant, d = Q(logk + loglogn). O

We next consider the computation of multiple-valued Boolean functions.

Lemma 7.1 Let f: R — R™ be a Boolean function. Consider the jth input variable for some
71,1 <5 < m. Let O be a set of output variables with the property that for each o € O there is some
n-bit input I such that the value of o is complemented when the jth bit in I is complemented. Then
any bounded fan-out circuit that computes f will require depth Q(log|O|).

Proof: The circuit must contain a path from the jth input node to each of the output nodes in O.
Since the circuit has bounded fan-out, the lemma follows. O

Corollary 7.3 Any bounded fan-out circuit for adding two n-bit integers, merging a bit into an n
bit sorted sequence, sorting n bits, or computing the prefix sums of n bits requires Q(logn) depth.

7.2 Upper bounds

There are well known bounded fan-in circuits with O(log n) depth and linear size for parity, addition,
merging, sorting binary inputs, and prefix sums on binary inputs. By [40], these circuits can be
converted into bounded fan-out circuits of the same size and depth. By Corollaries 7.1 and 7.3,
these are optimal BFO circuits for these problems in terms of both size and depth.

Next we present a BFO circuit that computes the threshold function T'Hy , in optimal size
n and optimal depth O(logk + loglogn). Our construction makes use of an optimal logarithmic
depth circuit for computing (in binary) the sum of n bits [46] and two constructions for monotone
formulas due to Valiant [49] and Friedman [27] which we sketch below.
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The monotone formula construction of Valiant [49] shows that any monotone symmetric function
on n variables can be written as a monotone formula of size O(r®?). Implicit in the construction
of this formula is a monotone BFO circuit of size O(n”?) and depth O(logn).

The monotone formula construction of Friedman [27] shows that T'Hy , can be written as a
monotone formula of size O(k'?%nlogn). This construction uses Valiant’s construction on threshold
functions with 44 inputs, and thus has depth O(logk). The threshold function developed by
Friedman has the form

k1
THk(yh .. 7yn) = \/]‘ZlognTHk (vieA{ Yis \/iEA% Yiy o '7\/i€AJ ) y2)7
4k

where for each j, A{, .. .,AikQ is a partition of the n inputs. Thus each of the n inputs must be
fanned out to k*logn of Valiant’s threshold circuits. This can be done in O(log k + log log n) depth
and O(nk*logn) size. The total size of all of the Valiant circuits are then k*log n times O((442)%).

We use these results for our circuit as follows. First we place the n inputs into groups of size
k15 logn and use the addition circuits to find the sum of the number of ones. This takes linear size
in each group, and thus linear size overall. The depth required is O(logk + loglogn). Then using
a standard comparison circuit, each group can check to see if it has more than k& 1’s. The output
to this circuit goes into a final OR gate which determines the final outcome. Along with this, each
circuit fans out each of its first [log k] outputs into the appropriate number of ones, so that we will
have at most 2k outputs from each group, with the number of ones output equal to the number
of ones in the group (assuming the number of ones is at most k). The outputs of all the groups
can now be input into the Friedman circuit. Since there are 2kn/(k'%log n) inputs, the size of the
Friedman circuit will be O(n). The depth will be O(log k + loglog n). The output to the Friedman
circuit is then ORed with the output of the comparator circuit at each of the groups. If any group
had more than k inputs, then the output of the total circuit will be 1. If not, then the output from
each group will be the correct number of ones in the group, and the output of the total circuit will
be the output of Friedman’s circuit, which will be 1 if and only if the number of ones in the input
is at least k.

This circuit implies the following theorem

Theorem 7.2 There is a size O(n), depth O(log k+loglogn) BFO circuit which computes T Hy, ,,.

8 Relations between ERCW Models

We now discuss the relative powers of the different write conflict resolution protocols on the
ERCW (ack) PRAM. Many of our results parallel those on the CRCW PRAM. Using the results
from Section 3, some of these results can be generalized to the ERCW PRAM model and the OCPC
model.

We use the notation Protocol(m) to denote a collision protocol on an ERCW (ack) PRAM with
m global memory cells. If we let X <Y mean “X conflict resolution protocol can be simulated on
Y conflict resolution protocol with constant slowdown”, then it is not hard to see that

Robust(m) < Collision(m) < Arbitrary(m) < Priority(m) , and
Robust(m) < Nice Robust(m) < Tolerant(m) < Collision (2m).
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(The last simulation simply associates an extra memory cell with each memory cell of the Tolerant
ERCW (ack) PRAM, to test whether there will be a collision at that cell, so that the value of the
cell is not overwritten if there is a collision.) In addition, Common(m) < Arbitrary(m).

In the next two subsections, we describe some less obvious simulation results.

8.1 Separations

In our lower bounds, we will always assume the simulating machine has infinite memory. Boppana
[9] showed that solving Element Distinctness on the Common CRCW PRAM (and thus the Common
ERCW (ack) PRAM) requires Q(logn/loglogn) time. However on any of the other ERCW (ack)

PRAM models, Element Distinctness can be solved in constant time. The following theorem follows.

Theorem 8.1 There is a separation of Q(log n/loglogn) between the Common ERCW(ack) PRAM
model and any other ERCW (ack) PRAM model.

This separation is tight for the CRCW PRAM, but so far the best algorithm for Element Distinct-
ness on the Common ERCW (ack) PRAM requires Q(log n) time.

Similarly, Grolmusz and Ragde [34] and Chaudhuri[12] provide separations between some other
CRCW PRAM models, which can be easily transferred to the ERCW (ack) PRAM, yielding the

following theorem.

Theorem 8.2 There is a separation of Q(logloglogn) between the Collision ERCW (ack) PRAM
and Common ERCW(ack) PRAM models, a separations of Q(loglogn) between the Collision
FERCW(ack) PRAM model and the Arbitrary ERCW(ack) PRAM model, and a separation of
Qloglogn) between the Tolerant ERCW(ack) PRAM model and the Collision ERCW (ack) PRAM

model.

8.2 Simulations

First we note that the simulation of a Priority(m) CRCW PRAM on an Arbitrary(mn) CRCW
PRAM. given in Chlebus et al. [15] can be easily transferred to the ERCW (ack) PRAM, yielding

the following theorem.

Theorem 8.3 There is a simulation of a Priority(m) ERCW(ack) PRAM on an Arbitrary(mn)
FRCW(ack) PRAM that runs in O(loglogn) steps.

The rest of this subsection describes the simulation of an Arbitrary(m) ERCW (ack) PRAM on
a Tolerant(mn) ERCW (ack) PRAM.

For the simulation we need to use a partition algorithm from [15], which is run with a subset of
processors, and results in either one processor being marked, or at least one but at most half of the
processors being marked. This partition algorithm uses O(n) memory cells and takes O(loglogn)
time. An additional feature of this algorithm is that each marked processor has an associated
unmarked processor, and thus if k£ processors are initially assigned to each processor in the subset,
then the algorithm can assign 2k processors to each marked processor, k from the marked processor,
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and k from its associated unmarked processor. (This partition algorithm was written for the

Collision CRCW PRAM, but can also be run on the Tolerant ERCW (ack) PRAM.)

In the first phase of our simulation, we divide the processors into groups according to the cells
they write to, and run the partition algorithm y/logn/loglogn times, with each subsequent appli-
cation on the marked processors from the previous application. Then if there is more than a single
processor remaining in a group, each of the remaining processors will be assigned gVlogn/loglogn
processors.

In the second phase of our simulation, we use a technique from [16] to choose one of the remaining

(marked) processors for each cell as follows. Let k = 2V1egn/loglogn = Agsjon each marked processor
to a cell in an n element array according to its processor number. Form a k-ary tree T over this
array. For each marked processor P do the following: Associate the k processors assigned to P
with the k leaves in T' with the same parent as P. Now let P write a 0 to its own cell. Then let P
write a 1 to its own cell, and let the auxiliary processors associated with cells at positions greater
than P also write 1 to their cells. Then let P read its location. P will only read a 1 if it is the first
(lowest numbered) child of its parent which is writing. Say a marked processor “wins” this level if
it succeeds in writing a 1. Assume P wins this level. Then P and its k assigned processors move
up to the next level. Notice that on the ERCW (ack) PRAM, the marked processors that lose can’t
inform their assigned processors that they’ve lost, so those processors will also move up to the next
level. But they will simply mimic the assigned processors of the winner, and this will still allow
only the first child of each parent to succeed in writing a 1. We continue this procedure through the
log n/ log k levels, until exactly one winning processor remains. This processor then writes without
contention to the appropriate cell, completing the simulation of the Arbitrary Write step.

The time for performing \/log n/loglogn partitions is O(y/log nloglogn) and the time to pro-
ceed through log n/ log k levels of the tree, each one taking constant time, is also O(y/log nloglogn).

Thus the time for simulating a step is O(y/lognloglogn). The following theorem follows.

Theorem 8.4 There is a simulation of a Arbitrary(m) ERCW (ack) PRAM on an Tolerant(mn)
FERCW(ack) PRAM that runs in O(y/log nloglogn) steps.

9 Conclusions

In this paper we have studied the Exclusive Read, Concurrent Write (ERCW) PRAM model. This
model is of importance since we show a tight correspondence between an ERCW PRAM with a
linear number of memory locations and the Optical Communication Parallel Computer (OCPC), a
model of parallel computation that uses optical communication between processors and memory.

We have also presented results for bounded fan-out circuits (BFO’s). Algorithms designed for
BFO’s will map on to the OCPC without the need for fully dynamic reconfiguration.

The OCPC model has been widely studied, and most of the prior work on this model has
been devoted to implementing one step of parallel communication using a small number of steps
on the optical communication medium. In contrast, we show in this paper that each step of the
ERCW PRAM (with number of shared memory locations equal to the number of processors) can
be implemented in constant time on the OCPC and vice versa. Thus the algorithms we present in
this paper can be mapped on to the OCPC so that each step takes only a constant amount of time
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thus obviating the need to map a step of parallel communication on to the OCPC communication
medium.

In this paper, we have presented algorithms as well as lower bounds on the time needed to solve
many fundamental problems on the ERCW PRAM and the OCPC. In many cases the bounds are
not tight, and it would be interesting to close the gap between upper and lower bounds.
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